光头设备和使用此光头设备的光盘设备 【技术领域】
本发明涉及光头和光盘设备,其被用于在作为信息记录介质的光盘中记录信息或还原信息。
背景技术
近年来,在信息记录/还原设备(光盘设备)方面,有关提高倍速以便能够以诸如8到48倍速的高倍速记录信息,以及降低尺寸等等的要求越来越高。因此,严格的设计条件被应用于在光盘中记录信息或从光盘还原信息的光盘设备。
尤其是,在致动器方面,要求能够进行高速访问,即具有高灵敏度。以如下方式得到致动器的灵敏度(AC灵敏度)。
AC灵敏度=F/m,F=Biln
F是动能,m是致动器可运动部分的质量。提高灵敏度的方法包括在有效范围内提高磁通量密度,允许最大电流,提高绕数,及其它。
显然,通过降低致动器质量可提高灵敏度。然而在线圈可移动的MC型致动器中,致动器的主要质量是线圈质量,并且线圈绕数与灵敏度的提高成反比。
例如,日本专利申请KOKAI公开说明书2002-150599公开了一种已知致动器,其中磁轭没有布置在线圈内侧,但是磁体在线圈的两个相对的端面上彼此面对。
此外,为了提高灵敏度,在提高有效线圈绕数的情况下存在基于空心线圈或鼓形绕组的方法。在这种情况下,当线圈的线形缩窄时,存在这样的问题,即线圈导线,尤其是弯折部分的线圈导线因绕组的张力而缩窄,线圈导线产生损耗并且承受电流值变小。应当注意,需要绝缘包层,并且显然这是一个增加体积的因素。
此外,在远离重心的位置布置作为重负载的线圈中的一个(磁路)会导致这样的问题,即灵敏度因总重量的增加而降低。
另一方面,当根据电流方向也在线圈内侧布置多个磁轭,以便提高将流过线圈的电流用作动力(drive force)地效率时,不仅加大了线圈外形,而且不利地增加了可运动部分的尺寸。
【发明内容】
本发明提供了一种光头设备,包括:
物镜,其将光束聚集到在其中记录信息的信息记录介质等等的记录表面上;
透镜支架,其固定物镜,使得物镜能够在物镜的光轴方向和平行于信息记录介质的记录表面的方向上移动;
具有表面的磁体(magnet),其中任意磁极在所述表面上指向一个方向;
线圈,其具有线圈表面,配置在透镜支架中,并且根据来自磁体的磁场产生作用力,以便在光轴方向和平行于记录表面的方向中的至少一个方向上移动透镜支架;
磁性体(magnetic body),其减少来自作用于线圈的磁体的磁场的透过;和
支持构件,其支承透镜支架以便使透镜支架能够在预定方向上移动。
此外,本发明提供了一种光头设备,包括:
光头,其具有物镜,所述物镜将光束聚集到在其中记录信息的信息记录介质等等的记录表面上;透镜支架,其固定物镜,使得物镜能够在物镜的光轴方向和平行于信息记录介质的记录表面的方向上移动;具有表面的磁体,其中任意磁极在所述表面上指向一个方向;线圈,其具有线圈表面,配置在透镜支架中,并且根据来自磁体的磁场产生作用力,以便在光轴方向和平行于记录表面的方向中的至少一个方向上移动透镜支架;磁性体,其减少来自作用于线圈的磁体的磁场的透过;和支持构件,其支承透镜支架以便使透镜支架能够在预定方向上移动;
光电检测器,其检测在记录介质的记录表面上反射的光束,并且将其转换成电信号;和
信息处理电路,其根据光电检测器输出的电信号还原记录介质中记录的信息。
【附图说明】
图1的透视图图解了包含根据本发明实施例的光头设备的光盘设备的例子;
图2的示意图图解了光头设备的工作原理;
图3的示意图图解了结合图1和2描述的光盘设备中信号处理系统的例子;
图4的透视图图解了应用根据本发明的实施例的致动器的例子;
图5的透视图图解了支持致动器以便能够被操作的光头设备的例子;
图6A和6B的透视图图解了应用根据本发明的实施例的光头设备中安装的线圈的例子;
图7A和7B的平面图图解了应用本发明的另一个实施例的聚焦线圈,循轨线圈和磁体的构造和操作;
图8A到8D的平面图图解了应用本发明另一个实施例的聚焦线圈,循轨线圈和磁体的结构和操作;
图9的示意图以分立方式实立体镜地(stereoscopically)示出了图8A和8B所示的相对线圈表面和磁体表面,以利于理解其关系;
图10A到10D的透视图图解了引入图8A到8D所示的平面线圈的致动器的例子;
图11的示意图以分立方式实立体镜地示出了相对线圈表面和磁体表面,以便在说明图8A的致动器的结构和操作时帮助理解其关系;
图12的示意图以分立方式实立体镜地描述了图8C所示的相对线圈表面和磁体表面,以利于理解其关系;
图13的示意图以分立方式实立体镜地示出了相对线圈表面和磁体表面,以便在说明图8C的致动器的结构和操作时帮助理解其关系;
图14A和14B的示意图示出了图8A的平面线圈的图案的例子;
图15的示意图示出了图8A的平面线圈的图案的例子;和
图16A和16B的示意图示出了图8C的平面线圈的图案的例子。
【具体实施方式】
现在参考附图详细描述本发明的实施例。
图1示出了包含根据本发明的光头设备的光盘设备的例子。
如图1所示,光盘设备101具有外壳111和托盘单元112,托盘单元112被形成为能够相对于外壳111执行弹出操作(沿箭头A所示的方向移动),或装载操作(沿箭头A′所示的方向移动)。
在托盘单元112的基本上中央的部分提供以预定转数旋转光盘D的旋转台113。应当注意,当在弹出托盘单元112的状态下没有装载光盘时,可以无掩蔽地看见光头设备121和引入光头设备121中的物镜122。
图2的示意图在移除光盘设备101的光头设备121的元件的状态下图解了光头设备的操作原理。
如图2所示,光头设备121具有物镜122,物镜122将光束,即激光束聚集在光盘D的记录表面上,并且获取光盘D上反射的激光束(此后被称作反射激光束)。
通过利用后面描述的致动器位置变化,物镜122可以在与光盘D的记录表面正交的(聚焦)方向和与记录表面上提供的导槽或记录标记列正交的(循轨)方向上任意移动。
在物镜122的与光盘D相对一侧的预定位置上提供分色滤光器123,分色滤光器123提供通过物镜122指向光盘D的激光束和来自光盘D的反射激光束的预定光学特征。
在分色滤光器123的前侧,即与物镜122相对一侧的预定位置上提供反射棱镜124,反射棱镜124将以基本平行于光盘D的记录表面的方式传导的激光束反射到物镜122。
在基本平行于光盘D的记录表面并且可以使激光束进入反射棱镜124的位置上提供第一激光元件125,第一激光元件125发射例如具有红色波长的激光束。应当注意,第一激光元件125被用于从例如DVD标准光盘还原信息,并且向基于CD的光盘和DVD标准光盘写入信息。
按照从接近激光元件125一侧开始的顺序在第一激光元件125和反射棱镜124之间提供光接收特性设置元件126,分色棱镜127和准直透镜128,其中衍射栅和无偏振全息图被整体形成到光接收特性设置元件126中。应当注意,第一光电检测器129位于相对于提供第一激光元件126的位置满足预定条件的位置上,所述第一光电检测器129检测来自光盘D的反射激光束。反射激光束进入这个第一光电检测129,其中通过光接收特性设置元件126为反射激光束提供预定光栅。
应当注意,第一激光元件125,光接收特性设置元件126和第一光电检测器129被集成为面向DVD的光发射/光接收单元(DVD-IOU)130。
在一个位置上提供发射具有例如近红外波长的激光束的第二激光元件131,该位置使得激光束在经过分色棱镜127的反射之后能够进入反射棱镜124。应当注意,第二激光元件131被用于从例如基于CD的光盘还原信息。
FM全息图元件132位于第二激光元件131和分色棱镜127之间的预定位置上,FM全息图元件132向从第二激光元件131发射的激光束提供适于在光盘D中记录信息的特性。应当注意,向来自光盘D的反射激光束提供预定光接收特性的功能也被提供给FM全息图元件132。
在相对于提供第二激光元件131的位置满足预定条件的位置上提供第二光电检测器133,第二光电检测器133检测来自光盘D的反射激光束。反射激光束进入这个第二光电检测133,其中通过FM全息图元件132为反射激光束提供预定光栅。应当注意,第二激光元件131,FM全息图元件132和第二光电检测器133被集成为面向CD的光发射/光接收单元(CD-IOU)135。
在图2示出的光头设备121中,当针对基于DVD的光盘记录信息时,光接收特性设置元件126将预定波前特性提供给从第一激光元件125输出的、具有例如660nm波长的激光束La,并且使激光束La进入分色棱镜127。
进入分色棱镜127的激光束La穿过分色棱镜127并且被准直透镜128校准,其前进方向被反射棱镜124弯折向物镜122。
被反射棱镜124引向物镜122的激光束La通过分色滤光器123汇聚在光盘D的记录表面上。
由于根据要记录的信息在后面会描述的信号处理系统中调制汇聚在光盘D的记录表面上的激光束La的光强度,如果单位时间能量是能够改变记录薄膜的相(phase)的能量,在光盘D的记录薄膜上形成记录标记,即凹坑。
光盘D的记录表面上反射的反射激光束La′通过分色滤光器123回到反射棱镜124,并且其前进方向再次弯折,从而基本平行于光盘D的记录表面。
使反射棱镜124弯折的反射激光束La′进入准直透镜128,并且导向分色棱镜127。
回到分色镜127的反射激光束La′原样穿过分色镜127,并且被光接收特性设置元件126引向第一光电检测器129。
进入第一光电检测器129的一部分反射激光束La′被用于在图3示出的信号处理系统中生成聚焦误差信号和循轨误差信号。也就是说,物镜122被聚焦锁定到使得在光盘D的记录表面上实现聚焦的位置上,并且以这样的方式控制循轨,使得记录表面上预先形成的信息凹坑的轨道或凹坑列的中心与激光束的中心匹配。
此外,在从DVD标准光盘还原信息的情况下,根据记录表面上记录的记录标记(凹坑列)改变汇聚在类似上述信息存储器的光盘D的记录表面上的光束La的强度,并且从光盘D反射光束La。
光盘D的记录表面上反射的反射激光束La′穿过分色滤光器123并回到反射棱镜124,并且其前进方向再次弯折,从而基本平行于光盘D的记录表面。
使反射棱镜124弯折的反射激光束La′进入准直透镜128,并且导向分色棱镜127。
回到分色镜127的反射激光束La′原样穿过分色镜127,并且被光接收特性设置元件126引向第一光电检测器129。
进入第一光电检测器129的一部分反射激光束La′被输出到外部设备或临时存储器,以作为对应于通过在图3图解的信号处理系统中相加第一光电检测器129的输出而得到的还原信号的信号。
另一方面,当在CD标准光盘中还原信息时,FM全息图元件132将预定波前特性提供给从第二激光元件131输出的、具有例如780nm波长的激光束Lb,并且使激光束Lb进入分色棱镜127。
进入分色棱镜127的激光束Lb被分色棱镜127反射,并且导向准直透镜128。
导向准直透镜128的激光束Lb被准直透镜128校准,并且其前进方向被反射棱镜124弯折向物镜122。
被反射棱镜124引向物镜122的激光束Lb穿过分色滤光器123并且汇聚在光盘D的记录表面上。
光盘D的记录表面上反射的反射激光束Lb′穿过分色滤光器123并回到反射棱镜124,并且其前进方向再次弯折,从而基本平行于光盘D的记录表面。接着,反射激光束Lb′通过准直透镜128回到分色棱镜127。
回到分色镜127的反射激光束Lb′被分色镜127反射,并且被FM全息图元件132引向第二光电检测133。
结果,使得根据光盘D中记录的信息改变其强度并且被返回的反射激光束Lb′进入第二光电检测器133。
此后,反射激光束Lb′被第二光电检测器133进行光电转换,并且其输出被后面会结合图3描述的信号处理系统处理,并输出到外部设备或临时存储器,以作为对应于光盘D中记录的信息的信号。
图3的示意图图解了结合图1和2描述的光盘设备的信号处理系统的例子。应当注意,这里省略了对从基于CD的光盘还原信号(分色棱镜上反射的激光束)的描述,并且图3将主要说明来自第一光电检测器的输出信号,即来自DVD标准光盘的信号的还原,以及聚焦控制和循轨控制。
第一光电检测器129包含第一至第四域(domain)光电二极管129A,129B,129C和129D。来自相应光电二极管的输出A,B,C和D分别被第一至第四放大器221a,221b,221c和221d放大到预定电平。
对于来自相应放大器221a到221d的输出A到D,A和B被第一加法器222a相加,C和D被第二加法器222b相加。
对于加法器222a和222b的输出,在加法器223中″以符号相反的方式将(C+D)与(A+B)相加″(相减)。
加法器223的加法(减法)结果被提供给聚焦控制电路231以作为聚焦误差信号,所述聚焦误差信号被用来在穿过物镜的光轴方向上将物镜122移动到预定位置,以便与具有一个焦距的物镜122匹配,所述焦距是在记录信息时使得通过物镜122的激光束汇聚在光盘D的记录表面上预先形成的轨道(未图解)或凹坑列(未图解)上的距离。
当在预定方向上通过根据聚焦误差信号从聚焦控制电路231提供到聚焦线圈312(参见图4)的聚焦控制电流所产生的推力移动透镜支架310(参见图4)时,物镜122在光盘D的记录表面上的预定轨道或凹坑列上保持合焦(on-focus)状态。
加法器224产生(A+C),加法器225产生(B+C)。两个加法器的输出,即(A+C)和(B+D)被输入到相差检测器232。当物镜122发生透镜移动(lens-shifted)时,相差检测器232被用于获取正确的循轨误差信号。
加法器226得到(A+B)和(C+D)的总和,该总和被提供给循轨控制电路233以作为循轨误差信号,该循轨误差信号被用来在与光盘D的记录表面平行的方向上移动物镜122,以便物镜122的位置与光盘D的记录表面上预先形成的轨道(未图解)或作为记录信息的凹坑列(未图解)的中心匹配。
当通过根据循轨误差信号从循轨控制电路233提供到循轨线圈313(参见图4)并且由循轨控制产生的推力在预定方向上移动透镜支架310时,物镜122在光盘D的记录表面的预定轨道或凹坑列上保持轨道对准(on-track)状态。
应当注意,由于根据来自相差检测器232的输出使物镜122发生透镜移动,物镜122汇聚的激光束的中心被移动了对应于当前轨道前后的预定轨道的距离。
(A+C)和(B+D)还被加法器227相加,以转换成(A+B+C+D)信号,即还原信号,并且输入到缓冲存储器234。
应当注意,从第一激光元件125发射的激光束的返回光束的强度被输入到APC电路235。结果,根据记录数据存储器238中存储的记录数据从第一激光元件125发射的记录激光束的强度得到稳定。
在具有这种信号检测系统的光盘设备101中,当光盘D被放在旋转台113上并且通过CPU 236的控制启动预定例程时,在激光驱动电路237的控制下用来自第一激光元件125的还原激光束照射光盘D的记录表面。
此后,从第一激光元件125连续发射还原激光束,并且开始信号产生操作,虽然这里省略了详细说明。
图4的透视图图解了应用根据本发明的实施例的致动器的例子。
如图4所示,以可以插入后面描述的线圈和磁材料的方式形成的开口部分310a被提供给致动器310。
上述物镜122位于致动器310上的预定位置。
聚焦线圈312和循轨线圈313被定位在开口部分310a的基本上中央的部分,其中按照以磁性体311为中心围绕磁性体311的外围的方式提供聚焦线圈312,所述磁性体311可以抑制磁通量的透过,循轨线圈313被附着在聚焦线圈312的位于物镜122一侧的侧表面上,或者提供在物镜122附近。此外,如结合图3描述的,线圈和致动器310彼此接合,以便能够根据聚焦误差信号和循轨误差信号,并且通过连接端子P和Q提供第一和第二电流。
图5的透视图图解了光头设备的例子,所述光头设备支承图4描述的致动器310,以便使致动器310能够在任意方向移动。
如图5所示,光头设备301具有致动器基座320,致动器基座320具有第一和第二磁体321和322,第一和第二磁体321和322为参照图4描述的致动器310的聚焦线圈312和循轨线圈313提供预定磁场。
通过在致动器基座320的预定位置上提供的4个线构件(弹性构件)323A,323B,324A和324B支撑致动器310,以使其能够沿着任意方向在开口部分310a限定的空间内移动。
在通过致动器基座320支撑致动器310的状态下,在聚焦和循轨线圈312和313的两侧与第一和第二磁体321和322之间的预定间隙内平行地布置第一和第二磁体321和322。应当注意,连接端子P和Q通过导线部分330与图3示出的信号处理系统连接。
图6A和6B的透视图示出了应用本发明实施例的光头设备中安装的线圈的例子。图6A示出了使用在磁性体周围缠绕线材而得到的线圈(鼓形绕组线圈)的例子,图6B示出了使用空心线圈的例子。
如图6A所示,聚焦线圈3121在纵向具有两个侧表面(第一和第二线圈表面312B和312C),并且两个循轨线圈3131A和3131B被布置在一个侧表面(例如312B)上。另外,形成针对聚焦线圈3121的端子P11和Q11,并且形成针对循轨线圈3131A和3131的端子P21和Q21。
在聚焦线圈3121中,其表面绝缘的导电线被裹绕在作为芯材的磁性体311周围,其中从端子P11一侧开始沿顺时针方向裹绕预定圈数。例如,当正电流(plus current)被提供给端子P11并且负电流(minuscurrent)被提供给端子Q11时,箭头S指示的方向上的电流流过第一线圈表面312B,并且箭头R指示的方向上的电流流过第二线圈表面312C。因此,其方向彼此相对的电流分别流过第一和第二线圈表面312B和312C。
循轨线圈313由两个线圈3131A和3131B构成,线圈3131A和3131B在聚焦线圈3121的一个表面上布置成位置相对于致动器310的重心对称。通过从第一磁体321所见的端子P21一侧以预定圈数顺时针方向缠绕其表面绝缘的导电线,并且接着以预定圈数反时针方向缠绕导电线,形成两个线圈3131A和3131B。
因此,例如,当正电流被提供给端子P21并且负电流被提供给端子Q21时,电流在箭头T指示的方向流过循轨线圈3131A和3131B彼此相邻的部分,即第一线圈表面312B的中央部分,并且电流在箭头U指示的方向流过循轨线圈3131的两端(第一线圈表面312B的末端)。
附带地,显然在提供给端子P11,Q11,P21和Q21的正和负电压被分别反置时,电流在相反方向流动。
现在说明如图6B所示没有使用芯材的空心线圈被用作聚焦线圈的例子。通过从端子P12一侧以预定圈数顺时针方向缠绕其表面绝缘的导电线以形成具有预定尺寸的矩形,得到聚焦线圈3122。两个循轨线圈3132A和3132B被布置在聚焦线圈3122的一个侧表面(例如312C)上。针对聚焦线圈3122形成端子P12和Q12,并且针对循轨线圈3132A和3132B形成端子P22和Q22。
因此,电流以类似于结合图6A描述的铁芯线圈的方式流动。
因此,循轨线圈3132A和3132B可以被布置在第一线圈表面或第二线圈表面上。
图7的平面图图解了由结合图4,5,6A和6B描述的空心线圈或铁芯线圈和磁体构成的聚焦线圈和循轨线圈的结构和操作。应当注意,可以分别调整图6A和6B示出的聚焦线圈,循轨线圈和端子,虽然在图4,5和7A中它们以不同的附图标记示出。因此,下面使用图4,5和7A描述的附图标记说明应用于图6A和6B示出的两个类型的聚焦线圈,循轨线圈和端子。
第一和第二磁体321和322是通过使图7B所示的前侧和后侧的不同极发生表面磁化而得到的磁体。以磁化表面基本平行于磁性体311的一个侧表面的方式将第一磁体321固定到磁轭321Y上,其中通过将致动器基座320的预定部分弯折成L形来形成磁轭321Y。此外,以磁化表面基本平行于磁性体311的另一个表面的方式将第二磁体322固定到磁轭322Y上。此外,布置两个磁体,使得相对表面具有相同的磁极,例如两个磁体的磁性体一侧具有N极。
以这样的方式布置第一磁体321,使得循轨线圈313A和313B与其相邻线圈的有效区域(第一线圈表面312B的基本上中央的部分)相对。也就是说,图7A示出的宽度h被形成为这样的宽度,使得其方向与流过第一线圈表面312B的基本上中央的部分的电流相对的电流所通过的循轨线圈313A和313B的两个端部不与磁体相对。
第一磁体321的具有与磁性体311相对的N极的磁体表面形成磁通量,所述磁通量穿过线圈表面312B的基本上中央的部分,即循轨线圈313的有效区域,并且引向磁性体311。此外,第二磁体322的具有与磁性体311相对的N极的磁表面形成磁通量,所述磁通量穿过线圈表面312C并且引向磁通量311。
通过这个结构,可以抑制抵消当电流被提供给线圈时形成的动力的作用力。
此外,通过这个结构,分别在第一和第二线圈表面312B和312C上形成的磁路被布置在线圈中心上的磁性体311分隔(divide)。
现在描述致动器310的操作原理。如参照图6A和6B所述的,根据聚焦误差信号产生的电流被提供给聚焦线圈312的端子P1和Q1。例如,正电流被提供给端子P1,负电流被提供给端子Q1。如上所述,具有预定方向(箭头S和R指示的方向)的电流流过聚焦线圈312,并且结合图7A描述的第一和第二磁体321和322与磁性体311在预定方向形成磁通量。因此,相同的上聚焦方向(垂直于图7A的页面空间的方向)上的动力被提供给聚焦线圈312的两个线圈表面。
此外,当根据聚焦误差信号负电流被提供给端子P1并且正电流被提供给端子Q1时,下聚焦方向上的相同动力被提供给聚焦线圈312的两个线圈表面。
根据循轨误差信号产生的电流被提供给循轨线圈313的端子P2和Q2。例如,正电流被提供给端子P2,负电流被提供给端子Q2。如上所述,具有预定方向(箭头T和U指示的方向)的电流流过循轨线圈,并且结合图7A描述的第一磁体321和磁性体311在预定方向形成磁通量。因此,相同的右循轨方向(水平于图7A的页面空间的方向)上的动力被提供给循轨线圈313的相邻线圈表面。
另外,当根据聚焦误差信号负电流被提供给端子P2并且正电流被提供给端子Q2时,左循轨方向上的相同动力被提供给循轨线圈313的相邻线圈表面。
应当注意,由于如上所述通过将磁性体固定在两个线圈之间来分隔分别使用第一和第二线圈表面形成的磁路,流过线圈的电流可以高效地用于运动力(动力)。此外,由于致动器的重心位于磁性体的基本上中央的部分,可以稳定动力的平衡。
图8A,8B,8C和8D的示意图根据本发明的另一个实施例图解了在致动器中使用平面线圈的例子。应当注意,图8A,8B,8C和8D示出的例子具有相同的结构,除了结合图7A描述的光头的聚焦线圈312,循轨线圈313和第一和第二磁体321和322之外,因此省略了详细说明。
首先如图8B所示,说明使用表面磁化的磁体形成上侧和下侧的不同极的例子。
图9的示意图以分立方式实立体镜地描述了相对的线圈表面和磁体表面,以利于理解这些表面之间的关系。应当注意,图10A和10B的透视图图解了在致动器中引入图8A,8B和图9描述的平面线圈中的每个的例子。
如图8A所示,平行布置磁性体311与第一和第二磁体421和422的磁化表面,并且分别通过磁轭421Y和422Y将磁体421和422固定到致动器基座。在磁性体311中,FPC(柔性印制电路板)414被固定在第一磁体421一侧,FPC 415被固定在第二磁体422一侧。此外,循轨FPC 414T被布置在FCP 414和第一磁体421之间。FPC和磁性体被固定到致动器310。
如图8A和10A所示,分别以间隙E和间隙F的宽度布置FPC414,FPC 414T和第一磁体421的组,以及FPC 415和第二磁体422的组。此时,当作用力集中在致动器基座320支承的线构件一侧时,线构件变形,并且间隙F最好大于间隙E以避免性能退化。
然而,对于当FPC 414和FPC 414T的线圈绕组数量等于FPC415的线圈绕组数量时提供的电流所产生的动力,FPC 414因较小的间隙E而具有较大的动力,前侧和后侧变得不平衡,并且在某些情况下会产生旋转力。
因此,通过在较小的间隙E一侧减少FCP 414和FPC 414T的线圈绕组数量,即减少重叠,可以在磁性体311(透镜支架可运动部分的实质重心(substantial gravity point))的前侧和后侧基本均匀所产生的动力。
此外,为了减少较小间隙E一侧FCP 414的有效区域(可以作用于形成预定磁场的区域的线圈的有效区域),可以使用其图案具有图10C所示的形状的线圈414A。线圈414A具有在其中形成磁场的区域的预定部分(中央部分)形成的引线图案。因此,在线圈414A中,由点线指示的与磁体相对的线圈有效区域小于图10D示出的线圈414B的相应区域。于是也可以减少产生的动力。
如图9所示,以这样的方式布置第一磁体421,使得与磁性体311相对的表面的上磁体表面421A具有N极,而下磁体表面421B具有S极。上磁体表面421A形成穿过FPC 414T和414并且引向磁性体311的磁通量,下磁体表面421B形成从磁性体311穿过FPC 414T和414并且引向其本身的磁通量。
此外,以这样的方式布置第二磁体422,使得与磁性体311相对的表面的上磁体表面422A具有N极,而下磁体表面422B具有S极。上磁体表面422A形成穿过FPC 415并且引向磁性体311的磁通量,下磁体表面422B形成从磁性体311穿过FPC 415并且引向其本身的磁通量。
图11的示意图图解了图8A,8B,9和10A中示出的光头设备的另一个例子。应当注意,图11以分立方式实立体镜地示出了相对的线圈表面和磁体表面,以便在说明致动器的结构和操作时帮助理解这些表面之间的关系。
如图11所示,按照接近磁性体311的顺序,在磁性体311的第一磁体421一侧(页面空间的前侧)彼此平行地布置聚焦FPC 414F和循轨FPC 414T。
通过在单个平面基底的预定位置上印制4个线圈T1到T4并且对其进行蚀刻,形成循轨FPC 414T。
4个线圈T1到T4在从外围到内缘的相同方向上具有旋绕形状,并且在每个线圈的中心形成通孔。例如,如图14A所示,在从第一磁体的方向所观察到的从外围到内缘的反时针方向上形成线圈T1到T4。
在FPC 414T的外围边缘部分的预定位置上提供端子P3和Q3。端子P3与线圈T1连接,端子Q3与线圈T4连接。线圈T1通过通孔与线圈T2连接,并且使用铜箔图案与线圈T2连接的线圈T3通过通孔与线圈T4连接。
如图14A所示,当正电流被提供给端子P3并且负电流被提供给端子Q3时,相同方向的电流在循轨方向流过彼此相邻的线圈T1和T4,以及线圈T2和T3的相邻线圈表面。也就是说,在FPC 414T的中央部分,电流在箭头U指示的方向(页面空间的向上方向)流过其中形成T1和T4的上侧,并且电流在箭头T指示的方向(页面空间的向下方向)流过其中形成T2和T3的下侧。
此外,如图14B所示,可以在从外围到内缘的顺时针方向上形成线圈T1到T4。在FPC 414T的中央部分,当正电流流过端子P3并且负电流流过端子Q3时,电流在其中形成T1和T4的上侧流动于箭头U指示的方向,并且电流在其中形成T2和T3的下侧流动于箭头T指示的方向。
附带地,当提供给端子P3和Q3的电流的方向被反向时,显然反向电流流动在FPC 414T的中央部分的上侧和下侧。
通过在从第一磁体421的方向所观察到的从外围到内缘的反时针方向上印制具有旋绕形状的线圈并且对其进行蚀刻,形成FPC 415。应当注意,多个线圈片可以叠加在FPC 415上。在FPC 415的外围边缘部分的预定位置上提供端子P4和Q4。如图11所示,当正电流被提供给端子P4并且负电流被提供给端子Q4时,电流在箭头R指示的方向(页面空间中的向右方向)流过上线圈表面,并且电流在箭头S指示的方向(页面空间中的向右方向)流过下线圈表面。
FPC 414具有被印制在其上面的、从外围到内缘反时针方向旋绕的线圈。类似于上述FPC 415,这是一个蚀刻线圈片。可以叠加多个线圈片以形成FPC 415。在FPC 415的外围边缘部分的预定位置上提供端子P4和Q4。如图11所示,当提供类似电流时,电流在箭头S指示的方向流过上线圈表面,并且电流在箭头R指示的方向流过下线圈表面。应当注意,FPC 414和FPC 415的端子P4和Q4分别彼此连接,并且可以同时为其提供电流。
此外,FPC可以由一个连续基底构成。在这种情况下,如图11或图13所示,在预定位置弯折FPC 415和FPC 414F以便在其间固定磁性体311。此外,FPC 414T可以在预定位置弯折并且叠加在FPC414F上。
通过这个结构,分别在第一和第二线圈表面上形成的磁路被布置在线圈中心上的磁性体分隔。
此外,通过叠加多个线圈片可以形成FPC 414T。
图15的示意图示出了将线圈片印制在FPC 414T上的例子。图15以分立方式实立体镜地示出了相应的线圈片,以利于说明。
如图15所示,第一FPC 414T12具有在其一个表面上形成的4个线圈,即8个线圈在其两个表面上形成。在一个表面414T1上形成线圈T11,T21,T31和T41,在另一个表面414T2上形成分别通过通孔连接的线圈T12,T22,T32和T42。应当注意,线圈T12,T22,T32和T42具有外围边缘部分T12A,T22A,T32A和T42A。
图15示出的FPC 414T2被整体形成为FPC 414T1的后表面。应当注意,FPC 414T2的上侧X2与FPC 414T1的上侧X1匹配。
FPC 414T34具有在其一个表面414T3上形成的线圈T13,T23,T33和T43。线圈T13,T23,T33和T43分别具有外围边缘部分T13A,T23A,T33A和T43A。
FPC 414T12(FPC 414T1和414T2)和FPC 414T34(FPC414T3)在其相应线圈的外围边缘部分彼此连接。
当正电流被提供给端子P3A和P3D,并且负电流被提供给端子Q3A和Q3D时,相同方向的电流在循轨方向流过彼此相邻的线圈T11和T41,线圈T12和T42,以及线圈T13和T43的相邻线圈表面。也就是说,电流在箭头U指示的方向(页面空间的向上方向)流过FPC的上侧的中央部分。
另外,当正电流被提供给端子P3B和P3C,并且负电流被提供给端子Q3B和Q3C时,相同方向的电流在循轨方向流过彼此相邻的线圈T21和T31,线圈T22和T32以及线圈T23和T33的相邻线圈表面。也就是说,电流在箭头T指示的方向(页面空间的向下方向)流过FPC的下侧的中央部分。
对于线圈的旋绕形状,在一个表面(前表面)上沿对角线提供的线圈,例如T11和T31,或T21和T41的从外围到内缘的方向彼此相对。此外,在两个表面的另一个表面(后表面)上,在相同方向上形成旋绕形状。应当注意,分别通过通孔连接的线圈具有彼此相对的旋绕方向。
例如,如图15所示,在从第一磁体的方向观察的从外围到内缘的顺时针方向上形成线圈T21,T41,T12,T32,T23和T43,并且在从外围到内缘的反时针方向上形成线圈T11,T31,T22,T42,T13和T33。
因此,所有线圈可以被形成为具有相反方向。在这种情况下,当上述电流被提供给端子时,显然电流沿相反方向流动。
此外,虽然结合图15针对直至第二线圈的前表面的结构提供了说明,然而也可以叠加具有线圈图案的多个线圈片,其中形成上述卷绕方向。因此,不必将414T12形成为在其两个表面上具有线圈。
现在描述致动器310的操作原理。
如使用图11所说明的,根据聚焦误差信号产生的电流被提供给FPC 414和415的端子P4和Q4。例如,正电流被提供给端子P4,负电流被提供给端子Q4。如上所述,电流在预定方向流过FPC 414和415。此外,如参照图9所描述的,使用第一磁体421和磁性体311在预定方向(箭头S和R指示的方向)形成磁通量。因此,在FPC 414和415中产生循轨方向的上驱动力。
此外,当根据聚焦误差信号负电流被提供给端子P4并且正电流被提供给端子Q4时,聚焦方向上的相同下驱动力被提供给聚焦线圈414和415的相应线圈表面。
接着,根据循轨误差信号产生的电流被提供给循轨线圈414T的端子P3和Q3。例如,正电流被提供给端子P3,负电流被提供给端子Q3。如上所述,电流在预定方向(箭头T和U指示的方向)流过线圈T1到T4。
另外,如结合图9所描述的,使用第一磁体421和磁性体311在预定方向形成磁通量。因此,从FPC 414T的上线圈表面,即线圈T1和T4产生循轨方向的右驱动力(图11的页面空间中的右手方向)。同时,从FPC 414T的下线圈表面,即线圈T2和T3产生循轨方向的右驱动力。
因此,循轨方向的相同右驱动力在循轨线圈414T的中央部分提供给循轨线圈414T。
此外,当根据循轨误差信号负电流被提供给端子P3并且正电流被提供给端子Q3时,循轨方向的相同左驱动力提供给循轨线圈414T。
现在针对使用具有在图8D所示的上、下、右和左部分形成的不同极的表面磁化磁体的例子提供说明。
图12的示意图以分立方式实立体镜地描述了相对的线圈表面和磁体表面,以利于理解这些表面之间的关系。应当注意,图10C和10D的透视图图解了在致动器中引入图8C,8D和12描述的每个平面线圈的例子。图16A和16B的透视图示出了图13的FPC上印制的线圈图案的例子。
如图8C所示,平行布置磁性体311与第一和第二磁体521和522,并且分别通过磁轭521Y和522Y将磁体521和522固定到致动器基座。对于磁性体311,FPC 516被固定在第一磁体521一侧,FPC 517被固定在第二磁体522一侧。
如图10B所示,以在其间存在间隙E和间隙F的方式布置FPC 516和第一磁体521的组,以及FPC 517和第二磁体522的组。如前面参照图10A所描述的,间隙F最好大于间隙E。
然而,当FPC 516的线圈绕组数量等于FPC 517的线圈绕组数量时,FPC 516因较小的间隙E而具有在提供电流时产生的较大动力,前侧和后侧变得不平衡,并且在某些情况下会产生旋转力。
因此,通过在较小的间隙E一侧减少FCP 516的线圈绕组数量,即减少重叠,可以基本均匀在磁性体(透镜支架可运动部分的实质重心)的前侧和后侧产生的动力。
如图12所示,FPC 516被布置在磁性体311的第一磁体521一侧,FPC 517被布置在磁性体311的第二磁体522一侧。以这样的方式布置第一磁体521,使得在页面空间中,与磁性体311相对的表面中上磁体表面的左磁体表面521AL具有N极,而该上磁体表面的右磁体表面521AR具有S极。因此,以这样的方式进行布置,使得下磁体表面的左磁体表面521BL具有S极,该下磁体表面的右磁体表面521BR具有N极。磁体表面521AL和521BR形成穿过FPC 516并且引向磁性体311的磁通量,磁表面521AR和521BL形成从磁性体311穿过FPC 516并且引向其本身的磁通量。
此外,以这样的方式布置第二磁体522,使得页面空间中与磁性体311相对的表面中上磁体表面的左磁体表面522AL具有N极,而该上磁体表面的右磁体表面522AR具有S极。因此,以这样的方式进行布置,使得下磁体表面的左磁体表面522BL具有S极,该下磁体表面的右磁体表面522BR具有N极。磁体表面522AL和522BR形成穿过FPC 517并且引向磁性体311的磁通量,磁表面522AR和522BL形成从磁性体311穿过FPC 517并且引向其本身的磁通量。
图13的示意图图解了图8C,8D,10B和12中图解的光头设备的另一个实施例。 应当注意,图13的示意图以分立方式实立体镜地描述了相对的线圈表面和磁表面,以利于理解这些表面之间的关系。
如图13所示,在磁性体311的第一磁体521一侧布置FPC 516,并且在第二磁体522一侧(页面空间的内侧)布置FPC 517,使其彼此平行。
FPC 516具有印制在单平面基底的右侧和左侧(循轨方向)的聚焦线圈T5和T6,和印制在单平面基底的上侧和下侧(聚焦方向)的循轨线圈T7和T8,并且通过蚀刻形成。此外,FPC 517也是平面基底,其中在该平面基底的右侧和左侧形成聚焦线圈T9和T10,在上侧和下侧形成循轨线圈T11和T12。应当注意,通过叠加多个线圈片可以形成FPC 516和517。聚焦和循轨线圈(T5和T6,T7和T8,T9和T10,T11和T12)在单个基底上按其中心通过通孔成对连接,并且它们在从外围到内缘的相同方向具有旋绕形状。
对于旋绕形状,如图16A和16B所示,在从第一磁体的方向观察的从外围到内缘的顺时针方向上形成线圈T9和T10,并且在从外围到内缘的反时针方向上形成线圈T5到T8,T11和T12。
端子P5,Q5,P6和Q6被提供在FPC 516和517的外围边缘部分的预定位置上。端子P5与线圈T5和T9连接,端子Q5与线圈T6和T10连接。此外,端子P6与线圈T7和T11连接,并且端子Q6与线圈T8和T12连接。
如图16A所示,当正电流被提供给端子P5并且负电流被提供给端子Q5时,页面空间中向左方向的电流流过线圈T5的上线圈表面,和与FPC 516中的磁体表面521AL和521BR相对的线圈T6的下线圈表面。此外,页面空间中向右方向的电流流过线圈T5的下线圈表面,和与磁体表面521AR和521BL相对的线圈T6的上线圈表面。同时,如图16B所示,页面空间中向右方向的电流流过线圈T9的上线圈表面,和与FPC 517中磁体表面522AL和522BR相对的线圈T10的下线圈表面。另外,页面空间中向左方向的电流流过线圈T9的下线圈表面,和与磁体表面522AR和522BL相对的线圈T10的上线圈表面。
当正电流被提供给端子P6并且负电流被提供给端子Q6时,页面空间的向下方向的电流流过线圈T7的左线圈表面,和与FPC 516中的磁体表面521AL和521BR相对的线圈T8的右线圈表面。此外,页面空间的向上方向的电流流过线圈T7的右线圈表面,和与磁体表面521AR和521BL相对的线圈T8的左线圈表面。同时,如图16B所示,页面空间的向下方向的电流流过线圈T11的左线圈表面,和与FPC517中磁体表面522AL和522BR相对的线圈T12的右线圈表面。此外,页面空间的向上方向的电流流过线圈T11的右线圈表面,和与磁体表面522AR和522BL相对的线圈T12的左线圈表面。
此外,FPC 516和517可以由一个连续基底构成。在这种情况下,在图13中,弯折FPC 316和FPC 317以便在其间夹持磁性体311。
通过这个结构,分别在第一和第二线圈表面中的每个上形成的磁路被布置在线圈中心上的磁性体分隔。
现在描述透镜支架可运动部分310的操作原理。
如参照图13所述的,根据聚焦误差信号产生的电流被提供给FPC516和517的端子P5和Q5。例如,正电流被提供给端子P5,负电流被提供给端子Q5。如上所述,电流在预定方向流过FPC 516和517中的聚焦线圈T5,T6,T9和T10,并且使用结合图12描述的第一和第二磁体521和522,以及磁性体311在预定方向形成磁通量。因此,在FPC 516和517的聚焦线圈T5,T6,T9和T10中产生聚焦方向(图13中的页面空间的向上方向)的上驱动力。
此外,当根据聚焦误差信号产生的电流,例如负电流和正电流分别提供给端子P5和端子Q5时,在聚焦线圈T5,T6,T9和T10的预定线圈表面上产生聚焦方向的下驱动力。
随后,根据循轨误差信号产生的电流被提供给端子P6和Q6。例如,正电流被提供给端子P6,负电流被提供给端子Q6。如上所述,预定方向的电流流过循轨线圈T7,T8,T11和T12。如前面结合图12描述的,使用第一和第二磁体521,522,以及磁性体311形成预定方向的磁通量。因此在FPC 516的线圈T7和T8产生聚焦方向的左驱动力。同时在FPC 517的线圈T11和T12产生右聚焦驱动力。因此,致动器310可以在磁性体311周围以圆弧形式水平移动物镜122。
通过这种结构,致动器310具有作为集中安装在其重心附近的重负载的线圈,并且可以产生在中心重心对称的动力。于是可以提高致动器的灵敏度,并且可以减少整个设备的重量。
应当注意,本发明不限于上述实施例,可以在不偏离本发明的范围的前提下进行各种修改/改变。此外,相应实施例可以适当地彼此组合并实施,并且在这种情况下,可以获得基于组合的优点。
如上所述,在本发明的光头设备中,由于线圈和磁体被布置成在磁性体的两个表面上形成磁路,可以高效地将流过线圈的电流用作改变致动器位置所需的动力。此外,由于其重心位于磁性体的基本上中央的部分,可以稳定动力的平衡。
另外,根据本发明,可以实现尺寸较小,重量较轻并且高灵敏度的光头设备。
因此,由于允许高速操作并且减少了流过线圈的电流,可以获得具有较小功耗的光盘设备。