乙烷氧化催化剂及使用该催化剂的方法 本发明涉及选择性氧化乙烷制备乙酸和/或选择性氧化乙烯制备乙酸的催化剂,还涉及使用上述催化剂生产乙酸的方法。
含有钼,钒和铌结合氧的催化剂用于通过氧化乙烷和乙烯生产乙酸的方法是本领域公知的技术,例如公开于US 4250346,EP-A-1043064,WO99/20592和DE19630832。
USP №4250346公开了在气相反应中,以相对高的转化率和选择性由乙烷氧化脱氢制备乙烯的方法,乙烯的生产在低于550℃下使用催化剂进行,所述催化剂以MoaXbYc的比例含有钼,X和Y.其中X是Cr,Mn,Nb,Ta,Ti,V和/或W;优选Mn,Nb,V和/或W;Y是Bi,Ce,Co,Cu,Fe,K,Mg,Ni,P,Pb,Sb,Si,Sn,Ti和/或U;优选Sb,Ce和/或U,a是1,b是0.05-1.0;c是0-2,优选0.05-1.0;其条件是对于Co,Ni和/或Fe c的总值低于0.5。
WO99/20592涉及选择性地从乙烷,乙烯或其混合物及氧生产乙酸的方法,反应在高温于催化剂存在下进行,所述催化剂为MoaPdbXcYd,其中X是一个或几个Cr,Mn,Nb,Ta,Ti,V,Te和W;Y是一个或几个B,Al,Ga,In,Pt,Zn,Cd,Bi,Ce,Co,Rh,Ir,Cu,Ag,Au,Fe,Ru,Os,K,Rb,Cs,Mg,Ca,Sr,Ba,Nb,Zr,Hf,Ni,P,Pb,Sb,Si,Sn,Ti和U;a=1,b=0.0001-0.01,c=0.4-1,d=0.005-1。
德国专利申请DE 19630832A1涉及类似的催化剂组合物,其中a=1,b>0,c>0,d=0-2;优选a=1,b=0.0001-0.5,c=0.1-1.0,d=0-1.0。
WO99/20592和DE 19630832的催化剂需要有钯存在。
EP-A-1043064公开了氧化乙烷制备乙烯和/或乙酸,和/或氧化乙烯制备乙酸的催化剂组合物,所述催化剂含有与氧结合的元素钼,钒,铌,金,并且在钯存在下符合以下经验式:
MoaWbAucVdNbeYf (I)
其中Y是一个或几个选自以下组的元素:Cr,Mn,Ta,Ti,B,Al,Ga,In,Pt,Zn,Cd,Bi,Ce,Co,Rh,Ir,Cu,Ag,Fe,Ru,Os,K,Rb,Cs,Mg,Ca,Sr,Ba,Zr,Hf,Ni,P,Pb,Sb,Si,Sn,Ti,U,Re,Te,La和Pd;a,b,c,d,e和f表示所述元素的克原子比:0<a≤1;0≤b<1;a+b=1;10-5<c≤0.02;0<d≤2;0<e≤1;0≤f≤2。
仍然需要开发一种氧化乙烷和/或乙烯制备乙酸的催化剂,以及使用所述催化剂生产乙酸的方法,其中的催化剂能够高选择性地得到乙酸。
目前惊奇地发现可以使用一种催化剂,该催化含有和氧结合的元素钼,钒,铌,和金以及一种或几种选自以下组的元素:硼,铝,镓,铟,锗,锡,铅,锑,铜,铂,银,铁,和铼,并且没有钯,能够氧化乙烷和/或乙烯以高选择性制备乙酸,而且还发现使用本发明的催化剂以高选择性地制备乙酸的同时,能够稍稍降低(若有的话),例如对乙烯地选择性。
因此本发明提供选择性氧化乙烷制备乙酸和/或选择性氧化乙烯制备乙酸的催化剂组合物,所述催化剂含有与氧结合的元素钼,钒,铌,金,不含有钯,符合以下经验式:
MoaWbAucVdNbeZf (I)
其中Z是一种或几种选自以下组的元素:B,Al,Ga,In,Ge,Sn,Pb,Sb,Cu,Pt,Ag,Fe和Re;a,b,c,d,e和f表示所述元素的克原子比:
0<a≤1;0≤b<1;a+b=1;
10-5<c≤0.02;
0<d≤2;
0<e≤1;和
0.0001≤f≤0.05。
包括在式(I)中的催化剂有
MoaWbAucVdNbeSnf
MoaAucVdNbeSnf
优选Z是Sn,Ag,Fe和Re;特别是Sn。
式(I)的合适的催化剂的实例包括:
Mo1.000 V0.423 Nb0.115 Au0.008Ag 0.008Oy;
Mo1.000 V0.423 Nb0.115 Au0.008Fe 0.0156Oy;
Mo1.000 V0.423 Nb0.115 Au0.008Re 0.008Oy;
Mo1.00 V0.423 Nb0.115 Au0.0008Sn 0.0008Oy;和
Mo1.00 V0.423 Nb0.117 Au0.0008Sn 0.0156Oy;
其中Y的数值满足组合物中元素对氧的价数。
优选0.01<a≤1;优选0.1<d≤2;优选0.01<e≤0.5例如0.05≤e≤0.15;优选0.0005≤f≤0.02。
本发明催化剂组合物的优点是它们能够高选择性地将乙烷和/或乙烯转化为乙酸,通常使用本发明的催化剂组合物对乙酸的选择性至少为50mol%,优选至少60mol%,,例如可以达到至少70mol%。
特别是使用本发明的催化剂组合物可以高选择性地制备乙酸,同时对乙烯(若有的话)选择性低。
通常使用本发明的催化剂组合物对乙烯的选择性低于25mol%,优选低于10mol%,例如低于5mol%。
优选使用本发明的催化剂组合物对乙酸的选择性至少为60mol%,例如至少70mol%,对乙烯的选择性低于15mol%,例如低于10mol%。
本文使用的选择性是指反映产生的所需乙酸产品数量和形成产品中的总碳比较的百分数:
%选择性=100*产生的乙酸的摩尔数/S
其中S=与全部含碳产品总合(以碳为基准)相当的酸的摩尔数,流出物中的烷除外。
本发明催化剂组合物可以使用制备催化剂的任何常规方法制备,从溶解性化合物和/或配合物和/或每一金属化合物的溶液制备是合适的,所述溶液优选是含水体系,pH为1-12,优选2-8,温度为20-100℃。
通常含有元素的化合物的混合物是通过溶解足够数量的溶解性化合物或分散不溶解性化合物制备,以提供催化剂组合物中所需的克-原子比,然后从混合物中除去溶剂,再将催化剂通过加热到200-500℃进行煅烧,通常在空气或氧气中煅烧1分钟-24小时,优选使空气或氧气慢慢流动制备催化剂组合物。
催化剂能够以无载体或有载体的形式使用,合适的载体包括二氧化硅,氧化铝,氧化锆,二氧化钛,碳化硅以及它们的两种或两种以上的混合物。
制备本发明催化剂组合物的更详细的合适的方法记载于例如EP-A-0166438。
催化剂可以以固定床或流动床方式使用。
在另一实施方案中,本发明提供从含有乙烷和/或乙烯的气体混合物生产乙酸的方法,该方法包括将气体混合物在提高温度及上述催化剂组合物存在下与含有分子氧的气体接触。
乙烷选择性地被氧化成乙酸和/或乙烯选择性地被氧化成乙酸,优选乙烷和任选的乙烯被氧化成含有乙酸的混合物,上述混合物在加入或除去,或不加入或不除去乙酸的情况下,用于通过在后续方法中和含分子氧的气体反应生产醋酸乙烯酯。
原料气体包括乙烷和/或乙烯,优选乙烷。
乙烷和/或乙烯能够以基本上纯的形式使用,或者是和一种或几种氮气,甲烷,二氧化碳和水的混合物以蒸气形式使用,例如它们能够以较大范围的数量例如大于5体积%的一种或几种氢气,一氧化碳,C3/C4烷烃或链烯烃存在,或者以较小范围的数量例如小于5体积%存在。
含有分子氧的气体可以是空气或者是比空气含有分子氧多或少的气体,例如氧气,合适的气体例如是用合适的稀释气体,例如氮气稀释的氧气。
除了乙烷和/或乙烯以及含分子氧的气体以外,加入水(水蒸气)是优选的,因为这样能够提高对乙酸的选择性。
在200-500℃范围提高温度是合适的,优选200-400℃。
压力可以是大气压或高于大气压,例如在1-50巴范围,优选1-30巴。
在使用本发明方法前优选将催化剂组合物煅烧,煅烧在含分子氧的气体,可如空气存在下通过加热到250-500℃范围进行是合适的。
用于实现本发明的操作条件和其它情况记载于上述现有技术中,例如USP №4250346。
参考以下实施例进一步说明本发明的方法。
催化剂的制备
催化剂A的制备(比较例)
搅拌下在100ml蒸馏水中于70℃溶解22.935g钼酸铵和0.0357g氯化金铵制备溶液A;搅拌下在150ml蒸馏水中于70℃溶解6.434g钒酸铵制备溶液B;搅拌下在100ml蒸馏水中于70℃溶解7.785g草酸铌铵制备溶液C,每种溶液A,B,C放置15分钟使组份充分溶解,然后搅拌下于70℃将溶液C迅速加入到溶液B中,混合的溶液B/C于70℃搅拌15分钟,然后迅速加入到溶液A中,最终的混合溶液A/B/C于70℃搅拌15分钟,再将溶液加热到沸腾,使水蒸发,充分蒸发反应混合物1.5小时,得到干燥的膏状物,将带膏状物的烧杯转移到烘箱中进一步于120℃干燥2小时,干燥后将催化剂前体研磨为细粉末,过0.2mm的筛,得到的粉末状催化剂膏饼于烘箱中400℃的稳定空气中煅烧4小时,得到的氧化催化剂的分子式为:
Mo1.000 V0.423 Nb0.115 Au0.008Ag 0.0008Oy;
这种催化剂不是本发明的催化剂,因为它不含有以下的元素:B,Al,Ga,In,Ge,Sn,Pb,Sb,Cu,Pt,Ag,Fe和Re。
催化剂B的制备
除了再往溶液A中加入0.0190g氯化锡(II)以外,催化剂B和催化剂A制备方法相同,该氧化催化剂的分子式为:
Mo1.000 V0.423 Nb0.115 Au0.0008 Sn0.0008Oy;
催化剂C的制备
除了往溶液A中加入0.3792g氯化锡(II)以外,催化剂C和催化剂A制备方法相同,该氧化催化剂的分子式为:
Mo1.000 V0.423 Nb0.117 Au0.0008 Sn0.0156Oy;
催化剂D的制备
除了往溶液A中加入0.0299g乙酸锑(III)(FW298.88)以外,催化剂D和催化剂A制备方法相同,该氧化催化剂的分子式为:
Mo1.000 V0.423 Nb0.115 Au0.008 Sb0.008Oy;
催化剂E的制备
除了往溶液A中加入0.0200g乙酸铜(II)(FW199.65)以外,催化剂E和催化剂A制备方法相同,该氧化催化剂的分子式为:
Mo1.000 V0.423 Nb0.115 Au0.008 Cu0.008Oy;
催化剂F的制备
除了往溶液A中加入0.0027g乙酸铂(FW352.66)以外,催化剂F和催化剂A制备方法相同,该氧化催化剂的分子式为:
Mo1.000 V0.423 Nb0.115 Au0.008 Pt0.0006Oy;
催化剂G的制备
除了往溶液A中加入0.0174g乙酸银(I)(FW166.92)以外,催化剂G和催化剂A制备方法相同,该氧化催化剂的分子式为:
Mo1.000 V0.423 Nb0.115 Au0.008 Ag0.008Oy;
催化剂H的制备
除了往溶液A中加入0.8080g硝酸铁(III)(FW404.00)以外,催化剂H和催化剂A制备方法相同,该氧化催化剂的分子式为:
Mo1.000 V0.423 Nb0.115 Au0.008 Fe0.0156Oy;
催化剂I的制备
除了往溶液A中加入0.0268g铼酸铵(FW268.24)以外,催化剂I和催化剂A制备方法相同,该氧化催化剂的分子式为:
Mo1.000 V0.423 Nb0.115 Au0.008 Re0.008Oy;
催化剂J的制备
除了往溶液A中加入0.0256g硝酸镓(FW255.74)以外,催化剂J和催化剂A制备方法相同,该氧化催化剂的分子式为:
Mo1.000 V0.423 Nb0.115 Au0.008 Ga0.008Oy;
乙烷氧化反应的一般方法
5ml粉末催化剂A-J和15ml直径为0.4mm的玻璃珠混合,得到体积为20ml的稀释催化剂床,将该稀释的催化剂放入固定床反应器(Hastelloy)中,所述反应器尺寸为内径12mm和长度为40cm,在催化剂床上下使用惰性填料的石英隔离塞使催化剂保持在反应器中间的位置,用氦于20巴压力试验检查设备是否漏气。1小时内以5℃/分钟速度于16巴氦气中加热到220℃活化催化剂,保证催化剂前体完全分解。
将所需的乙烷,乙烯和于氦气中的20%氧气流和水引入到反应器中,保证所需进口的组成,该组合物为:乙烷52%v/v,氧6.7%v/v,乙烯10%v/v,水5%v/v及平衡的氦气,总加入的流速保持保证GHSV2000-9000/h,60分钟平衡以后,从出口气流中取出气体样品,送到GC系统(Unicam 4400),检查乙烷,乙烯,氧和氦气含量。
反应器的温度给定值提高到293℃,使每种催化剂A-J达到类似的反应器温度299-301℃,以便容易直接进行比较。然后进一步平衡60分钟,开始收集液体产品,并且一般继续18小时。在此期间使用GC分析(ProGC,Unicam)测定流出物的气体组成,在运行中通过水-气计量计测定流出气体的体积,收集液体产品并且在运行期后称重。使用气相色谱分析(分别带有TCD和FID检测器的Unicam4400和4200)测定液体产品的组成。
由分析原料和产品的流速及组成计算以下参数:
转化率:
乙烷=(入口乙烷mol/出口乙烷mol)/入口乙烷mol*100
氧气=(入口氧气mol/出口氧气mol)/入口氧气mol*100
选择性:
对乙酸(C-mol%)=(出口mol乙酸*2)/((出口mol乙烯*2-入口mol乙烯*2)+出口mol CO+出口mol CO2+出口mol乙酸*2)*100
对乙烯(C-mol%)=(出口mol乙烯*2)/((出口mol乙烯*2-入口mol乙烯*2)+出口mol CO+出口mol CO2+出口mol乙酸*2)*100
对CO(C-mol%)=(出口molCO)/((出口mol乙烯*2-入口mol乙烯*2)+出口mol CO+出口mol CO2+出口mol乙酸*2)*100
对CO2(C-mol%)=(出口molCO2)/((出口mol乙烯*2-入口mol乙烯*2)+出口mol CO+出口mol CO2+出口mol乙酸*2)*100
对COX=对CO(C-mol%)的选择性+对CO2(C-mol%)的选择性
STY(空时产率)%=g乙酸/kg催化剂床/小时
通常多于反应的物质平衡和碳平衡是100±5%。
试验A和实施例1-9
在上述一般反应方法中使用每一催化剂A-J,结果列于表1,在表1所指的标准条件下评价每种催化剂。
表1试验 催化剂 乙烷转化率 %C-mol 乙酸选择性 %C-mol 乙烯选择性 %C-mol COX选择性 %C-mol STY乙酸 g/kg-cat/hA A 7.8 47.0 34.4 18.5 163实施例1 B 4.2 71.3 0.0 28.7 118实施例2 C 3.8 70.8 0.0 29.2 105实施例3 D 6.3 56.9 24.7 18.5 133.6实施例4 E 4.1 58.4 12.9 28.7 85.9实施例5 F 5.1 59.9 12.6 27.4 112.7实施例6 G 3.1 63.4 1.7 34.9 99.8实施例7 H 4.7 68.1 5.6 26.4 119.3实施例8 I 5.0 70.1 5.7 24.2 131.1实施例9 J 5.8 53.9 27.5 18.7 115.8
条件:
乙烷52%v/v,氧6.7%v/v,乙烯10%v/v,水5%v/v及平衡的氦气,GHSV=3200h-1;16巴。
表1的结果清楚地说明,和比较催化剂A比较,本发明的催化剂对于乙酸有较高的选择性,并且在对乙酸有高选择性的同时,还降低了对乙烯的选择性。