基于能效最优的大规模多天线中继系统用户数优化方法技术领域
本发明属于无线通信技术领域,具体涉及基于能效最优的大规模多天线中继
系统用户数优化方法。
背景技术
多输入多输出(简称MIMO)技术在无线通信系统中所发挥的作用越来越重
要,在利用了空域资源之后,使得无线通信系统在可达速率、频谱效率、链路可
靠性等方面有了显著地提升。然而,传统MIMO系统中所利用的天线数是较少
的,包括最新的通信标准LTE-A中也仅仅使用了8端口天线,这对于潜在的丰
富空域资源而言,显然对其探索是远远不够的。美国贝尔实验室科学家ThomasL.
Marzetta教授早在2006年就指出当基站天线数远大于单天线用户数时,额外多
出的天线对于系统性能而言总能起到积极作用的。直到2010年大规模多输入多
输出(简称大规模MIMO)技术才被正式提出,这一技术从提出至今,便一直受
到国内外无线通信行业人士的广泛关注,业内人士都对其在第五代移动通信系统
中起到的核心作用寄予了厚望。
所谓大规模MIMO技术是指在基站端配置大规模数量的天线阵列来同时服
务多个用户,并且天线数量级远大于服务的用户数量级。通过在基站端使用大规
模天线阵列挖掘空域可用资源,可以获得许多相对于传统MIMO系统的新特性。
例如,原本具有随机特性的信道参数将呈现出确定性(即信道硬化现象),空间
波束分辨率将大大提高从而可以更加准确的将波束对准各个用户,可以在基站端
采用简单的线性预编码/检测方法来有效消除多用户干扰从而达到近似最优的性
能系统,丰富的自由度用于先进的恒包络波束赋形从而降低对功放的线性度要求
等等。
与此同时,多天线中继技术作为未来异构网络架构中重要组成部分也一直受
到工业界和学术界的广泛关注。通过引入多天线中继节点,可以大大提升小区覆
盖范围,提高边缘用户的传输速率,增强传输链路可靠性。但是,在多用户中继
系统中,用户间干扰一直是限制多天线中继系统的瓶颈所在。针对这一问题,业
界提出了多种不同的解决方案用以消除或抑制多用户干扰,这其中主要包括:(1)
通过在不同用户间分配正交时频资源,通过资源划分来抑制用户间干扰;(2)通
过联合设计预编码和接收机算法来达到对抗用户间干扰的目的;(3)通过控制同
时服务的用户数量,选择相互间干扰较小的用户进行多用户传输来在一定程度上
抑制用户间干扰。然而,第一种方法虽然可以较好地消除用户间干扰,但是带来
的是额外时频资源的开销,造成了系统整体频谱效率的下降。第二种方法则会大
大增加算法复杂度,对中继节点和收端用户的计算资源开销提出了更高的要求。
第三种虽然可以保证同时服务的用户性能最佳,但是会产生服务用户的公平性问
题,也即存在若干用户由于信道干扰影响,一直无法接入服务的现象。显然,这
些方案都存在较大的缺陷。正基于此,HimalA.Suraweera等人于2013年首次提
出将大规模MIMO技术引入多用户多天线中继系统,利用大规模MIMO在多用
户传输过程中所提供的良好的抑制干扰能力来解决成对用户多天线中继系统的
用户间干扰问题。与此同时,大规模天线所带来的大量额外自由度,也提供了更
多用户接入服务的可能性,特别是在未来密集用户网络场景下具有重要的实际意
义和应用背景。
值得注意的是,在将大规模天线阵列引入中继节点的同时,也不可避免的会
带来一些问题。最直接的问题就是大量天线的使用所造成的射频通道固定电路总
功耗成倍提升,而固定电路总功耗的大幅提升势必会对中继系统的整体能效性能
造成影响。因此,从系统能效性能出发,研究大规模天线中继系统中固定电路功
耗对可服务用户数的影响是十分有必要的。特别是在绿色通信这一主流概念下,
将固定电路功耗考虑进来,从而确定出系统能够服务的最优用户数,对于网络优
化是很有意义的,而这一问题尚未有研究人员涉足。为了解决大规模天线中继系
统中的用户数优化问题,我们提出了基于能效最大化的用户数优化模型,由于该
模型中目标函数过于复杂且没有精确的解析表达式,因而优化问题求解过程十分
困难。
本发明公开了一种基于能效最优的大规模多天线中继系统用户数优化方法。
该系统由多个发端用户和多个收端用户组成通信对,借助一个中继节点站通过两
跳完成发端用户到收端用户的信息传输。系统中所有收发用户均配置单根天线,
中继节点配置大规模数量天线阵列,如摘要附图中所示。本发明方法以最大化系
统能效为目标,以被服务的用户数为优化变量建立数学模型。由于该优化问题中
目标函数无精确解析表达式,因此,借助于大维随机矩阵理论中的大数定律,先
对目标函数进行近似转化,进而求得目标函数的一种精确近似解析表达式。利用
该解析表达式关于优化变量的拟凹特性,提出一种最优服务用户数的数值求解方
法。
发明内容
本发明为使成对用户大规模天线中继系统获得较高的能效性能而提出一种
基于能效最优的大规模多天线中继系统用户数优化方法,给出了最优用户数的数
值求解算法。
本发明的基于能效最优的大规模多天线中继系统用户数优化方法,其特
征在于,所述方法包括以下步骤:
1).中继节点通过信道估计获得它到所有发端用户和收端用户间的理想信道
状态信息,即信道矩阵
和![]()
其中,hk表示第k个发端用户到中继节点的信道向量且服从复高斯分布
![]()
表示中继节点到第k个收端用的信道向量且服从复高斯分布
假设系统采用时分双工制式,且信道服从平坦块衰落,也即在信道
相干时间内信道系数保持不变。
2).在第一跳内,K(≥1)个发端用户同时向中继节点发送信息符号,
如附图1中第一跳起始时刻所示,则在中继节点处的接收信号可以表示为向
量r,如附图1中第一跳结束时刻所示,r的表达式如下所示,
r
=
ρ
s
H
x
+
n
r
]]>
其中,x=[x1,x2,...,xK]T,xk(k=1,2,...,K)表示第k个发端用户的发射符号且
nr表示第一时隙在中继节点处的单位功率加性白噪声且满足复高斯
分布![]()
3).在第二跳开始前,中继节点采用最大比合并和最大比发送预编码矩
阵
对接收到的信号r进行放大,形成转发信号向量t,如附图1中第
二跳起始时刻所示,转发信号t具有如下形式表达式,
t
=
V
r
=
ξ
GH
H
r
]]>
其中,ξ为功率归一化因子用以满足中继节点处的第二跳平均总发射功率约束
ρr,即,
![]()
则,
ξ
=
ρ
r
θ
=
ρ
r
T
r
(
ρ
s
(
H
H
H
)
2
G
H
G
+
H
H
HG
H
G
)
.
]]>然后,中继节点将信号t通过
第二跳转发至所有收端用户,如附图1中第二跳结束时刻所示,则第k个收端用
户接收到的信号yk可以表示为如下形式,
y
k
=
ρ
s
g
k
H
Vh
k
x
k
+
ρ
s
Σ
i
=
1
,
i
≠
k
K
g
k
H
Vh
i
x
i
+
g
k
H
Vn
r
+
n
k
]]>
其中,nk表示第k个收端用户处的单位功率加性白噪声且满足复高斯分布
![]()
4).基于步骤3)中收端用户的接收信号表达式,可以得第k个收端用户的
接收信干燥比SINR表达式如下所示,
γ
k
=
A
k
B
k
+
C
k
+
θ
/
ρ
r
ρ
s
]]>
其中,
A
k
=
Δ
|
g
k
H
GH
H
h
k
|
2
,
B
k
=
Δ
Σ
i
=
1
,
i
≠
k
K
|
g
k
H
GH
H
h
i
|
2
,
C
k
=
Δ
σ
r
2
ρ
s
|
|
g
k
H
GH
H
|
|
2
.
]]>从而可以得
到第k个收端用户的平均频谱效率如下式所示,
![]()
其中,
表示将占用的两个时隙资源考虑在内所产生的频谱效率损失。
5).基于步骤4)中平均频谱效率表达式,在中继节点处建立以最大化系
统总能效函数η(K)为目标,以被服务用户对数K为变量的数学优化模型,
如下所示,
![]()
其中,η(K)表示关于用户对数K的能效函数,SΣ表示所有用户的总频谱效率,
PΣ表示系统的总功率消耗,μs≥1表示每个发端用户发射机功放器件的效率损耗
常量因子,μr≥1表示中继节点发射机功放器件的效率损耗常量因子,Ps表示每
个发端用户发射机的常量固定功率消耗,Pr表示中继节点收发机每根天线上的常
量固定功率消耗。
6).由于步骤5)中目标函数中包含Sk,其精确解析表达式难以获得,不利于
后续优化问题的解决。此处,根据大数定律(参见文献1中公式(44):S.Jin,X.Liang,
K.-KWong,X.Gao,andQ.Zhu,“ErgodicrateanalysisformultipairmassiveMIMO
two-wayrelaynetworks,”IEEETransactionsonWirelessCommunication,vol.14,no.
3,pp.1488,Mar.2015.),如下所示,
大数定律:
设N维向量p和q为独立同分布的复高斯随机向量,即
和
则
满足如下特性,
![]()
对步骤4)中γk表示式所包含的各项进行近似,可得到如下表达式,
A
k
≈
A
~
k
=
Σ
j
=
1
K
|
g
k
H
g
j
|
2
|
h
j
H
h
k
|
2
]]>
B
k
≈
B
~
k
=
Σ
i
=
1
,
i
≠
k
K
Σ
j
=
1
K
|
g
k
H
g
j
|
2
|
h
j
H
h
i
|
2
]]>
C
k
≈
C
~
k
=
σ
r
2
ρ
s
Σ
j
=
1
K
|
g
k
H
g
j
|
2
|
|
h
j
|
|
2
]]>
θ
≈
θ
~
=
Σ
i
=
1
K
(
ρ
s
Σ
j
=
1
K
|
h
i
H
h
j
|
2
+
σ
r
2
|
|
h
i
|
|
2
)
|
|
g
i
|
|
2
]]>
则,Sk可以近似表示为如下所示,
![]()
从
和
的表达式中可以看到,这四项都是由若干非负随机变量求和
组成,利用如下定理1(参见文献2中的Lemma1:Q.Zhang,S.Jin,K.K.Wong,and
H.B.Zhu,“PowerscalingofuplinkmassiveMIMOsystemswitharbitrary-rank
channelmeans,”IEEEJournalOfSelectedTopicsInSignalProcess.,vol.8,no.5,pp.
969,Oct.2014.),
定理1:
设两个随机变量P和Q满足
和
其中,Pn和Qm均为非负随
机变量,则,可以得到如下近似表达式
![]()
同时,可以保证当N和M逐渐增大时,上式近似精确度将越来越高。
进一步将
近似为
如下所示,
![]()
利用复高斯随机向量乘积的统计特性可以直接计算得到
的解析表达式如下所
示,
S
k
≈
S
‾
k
=
1
2
log
2
(
1
+
A
‾
k
B
‾
k
+
C
‾
k
+
F
‾
k
)
]]>
其中,
![]()
![]()
![]()
![]()
8).考虑到中继节点部署的大规模天线数通常远大于用户数,即N>>K,
并利用高信噪比条件,即ρr>>1和ρs>>1,将步骤7)中得到的解析表达式
近
似化简为如下形式,
S
‾
k
≈
1
2
log
2
(
1
+
ρ
r
ρ
s
(
N
+
2
)
2
(
K
-
1
)
ρ
r
ρ
s
+
ρ
r
+
Kρ
s
)
]]>
9).基于步骤8)中的解析表达式
将步骤5)中的优化问题的目标函数
η(ρs,ρr)近似表达为
并用
来代替步骤5)中优化问题的目标
函数,转化为如下形式的优化问题,
![]()
10).由于步骤9)中优化变量K属于正整数集合,该优化问题属于非凸整
数规划。为了便于问题求解,将变量K先释放为连续实数变量,则可以直接
判断出
的分母PΣ关于变量K是线性仿射函数,分子
关于变量K是严
格的凹函数且随着K呈单调递增趋势。借鉴文献3(E.Bjornson,L.Sanguinetti,
J.HoydisandM.Debbah,“DesigningmultiuserMIMOforenergyefficiency:
WhenismassiveMIMOtheanswer?,”ProceedingsofIEEEWireless
CommunicationsandNetworkingConference,Istanbul,Apr.2014,pp.244.)中
引理2(Lemma2)的证明过程,可以证明得到
关于变量K是严格拟凹
的,且存在一个全局最优解Kopt。同时,当K<Kopt时,
随K单调增加;
当K>Kopt时,
随K单调减小。利用
关于K的变化趋势特性,可以
采用高效的二分法搜索求解Kopt,具体步骤如下:
10.1).设定系统最小服务用户个数Kmin和最大服务用户个数Kmax。如果
d η ‾ ( K ) d K | K min ≥ 0 ]]>且 d η ‾ ( K ) d K | K max ≥ 0 , ]]>则Kopt=Kmax。如果 d η ‾ ( K ) d K | K min ≤ 0 ]]>且
则Kopt=Kmin。如果以上条件都不满足,则转到步骤10.2)。
10.2).设定二分法算法终止阈值ε,搜索次数变量n=1。
10.3).令
计算并判断
与0的大小关系。如果
则令Kmin=K(n)。如果
则令Kmax=K(n)。
10.4).如果|Kmax-Kmin|≤ε,则终止搜索过程,并输出最优服务用户数发射
功率组合
若不满足终止条件,则n=n+1,返回步骤10.3)重
新进行搜索过程,直到满足终止条件。
11).由于步骤10)中求出的最优服务用户数Kopt通常不是整数,根据步骤
10)中能效函数
关于K变化关系,最终可以得到最优的服务用户数为
round{Kopt}。
其中,(·)H—表示矩阵的共轭转置运算,
—表示正整数集合,
—
针对随机量(向量)的数学期望运算,Tr{·}—矩阵的迹,round{x}—表示取与
实数x最近的整数,|·|—表示实数取绝对值运算或复数求模值运算,Tr{·}—表
示均值为μ方差为σ2的复高斯随机分布,||·||—表示向量2范数运算,
—
表示函数f(x)对自变量x的一阶导数在x0处的取值,N—中继节点天线数,ρs
—每个信源用户的平均发射功率,ρr—中继节点的平均发射总功率。
本发明提出了一种基于能效最优的大规模多天线中继系统用户数优化方
法,利用高效的二分法求解最优用户数的数值解。通过将固定电路总功耗因素
考虑进来,从能效角度优化系统可服务用户数,使得大规模天线中继系统在抑
制用户间干扰上可以获得较好性能的同时,使得系统总能效性能达到最优。
附图说明
图1为本发明方法的系统模型;
图2为本发明算法基本流程图;
图3为在不同的用户对数目K场景下,本专利所提出的频谱效率解析表达式
与蒙特卡洛仿真结果对比图;
图4为在不同的中继节点天线数N下,本专利所提出的用户数优化方法用于
求解最优服务用户数和对应的最优系统能效值。
图5为在不同的中继节点每天线固定功耗Pr取值下,本专利所提出的用户数
优化方法用于求解最优服务用户数和对应的最优系统能效值。
具体实施方式:
结合图2所示的算法流程图对本发明的基于能效最优的大规模多天线中
继系统用户数优化方法作具体说明,包括如下步骤:
1).中继节点通过信道估计获得它到所有信源用户和信宿用户间的理想信道
状态信息,即信道矩阵
和![]()
其中,hk表示第k个信源用户到中继节点的信道向量且服从复高斯分布
![]()
表示中继节点到第k个信宿用的信道向量且服从复高斯分布
假设系统采用时分双工制式,且信道服从平坦块衰落,也即在信道
相干时间内信道系数保持不变。
2).在中继节点处建立以最大化系统总能效函数η(K)为目标,以中继节
点天线数为变量的数学优化模型,如下所示,
![]()
其中,η(K)表示关于用户对数K的能效函数,SΣ表示所有用户的总频谱效率,
PΣ表示系统的总功率消耗,μs≥1表示每个发端用户发射机功放器件的效率损耗
常量因子,μr≥1表示中继节点发射机功放器件的效率损耗常量因子,Ps表示每
个发端用户发射机的常量固定功率消耗,Pr表示中继节点收发机每根天线上的常
量固定功率消耗,γk表示第k个信宿用户的接收信干燥比SINR,如下所示,
γ
k
=
A
k
B
k
+
C
k
+
θ
/
ρ
r
ρ
s
]]>
其中,
A
k
=
Δ
|
g
k
H
GH
H
h
k
|
2
,
B
k
=
Δ
Σ
i
=
1
,
i
≠
k
K
|
g
k
H
GH
H
h
i
|
2
,
C
k
=
Δ
σ
r
2
ρ
s
|
|
g
k
H
GH
H
|
|
2
.
]]>
3).结合大数定律和说明书中定理1,并考虑大规模天线数与高信噪比区间,
即N>>K、ρr>>1和ρs>>1,可将步骤2)中频谱效率Sk近似化简为如下形式,
S
k
≈
S
‾
k
=
1
2
log
2
(
1
+
ρ
r
ρ
s
(
N
+
2
)
2
(
K
-
1
)
ρ
r
ρ
s
+
ρ
r
+
Kρ
s
)
]]>
4).基于步骤3)中的频谱效率近似表达式
将步骤2)中优化问题的目标
函数进行替换,近似转换为如下形式的优化问题,
max
K
>
1
η
(
K
)
≈
η
‾
(
K
)
=
K
2
log
2
(
1
+
ρ
r
ρ
s
(
N
+
2
)
2
(
K
-
1
)
ρ
r
ρ
s
+
ρ
s
+
ρ
r
+
Kρ
s
)
K
(
μ
s
ρ
s
+
P
s
)
+
μ
r
ρ
r
+
NP
r
]]>
5).基于步骤4)中优化问题,采用二分法求解最优用户数Kopt。具体步骤
如下:
5.1).设定系统最小服务用户个数Kmin和最大服务用户个数Kmax。如果
d η ‾ ( K ) d K | K min ≥ 0 ]]>且 d η ‾ ( K ) d K | K max ≥ 0 , ]]>则Kopt=Kmax。如果 d η ‾ ( K ) d K | K min ≤ 0 ]]>且
则Kopt=Kmin。如果以上条件都不满足,则转到步骤10.2)。
5.2).设定二分法算法终止阈值ε,搜索次数变量n=1。
5.3).令
计算并判断
与0的大小关系。如果
则令Kmin=K(n)。如果
则令Kmax=K(n)。
5.4).如果|Kmax-Kmin|≤ε,则终止搜索过程,并输出最优服务用户数发射
功率组合
若不满足终止条件,则n=n+1,返回步骤5.3)重新
进行搜索过程,直到满足终止条件跳出搜索过程。
6).将步骤5)中求出的最优服务用户数Kopt进行取整运算round{Kopt},即
可得到最优的服务用户数。算法结束。
其中,(·)H—表示矩阵的共轭转置运算,
—表示正整数集合,
—
针对随机量(向量)的数学期望运算,Tr{·}—矩阵的迹,round{x}—表示取与
实数x最近的整数,|·|—表示实数取绝对值运算或复数求模值运算,Tr{·}—表
示均值为μ方差为σ2的复高斯随机分布,||·||—表示向量2范数运算,
—
表示函数f(x)对自变量x的一阶导数在x0处的取值,N—中继节点天线数,ρs
—每个信源用户的平均发射功率,ρr—中继节点的平均发射总功率。
图3给出了不同的用户对个数场景下,发射功率ρr=ρs=10dB时,随着
中继节点天线数的增长,本专利所给出的频谱效率近似解析表达式与蒙特卡
洛数值仿真结果的对比曲线。从图中可以看到,本专利所提出的解析近似表
达式具有非常好的近似效果,与蒙特卡洛数值仿真曲线之间的差异几乎可以
忽略不计,表明了本专利所提出的近似解析表达式具有很好地效果。图4给
出了发端用户天线固定功耗和中继节点每根天线固定功耗满足Ps=Pr=0dB
时,在中继节点配置不同的天线数情况下,本专利所给出的最优服务用户数
(图中以圆圈表示最优用户数)。从图中可以看出,系统总能效随着服务用
户数呈现先增后减的趋势,并且本方案可以给出精确的最优用户数。同时,
可以看到随着中继节点天线数的增多,系统可服务的最优用户对数也逐渐增
多,而且系统总能效值也有所提升,这表明大规模天线阵列的使用,提供了
更多的用户接入服务的机会,并且对于系统能效性能的提升有积极作用。图
5给出了当中继节点天线数N=200时,在不同的中继节点每天线固定功耗Pr
取值下,本专利所给出的最优服务用户数(图中以圆圈表示最优用户数)。
从图中可以看出,随着中继每天线固定功耗的增加,系统所可服务的最优用
户数仍然逐渐增加,但是系统的总能效明显下降,由此可见可服务的用户数
和系统总能效之间存在一个折中。