聚(亚芳基醚)数据存储介质 【发明背景】
光学、磁性和磁光介质(magneto-optic media)是使得高存储容量能够与存储的每兆字节的合理价格相结合的高性能存储技术的主要来源。面密度(arealdensity),通常以几十亿比特/平方英寸磁盘表面积(吉比特/平方英寸(Gbits/in2))表示,相当于线密度(比特信息/英寸磁道)乘以磁道密度(磁道/英寸)。改进的面密度是每兆字节价格降低的重要因素,且工业上持续需要面密度的进一步增加。
在光学存储领域,进展集中于存取时间(access time)、系统容量和有竞争力的成本。通过注重光学器件(optics)的衍射极限(使用近区域(near-field)的光学器件)、研究三维存储、研究潜在的全息记录方法和其他技术,来解决增加面密度的问题。
聚合物数据存储介质已被用于这类领域如光盘(CD)和可记录或可写入的光盘(如CD-RW),和类似的相对低面密度的器件,如低于约1吉比特/平方英寸,它们通常是通读(read-through)器件,需要使用具有低双折射的良好光学质量的基片(substrate)。
图1示出具有读取装置3和可记录或可写入的存储介质(storage media)5的低面密度系统1。存储介质5包含常规的层,包括数据层7、介电层9和9′、反射层11、和保护层13。在系统1的运作期间,由读取装置3产生的激光15入射道光学透明的基片17上。激光通过基片17,且通过介电层9、数据层7和第二介电层9′。然后激光15从反射层11上反射,通过介电层9′、数据层7、介电层9和基片17返回,然后被读取装置3读取。
与CD不同,具有高面密度容量,通常高至或大于约5吉比特/平方英寸的存储介质,使用第一表面(first surface)或近区域读取(read)/写入(write)技术,以便增加面密度。对这类存储介质来说,尽管与基片(substrate)地光学质量不相关,但是基片的物理和机械性能越来越重要。对于高面密度用途,包括第一表面用途,存储介质的表面质量能够影响读取装置的准确性、存储数据的能力和基片的复制质量。而且,使用期间存储介质的物理特性也可能影响存储和检索(retrieve)数据的能力;即,介质的轴向移动,如果太大的话,可能抑制数据的准确获取和/或损坏读取/写入装置。
通过使用金属如铝和玻璃基片,已经解决了与使用第一表面,包括近区域技术相关的上述问题。使用这类基片的缺点在于难以在表面上设立便于读取/写入装置跟踪或扇区结构(sector structure)定义的图案如凹槽(pit)或沟槽(groove)结构。一旦在表面上设立了图案,使用各种技术如溅射法将所需的层设置在基片上。可能的层包括反射层、介电层、数据存储层和保护层。对磁性或磁光数据存储装置来说,可以通过磁性读取/写入技术在数据层中加入有图案的结构,导致可用于数据存储的面积的减少。
从工业的快速发展、低价格大存储容量的需要、再写入光盘的需要和所研究的多种技术很明显看出,持续需要和寻求技术上的进一步进展。本领域需要的是存储介质的进展,使存储介质能够用于第一表面,包括近区域的应用中。
【技术领域】
本发明涉及数据存储介质,尤其涉及聚(亚芳基醚)数据存储介质。
发明概要
本发明披露的是数据存储介质及其制造和使用方法。在一个实施方案中,存储介质包含:包含塑料树脂部分的基片和基片上的数据层,其中塑料树脂部分包含聚(亚芳基醚)和苯乙烯类材料(styrene material),其中苯乙烯类材料选自聚苯乙烯、苯乙烯类共聚物(styrenic copolymer)、和包含前述苯乙烯类材料中的至少一种的反应产物和组合。聚(亚芳基醚)的重均分子量为约5,000至约50,000AMU,并且聚苯乙烯的重均分子量为约10,000至约300,000AMU。通过能量场(energy field)数据层能够至少部分地被读取、写入、或其组合。此外,当能量场接触存储介质时,在能量场能够入射到基片上前,其入射到数据层上。
在一个实施方案中,检索数据的方法包含:旋转存储介质,将能量场导向存储介质,使得在能量场能够入射到基片上前,其入射到数据层上,并且通过能量场从数据层检索信息。
【附图说明】
图1是使用光学透明基片的现有技术的低面密度系统的横截面图。
图2是使用本发明的存储介质的一个可能的实施方案的读取/写入系统的横截面图,其中光入射到数据存储层上而不通过基片。
图3是本发明的磁性数据存储基片的一个实施方案的横截面图。
上述附图只是示例性的,而非限制性的,只描述了本发明的一些可能的实施方案。
发明详细描述
存储介质可以包含均相或非均相(non-homogenous)的聚(亚芳基醚)/苯乙烯类材料基片,其能够就地(in situ)形成,其一侧或两侧上设置有所需的表面特征,其一侧或两侧上还有数据存储层,如磁光材料和任选的保护层、介电和/或反射层。基片可以具有基本上均相的、锥形的、凹入的或凸出的几何形状,使用各种类型和几何形状的增强件(reinforcement)来增加劲度(stiffness),而不会对表面完整性(surface integrity)和光滑性(smoothness)产生不利影响。
基片可以包含聚(亚芳基醚)(PAE)和苯乙烯类材料或其反应产物的单相(single phase)共混物。基片可以包含聚苯乙烯(PS)和/或苯乙烯类共聚物(如,苯乙烯-共聚-丙烯腈(SAN)和/或苯乙烯-共聚-马来酸酐(SMA))。在一个实施方案中,存储介质包含重均分子量为约5,000至约50,000的PAE和重均分子量为约10,000至约300,000的聚苯乙烯,其中本文所有的分子量以原子质量单位(AMU)给出,除非另外指明。优选的是,小于或等于约20wt%的PAE的重均分子量(Mw)小于或等于约15,000,小于或等于约10wt%是优选的,且小于或等于约5wt%是特别优选的,以获得加工性的改进并调整机械性能。
组合物可以包含小于或等于约90wt%的PAE和小于或等于约90wt%的苯乙烯类材料,基于组合物的总重量;约25wt%至约75wt%的PAE和约25wt%至约75wt%的苯乙烯类材料是优选的;且约40wt%至约60wt%的PAE和约40wt%至约60wt%苯乙烯类材料是尤其优选的。还注意低分子量PAE(如,重均分子量小于或等于约15,000,或特性粘度(IV)低于约0.25分升/克(dl/g)(25℃下在氯仿中测定))的总含量优选小于或等于约20wt%,小于或等于约10wt%是尤其优选的,以防止材料的严重脆变。在三元共混物中,苯乙烯类材料可以包含约1wt%至约99wt%的聚苯乙烯和约1wt%至约99wt%的苯乙烯类共聚物,且约25wt%至约90wt%的聚苯乙烯和约10wt%至约75wt%的苯乙烯类共聚物是优选的,约50wt%至约90wt%的聚苯乙烯和约10wt%至约50wt%的苯乙烯类共聚物是尤其优选的,基于苯乙烯类材料的总重量。
在使用苯乙烯类共聚物的实施方案中,苯乙烯类共聚物中的共聚单体的含量应当低于约25摩尔%(mol%),以便保持单相共混物。即使在低共聚单体含量下,单相共混物取决于PAE组分的分子量和共聚单体的含量。例如,对于含丙烯腈含量为约6mol%的SAN的PAE/SAN共混物来说,在特性粘度IV小于或等于约0.33dl/g的PAE的所有组成范围内均能观察到完全混溶性。如果丙烯腈含量增至约8mol%,那么仅对低IV(如,0.12dl/g)的PAE共混物的所有组成范围观察到完全混溶性,而更高IV的材料(如,大于或等于约0.33dl/g)在约40mol%至约60mol%的PAE范围内呈现出不溶性。
类似地,可以应用使用PPE、聚苯乙烯和苯乙烯类共聚物的三元共混物。如上所述,在约6mol%丙烯腈的苯乙烯类共聚物情况下观察到完全混溶性。对于8mol%丙烯腈来说,当SAN含量小于或等于约30wt%或大于或等于约70wt%时,观察到混溶性。但是,大于或等于70wt%SAN的情况产生了具有低玻璃化转变温度(如,低于约130℃)的共混物。
术语聚(亚芳基醚)(PAE)包括聚亚苯基醚(PPE)和聚(亚芳基醚)的共聚物;接枝共聚物;聚(亚芳基醚)离子交联聚合物;聚(亚芳基醚),聚(亚芳基醚),烯基芳族化合物,乙烯基芳族化合物的嵌段共聚物,等等;以及包含前述中的至少一种的反应产物和组合;等等。聚(亚芳基醚)本身是包含多个式(I)的结构单元的已知聚合物:其中对于每个结构单元,每个Q1独立地为卤素,伯或仲低级烷基(如,包含多至7个碳原子的烷基),苯基,卤代烷基,氨基烷基,烃氧基或卤代烃氧基,其中至少两个碳原子隔开卤素原子和氧原子;并且每个Q2独立地为氢,卤素,伯或仲低级烷基,苯基,卤代烷基,烃氧基或卤代烃氧基,与Q1的定义相同。优选的是,每个Q1是烷基或苯基,尤其是C1-4烷基,且每个Q2是氢。
聚(亚芳基醚)的均聚物和共聚物均包括在内。优选的均聚物是包含2,6-二甲基亚苯基醚单元的那些。合适的共聚物包括无规共聚物,包含如与2,3,6-三甲基-1,4-亚苯基醚单元或衍生自2,6-二甲基苯酚与2,3,6-三甲基苯酚的共聚反应的共聚物相组合的这类单元。还包括含以下部分的聚(亚芳基醚),该部分是通过接枝下列物质制备的:乙烯基单体或聚合物如聚苯乙烯,以及偶合的聚(亚芳基醚),其中偶合剂如低分子量聚碳酸酯、醌类(quinines)、杂环化合物(heterocycles)和缩甲醛(formols)以已知方式与两个聚(亚芳基醚)链的羟基进行反应,生成高分子量聚合物。聚(亚芳基醚)还包括包含上述中的至少一种的反应产物和组合。
从上文描述的内容对本领域普通技术人员来说显而易见的是,所考虑的聚(亚芳基醚)包括所有那些目前已知的物质,不管结构单元或附属的化学特征的变化。
聚(亚芳基醚)的特性粘度(IV)通常为约0.10至约0.60分升/克(dl/g),在25℃下在氯仿中测定。还可能组合使用高特性粘度的聚(亚芳基醚)(优选大于或等于约0.25dl/g)和低特性粘度的聚(亚芳基醚)(优选小于或等于0.25dl/g)。当使用两种特性粘度时,确定其确切的比例在某种程度上取决于所用的聚(亚芳基醚)的确切的特性粘度和所需的最终物理性能。
合适的碱可滴定的(base titratable)官能化的聚(亚芳基醚)树脂包括但不限于通过与合适的酸或酸酐官能化试剂(functionalization agent)进行反应而制备的那些。例如,可以使用通过将聚(亚芳基醚)与下列物质进行熔体反应(melt reaction)而制备的那些:α,β不饱和羰基化合物,包括马来酸酐、马来酸、富马酸、柠康酸酐、柠康酸、衣康酸酐、衣康酸、乌头酸酐、乌头酸及它们的酯和胺;α-羟基羰基化合物,包括羧酸如柠檬酸和马来酸;5-羟基苯-1,2,4-三羧酸酐的衍生物,如5-乙酰基-衍生物或4-酯-衍生物如苯基酯;偏苯三酸酐芳基酯,包括偏苯三酸酐苯基水杨酸酯(trimellitic anhydride phenylsalicylate),以及包含前述中的至少一种的反应产物和组合。可供选择的是,聚(亚芳基醚)可以在合适的溶剂中被酸性或潜酸性(latent acidic)基团官能化。这类方法的实例包括在四氢呋喃(THF)中将聚(亚芳基醚)进行金属化,接着用二氧化碳进行急冷或在甲苯溶液中用偏苯三酸酐酰氯将聚(亚芳基醚)进行封端。通常,可以使用小于或等于约10wt%的官能化试剂,基于聚(亚苯基醚)和试剂的重量,其中小于或等于约6wt%是优选的,且约1.5wt%至约4wt%是尤其优选的。
除了聚(亚芳基醚)以外,组合物中可以包括一种或多种聚苯乙烯(PS)。本文所用的术语“聚苯乙烯”包括通过本领域已知的方法包括本体、悬浮和乳液聚合法制备的聚合物,其包含至少25wt%的结构单元,该结构单元衍生自通式的单体,其中R5是氢、低级烷基或卤素;Z1是乙烯基、卤素或低级烷基;和p为0至约5。
类似地,除了聚(亚芳基醚)外,在所述的组合物中可以包括一种或多种苯乙烯类共聚物。本文所用的术语“聚苯乙烯共聚物”和“苯乙烯类共聚物”包括通过本领域已知的方法包括本体、悬浮和乳液聚合法,使用至少一种单乙烯基芳族烃制备的聚合物。单乙烯基芳族烃的实例包括烷基-、环烷基-、芳基-、烷基芳基-、芳烷基-、烷氧基-、芳氧基-、和其它取代的乙烯基芳族化合物、以及包含前述中的至少一种的反应产物和组合。具体实例包括:苯乙烯、4-甲基苯乙烯、3,5-二乙基苯乙烯、4-正丙基苯乙烯、α-甲基苯乙烯、α-甲基乙烯基甲苯、α-氯代苯乙烯、α-溴代苯乙烯、二氯代苯乙烯、二溴代苯乙烯、四氯代苯乙烯、以及包含前述苯乙烯类共聚物中的至少一种的反应产物和组合。所用的优选单乙烯基芳族烃是苯乙烯和α-甲基苯乙烯。
这些聚合物包含共聚单体,如丙烯酸类单体,包括丙烯腈和取代的丙烯腈,和丙烯酸酯和/或马来酸酐及其衍生物,如马来酰亚胺、N-取代的马来酰亚胺等。共聚单体的具体实例包括:丙烯腈、乙基丙烯腈,甲基丙烯腈,α-氯代丙烯腈(a-chloroarylnitrile)、β-氯代-丙烯腈、α-溴代丙烯腈、β-溴代丙烯腈、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸丙酯、丙烯酸异丙酯、马来酸酐、甲基丙烯腈、马来酰亚胺、N-烷基马来酰亚胺、N-芳基马来酰亚胺,或烷基或卤素取代的N-芳基马来酰亚胺以及包含前述丙烯酸类单体中至少一种的反应产物和组合。优选的单体是丙烯腈、马来酸酐、丙烯酸乙酯,和甲基丙烯酸甲酯,其中丙烯腈和马来酸酐是尤其优选的。
聚苯乙烯共聚物中存在的共聚单体的量可以变化。但是,含量通常为摩尔百分数大于或等于约2mol%且小于或等于约25mol%,其中约4mol%至约15mol%是优选的,且约6mol%至约10mol%是尤其优选的。尤其优选的聚苯乙烯共聚物树脂包括聚(苯乙烯-马来酸酐),通常称为“SMA”和聚(苯乙烯-丙烯腈),通常称为“SAN”。
对于本申请来说,理想的是,苯乙烯类共聚物以与PAE组分的单相共混物存在。因此,理想的是,共聚物为无规共聚物,而不是会导致相分离的嵌段型共聚物。
此外,共混物还可以任选含有各种添加剂,如抗氧剂如有机亚磷酸酯,如亚磷酸三(壬基-苯基)酯、亚磷酸三(2,4-二-叔丁基苯基)酯、双(2,4-二-叔丁基苯基)季戊四醇二亚磷酸酯或二(十八烷基)季戊四醇二亚磷酸酯;烷基化单苯酚;多酚;多酚与二烯烃的烷基化反应产物,如四[亚甲基(3,5-二-叔丁基-4-羟基氢化肉桂酸酯)]甲烷、3,5-二-叔丁基-4-羟基氢化肉桂酸酯十八烷基(3,5-di-tert-butyl-4-hydroxyhydrocinnamate octadecyl),2,4-二叔丁基苯基亚磷酸酯,对甲酚和二环戊二烯的丁基化反应产物;烷基化氢醌;羟基化的硫代二苯基醚;亚烷基-二酚;苄基化合物;β-(3,5-二-叔丁基-4-羟基苯基)-丙酸与一元醇或多元醇的酯;β-(5-叔丁基-4-羟基-3-甲基苯基)-丙酸与一元醇或多元醇的酯;硫代烷基或硫代芳基化合物的酯,如硫代丙酸二硬脂酯、硫代丙酸二月桂基酯和/或硫代二丙酸二(十三烷基)酯;β-(3,5-二-叔丁基-4-羟基苯基)-丙酸的酰胺,等,以及包含前述抗氧剂中的至少一种的反应产物和组合。
可以进一步使用增强剂(reinforcing agents)、填料和其它添加剂等以及包含前述中的至少一种的反应产物和组合,以增加基片的模量,但是,重要的是填料相的存在不会不利地影响成型部件(molded part)的表面质量。因此,可能需要注塑(injection molding)期间的特殊加工条件以确保在成型加有填料的部件时充分光滑的表面。可以任选使用填料和增强剂如硅酸盐、二氧化钛(TiO2)、玻璃、氧化锌(ZnO)、硫化锌(ZnS)、炭黑、石墨、碳酸钙、滑石、云母等,以及包含前述添加剂中的至少一种的反应产物和组合,其呈纤维(包括连续和切断纤维)、薄片(flakes)、纳米管(nanotubes)、球、颗粒等形状以及包含前述形状中的至少一种的组合。而且,也可以任选使用其它添加剂,如脱模剂(mold release agents)(季戊四醇四硬脂酸酯、甘油单硬脂酸酯等);紫外吸收剂;稳定剂如光和热稳定剂(酸性亚磷基化合物、受阻酚等;润滑剂(矿物油等);增塑剂;染料(奎宁化合物、偶氮苯类等);着色剂、抗静电剂等(四烷基铵苯磺酸盐、四烷基鏻苯磺酸盐等);抗滴落剂(anti-drip agents);以及包含前述添加剂中的至少一种的反应产物和组合。
使用该共混物的数据存储介质可以通过首先使用能够充分混合各种组分的常规反应容器,如单或双螺杆挤出机、捏和机等形成热塑性组合物而制备。组分或者可以同时通过加料斗供入挤出机中,或者苯乙烯类材料可以在加入PAE之前引入挤出机中并熔化,以防止PAE的粘着。挤出机应当保持在充分高的温度下以将组分熔化,而不会引起其分解。可以使用约270℃至约340℃的温度,其中优选约280℃至约320℃,且尤其优选约290℃至约305℃。类似地,应当控制挤出机中的停留时间(residence time)以使分解最小化。通常使用小于或等于约5分钟(min)或更长的停留时间,其中小于或等于约2min是优选的,且小于或等于约1min是尤其优选的。
在挤出成所需的形状(通常为粒状、片状、幅状(web)等),通过熔融过滤(melt filtering)和/或使用丝网包装(screen pack),可以将混合物进行过滤,以除去不需要的污染物或分解产品。
一旦已产生组合物,可以使用各种成型和加工技术将其成型为数据存储介质或任何其它所需的物品(薄膜、透镜、片等)。可能的成型技术包括注塑(injection molding)、发泡法(foaming processes)、注射-压缩(injection-compression)、旋转成型(rotary molding)、二次注塑(two shotmolding)、微蜂窝状成型(microcellular molding),铸膜(film casting)、挤压(extrusion),压机成型(press molding)、吹塑(blow molding)等。如果将组合物用作数据存储介质,例如,可以使用本领域常规已知的其它加工技术如电镀、涂覆技术(旋涂、喷涂、蒸镀、丝网印刷、上漆(painting)、浸渍、溅射、真空沉积、电沉积(electrodeposition)、凹凸涂覆(meniscus coating)等)、层压、数据标记(data stamping)、压花、表面抛光、夹紧(fixturing)以及包含前述工艺中的至少一种的组合,以将所需的层设置在PAE/苯乙烯类材料基片上。本质上,基片能够就地形成,其一侧或两侧上设置有所需的表面特征,其一侧或两侧上还有数据存储层如磁光材料和任选的保护、介电和/或反射层。基片可以具有基本上均相的、锥形的、凹入的或凸出的几何形状,其中任选使用各种类型和几何形状的增强件来增加劲度,而不会对表面完整性和光滑性产生不利影响。
PAE/苯乙烯类材料存储介质的例子包含注塑的PAE/苯乙烯类材料基片,该基片可以任选包含中空(气泡、空穴等)或填料(金属、塑料、玻璃、陶瓷等,呈各种形状如纤维状、球状等)芯。各种层,包括数据层、介电层、反射层,和/或保护层设置到基片上。根据所产生的介质的类型,设置这些层。例如,对第一表面介质,所述层可以是保护层、介电层、数据存储层、介电层,然后设置成与基片相接触的反射层。
数据存储层可以包含能够存储可检索数据的任何材料,如光学层、磁性层或磁性-光学层,厚度小于或等于约600埃,其中厚度小于或等于约300埃是优选的。可能的数据存储层包括但不限于氧化物(例如硅氧化物(siliconeoxide)),稀土元素-过渡金属合金,镍,钴,铬,钽,铂,铽,钆,铁,硼等,以及包含前述中的至少一种的合金和组合,有机染料(如,花青型染料或酞菁型染料),以及无机相变化合物(如,TeSeSn或InAgSb)。
防止灰尘、油和其它污染物的保护层可以具有大于或等于约100微米至小于或等于约10埃的厚度,在一些实施方案中,小于或等于约300埃的厚度是优选的,而小于或等于约100埃的厚度是尤其优选的。保护层的厚度通常至少部分由所用的读取/写入机理如磁性、光学或磁光所决定。可能的保护层包括抗腐蚀材料如氮化物(如,氮化硅和氮化铝等)、碳化物(如,碳化硅等)、氧化物(如二氧化硅等)、聚合物材料(如,聚丙烯酸酯或聚碳酸酯)、碳薄膜(金刚石、类金刚石的碳等),以及包含前述中的至少一种的反应产物和组合。
设置在数据存储层的一侧或两侧上且通常以热控制剂(heat controllers)使用的介电层通常可以具有多至或超过约1,000埃且低至约200埃的厚度。可能的介电层包括与环境相容的材料中的氮化物(如,氮化硅和氮化铝等)、氧化物(如氧化铝等)、碳化物(如,碳化硅)、以及包含前述中的至少一种的合金和组合,优选的是,不与周围的层反应。
反射层应当具有足够的厚度以反射足够量的能量使得能够检索数据。通常的是,反射层可以具有小于或等于约700埃的厚度,约300埃至约600埃的厚度通常是优选的。可能的反射层包括任何能够反射特定的能量场的材料,包括金属(如,铝、银、金、钛和包含前述中的至少一种的合金和组合等)。除数据存储层、介电层、保护层和反射层外,可以使用其它层如润滑层(lubrication layer)等。有用的润滑剂包括含氟化合物,尤其是含氟的油类(fluoro oils)和油脂类等。
本文所述的存储介质可以应用于常规的光学、磁光和磁性系统中,以及需要高质量存储介质和/或面密度的高级体系中。在使用期间,存储介质相对于读取/写入装置布置,使得能量(磁性、光、或其组合或其它)以入射到存储介质上的能量场的形式接触数据存储层。在接触基片上之前(如果接触的话),能量场接触设置在存储介质上的层。能量场使存储介质发生一些物理或化学变化,以记录在该位置处能量入射到层上。例如,入射的磁场可以改变层内磁畴(magnetic domains)的取向,或者入射光束可能会引起光加热材料处的相变化(phase transformation)。
例如,参照图2,在磁光系统100中,数据检索包含将数据存储层102与入射到这类层上的偏振光110(白光、激光等)接触。设置在数据存储层102和基片108之间的反射层106通过数据存储层102、保护层104将光往回反射,且反射到检索数据的读取/写入装置112上。
在另一实施方案中,参照图3,读取/写入装置112检测磁盘存储层(diskstorage layer)102′中的磁畴的偏光性(即,读取数据)。为了将数据写入到存储介质上,通过读取/写入装置112在数据存储层102′上施加磁场。磁场从读取/写入装置112′,通过润滑层105和保护层104,至磁性层(magneticlayer)102′,形成在两个方向的任一个上排列的磁畴,从而限定数字数据比特。
在使用期间,例如,通过下列步骤可以从存储介质检索数据:旋转存储介质(如,以高达和超过约10,000转/分钟(rpm)的速度,更通常为约3,000至约10,000rpm的速度,且最通常约5,000至约8,000rpm的速度),将能量场导向存储介质,使得在能量场能够入射到基片上之前,先入射到数据层上,通过能量场从数据层检索信息。该检索可以包含将一部分或所有能量场通过数据层,且将至少部分或所有部分的能量场从数据层返回。优选的,至少对于近区域应用来说,能量场入射到数据存储层上,而不入射到基片上。
提供下列实施例来进一步描述本发明而非限制本发明的范围。
实施例1.聚(亚苯基醚)/聚苯乙烯
将80wt%的0.33 IV的聚(亚苯基醚)粉末(Noryl聚(亚苯基醚)树脂,购自GE Plastics)和20wt%的聚苯乙烯颗粒(Nova PS172,购自Nova Chemical)的共混物在40mm双螺杆挤出机中挤压,制备均相的单相颗粒。然后将所得的颗粒进行注塑以形成具有凹槽表面的光盘,模型插入物(mold insert)(“压模(stamper)”)的凹槽深度约为50nm(纳米)且磁道的间距(track pitch)为约0.8微米。材料的玻璃化转变温度(Tg)为约182℃。相比于对比例1中的通常的光学质量的聚碳酸酯光盘,光盘呈现出改进的平坦度(flatness)、更低的密度和更低的吸湿量(moisture absorption)。
实施例2聚(亚苯基醚)/聚苯乙烯
将60wt%的0.33IV的聚(亚苯基醚)粉末(得自GE Plastics)和40wt%的聚苯乙烯颗粒(Nova PS172)的共混物在40mm双螺杆挤出机中挤压,制备均相的单相颗粒。然后将所得的颗粒进行注塑以形成具有凹槽表面的光盘,模型插入物(“压模”)的凹槽深度约为50nm且磁道的间距为约0.8微米。材料的Tg为约158℃。相对于含更高含量聚(亚苯基醚)的共混物,该材料呈现出优异的凹槽结构的复制性。材料的延展性(通过Notched Izod,Dynatup或其他冲击型方法测定)优于含更高含量聚苯乙烯的共混物。相比于对比例1中的通常的光学质量的聚碳酸酯光盘,光盘呈现出改进的平坦度、更低的密度和更低的吸湿量。
实施例3聚(亚苯基醚)/聚苯乙烯
将25wt%的0.33 IV的聚(亚苯基醚)粉末(购自GE Plastics)和75wt%的聚苯乙烯颗粒(Nova PS172)的共混物在40mm双螺杆挤出机中挤压,制备均相的单相颗粒。然后将所得的颗粒进行注塑以形成光盘。材料的Tg为约124℃。尽管该材料的流动性和复制性均优于具有高含量聚(亚苯基醚)的共混物,延展性和Tg显著更低。相比于对比例1中的通常的光学质量的聚碳酸酯光盘,光盘呈现出改进的平坦度、更低的密度和更低的吸湿量。
实施例4聚(亚苯基醚)/聚(亚苯基醚)/聚苯乙烯
将50wt%的0.33IV的聚(亚苯基醚)粉末(购自GE Plastics)、5wt%的0.12IV的聚(亚苯基醚)粉末和45wt%的聚苯乙烯颗粒(Nova PS172)的共混物在40mm双螺杆挤出机中挤压,制备均相的单相颗粒。然后将所得的颗粒进行注塑以形成具有凹槽表面的光盘,模型插入物(“压模”)的凹槽深度约为50nm且磁道的间距为约0.8微米。材料的Tg为约155℃。相比于含55wt%的0.33IV的聚(亚苯基醚)的共混物,材料呈现出优异的流动性,而没有有任何延展性的显著降低。相比于对比例1中的通常的光学质量的聚碳酸酯光盘,光盘呈现出改进的平坦度、更低的密度和更低的吸湿量。
实施例5.聚(亚苯基醚)/SAN共混物
将75wt%的0.33IV的聚(亚苯基醚)粉末(购自GE Plastics)和25wt%的SAN粉末(7.6mol%AN含量;GE Plastics)的共混物在16mm双螺杆挤出机中挤压,制备均相的单相颗粒。材料的Tg为约166℃。相比于对比例1中的通常的光学质量的聚碳酸酯光盘,光盘呈现出改进的模量、更低的密度和更低的吸湿量。
实施例6.聚(亚苯基醚)/SAN共混物
将75wt%的0.33IV的聚(亚苯基醚)粉末(GE Plastics)和25wt%的SAN粉末(6.3mol%AN含量;GE Plastics)的共混物在16mm双螺杆挤出机中挤压,制备均相的单相颗粒。材料的Tg为约166℃。相比于对比例1中的通常的光学质量的聚碳酸酯材料,材料呈现出改进的模量、更低的密度和更低的吸湿量。
实施例7.聚(亚苯基醚)/SAN共混物
将50wt%的0.33IV的聚(亚苯基醚)粉末(购自GE Plastics)和50wt%的SAN粉末(6.3mol%AN含量;购自GE Plastics)的共混物在16mm双螺杆挤出机中挤压。与对比例2不同的是,该组合物形成了单相共混物。材料的Tg为约141℃。相比于对比例1中的通常的光学质量的聚碳酸酯材料,材料呈现出改进的模量、更低的密度和更低的吸湿量。
实施例8.聚(亚苯基醚)/聚苯乙烯/SAN共混物
将56wt%的0.33IV的聚(亚苯基醚)粉末(购自GE Plastics)、19wt%的聚苯乙烯粉末(Nova PS172)和25wt%的SAN粉末(6.3mol%AN含量;购自GE Plastics)的共混物在16mm双螺杆挤出机中挤压,以制备均相、单相颗粒。材料的Tg为约153℃。相比于对比例1中的通常的光学质量的聚碳酸酯材料,材料呈现出改进的模量、更低的密度和更低的吸湿量。
对比例1:聚碳酸酯(PC)
上述材料和成型制品的性质可以与通常的光学质量的聚碳酸酯(如,OQ1020C,购自GE Plastics)相比。在标准条件下挤压PC粉末,而制备颗粒,并在用于数据存储盘的常规注塑条件下通过注塑而制备磁盘。PC的Tg为约140-145℃,热分布温度(HDT)为约127℃。
对比例2:聚(亚苯基醚)/SAN共混物
将50wt%的0.33 IV的聚(亚苯基醚)粉末(购自GE Plastics)和50wt%的SAN粉末(7.6mol%AN含量;购自GE Plastics)的共混物在16mm双螺杆挤出机中挤压。所得的产品不是单相,表现出约106℃和约198℃的两个玻璃化转变温度。不认为该材料适用于本申请,因为由该共混物成型的部件未显示出足够的表面质量(光滑性)。
与聚碳酸酯和纯聚苯乙烯或苯乙烯类共聚物相比,PAE热塑性组合物具有改进的性能。例如,50/50 PAE/苯乙烯类材料单相共混物的密度和弯曲模量分别为1.07g/cc和440千磅/平方英寸(Kpsi),而对于PC,它们分别为1.23g/cc和330Kpsi。因此,这些组合物可用于多种用途,特别是数据存储介质(光学、磁性、磁光等)。
此外,相比于常规的材料,PAE组合物呈现出减少的吸湿量,如吸湿量小于或等于约0.20wt%,通常小于或等于约0.15wt%,优选小于或等于约0.10wt%,其中吸湿量是当将样品放置在85℃和85wt%相对湿度下的平衡吸水量。例如,聚碳酸酯的平衡吸水量为约0.25至约0.35wt%,而PAE/苯乙烯类材料的平衡吸水量为约0.06wt%。这是合乎需要的,因为当将磁盘从湿环境移到干环境时(反之亦然),吸水可能会引起尺寸稳定性问题。
与其它存储介质不同,本文所披露的PAE存储介质使用具有塑料(如,至少为薄塑料膜)作为其至少一部分的基片,以获得所需的机械性能和表面性质。由于使用塑料,具有所需表面性质的基片的就地形成是可能的。而且,可以将表面特征,包括伺服-图案化(servo-patterning)(如,凹坑、凹槽等),粗糙性(如,激光碰撞(laser bumps)等)、突起、边缘特征、粗糙度、光滑性、微波纹和平坦性等直接压到基片表面上,使该存储介质的成本效率高。基片可以具有基本上均相的、锥形的、凹入的或凸出的几何形状,使用各种类型和几何形状的增强件来增加劲度,而不会对表面完整性和光滑性产生不利影响。
尽管已经参考示例性的实施方案对本发明进行了描述,本领域普通技术人员应当理解,在不偏离本发明的范围下,可以进行各种变化,且其各要素可以等价替换。此外,可以进行许多改变,以使特定的位置或材料适应本发明的教导,而不偏离本发明的基本范围。因此,本发明不限于作为实施本发明的最佳方式而披露的特定实施方案,而是本发明将包括落入所附的权利要求书的范围内的所有实施方案。