具有由低横向拉伸诱导的高透气性的薄膜 【技术领域】
本发明涉及一种透气性薄膜和包含该薄膜的层合物。其水蒸汽可透性主要是通过薄膜沿横向少量拉伸而诱导的。
背景技术
水蒸汽可透但液态水基本不透的层合物在技术上是已知的,普遍用于尿布背衬、其他个人护理吸收服装、医用和工业保护服装等。这类层合物可由透气性、拉伸变薄充填薄膜和纺粘纤网组成。透气性薄膜可通过一种或多种聚烯烃与无机颗粒填料掺混,由该混合物成形薄膜,并拉伸该薄膜以便形成包围着填料颗粒的空洞而制成。所得薄膜可具有包围填料颗粒的薄的聚合物膜,该膜允许水蒸汽的分子扩散,但整个薄膜则基本上完全阻挡液态水透过,或者可具有贯通薄膜的微孔。透气性薄膜可层合到非织造纤网上,例如,通过热粘合或粘合剂粘合而层合到纺粘纤网上。纺粘纤网给透气性层合物增添耐磨性、强度和整体性,并提供柔软、布样手感。
一种影响个人护理吸收服装工业和防护服装工业的趋势涉及对具有更高透水蒸汽性,同时却保持或增加阻挡水、血液或其他液态物质能力的产品的要求和需要。此种趋势反映对提高穿戴者舒适却又不丧失阻挡性能的需求。另一种影响上述工业的趋势涉及对贴身较好,即,与穿戴者身体轮廓保持共形的产品的要求和需要。
另一种趋势涉及对生产成本低、用料较少,又不牺牲希望的产品特性地产品的要求和需要。再一种趋势涉及对在层合物的选择区域具有较高水蒸汽可透性的层合物的要求和需要。在尿布和其他裤状吸收制品中,液体会积累在裆部区域。当发生此种情况时,来自穿戴者身体的热量可能造成服装与穿戴者之间的空间被水蒸汽所饱和,从而促使尿布疹或其他皮肤炎症的发生。有效排出该水蒸汽的最佳途经是通过不受裆部积液影响的其他服装区域排出。
发明概述
本发明涉及一种透气性薄膜以及包括该薄膜和至少一种非织造纤网的透气性层合物。该薄膜具有第一状态,处于此状态时薄膜尚未沿横向拉伸;以及第二状态,处于此状态时,薄膜已经沿横向拉伸25%。薄膜在第一状态具有至少500g/m2·24h的第一水蒸汽透过速率(WVTR),并在第二状态具有第二WVTR,按照下面所描述的WVTR试验程序确定。第二状态的第二WVTR是第一WVTR的至少约225%,且不低于约4000g/m2.24h。第一状态与第二状态之间在WVTR上的此种大幅度增加完全是由于薄膜沿横向拉伸约25%所致。
本发明还涉及表现出类似性能的透气性层合物。选择非织造纤网,并将其按照基本上不损害薄膜透气性的方式粘合到透气性薄膜上。实质上,层合物的透气性取决于薄膜的透气性,尽管层合物的WVTR数值可能有一定程度的下降,具体程度取决于所用粘合技术。该层合物具有尚未沿横向拉伸的第一状态,和层合物(包括薄膜)已经沿薄膜横向拉伸约25%的第二状态。该层合物具有在第一状态的第一WVTR,它至少是500g/m2.24h,按下面所描述的WVTR试验程序确定。该层合物具有在第二状态的第二WVTR,它至少是第一WVTR的225%,且不小于约4000g/m2·24h。
该透气性层合物可用于各种各样个人护理吸收制品和防护服装。在一种实施方案中,层合物被用作一次性尿布或其他裤状吸收服装的背衬。尿布或其他裤状服装起初做得不够大,这同时代表一种材料节省。为将该服装穿戴在使用者身上,将服装的前部和后部(包括该层合物)沿薄膜横向拉伸到层合物原宽度的约25%。此种拉伸导致前部和后部具有比穿戴期间未曾显著拉长的裆部区域显著高的WVTR。
综上所述,本发明的特征和优点是提供一种透气性薄膜,以及一种相应的薄膜/非织造纤网层合物,对它们仅需要沿薄膜横向略加拉伸便可诱导出高水蒸汽可透性。
本发明的特征和优点还在于提供一种服装,例如裤状吸收服装,在其上通过穿戴该服装期间略加拉伸便可诱导出选择的高透气性区域。
本发明上述以及其他特征和优点在研读了下文中关于目前优选实施方案的详述之后将变得进一步明了。
定义
术语“可拉伸”在本文中用来指一种材料,在施加拉伸力后,能沿某一特定方向(例如,横向)拉长到比原来、未拉伸尺寸大至少25%的拉伸尺寸(例如,宽度)。当保持1min后拉伸力解除时,该材料优选不回缩,或者回缩不超过拉伸尺寸与原来尺寸之差的30%。于是,宽1m、沿横向可拉伸的材料,便可被拉伸到至少1.25m的宽度。保持该拉伸宽度1min后解除拉伸力时,该拉伸到1.25m宽的材料优选将不回缩,或者将回缩到不小于1.175m的宽度。可拉伸材料不同于弹性材料,后者在拉伸力解除时趋于回缩大部分拉伸回到其原来尺寸。拉伸力可以是任何足以将材料沿选择的方向(例如,横向)拉伸到其原来尺寸的125%,与其不致破裂的最大拉伸尺寸之间的力。
“回缩百分率”是,就一个3英寸宽的样品而言,当拉长的材料被松弛到回缩力下降到低于10g的时刻测定的。“永久变形百分率”是100减去“回缩百分率”。
术语“非弹性”既指不能拉长等于或大于25%的材料,也指虽能拉长这样的程度但回缩不超过30%的材料。非弹性材料包括可伸长材料,如上面所定义的,也包括不伸长的材料,例如,当受到拉伸力时便撕裂的材料。
术语“纵向”当用于指非织造纤网时,是指输送带从纺丝板或类似长丝挤出或成形设备下面通过时的移动方向,该移动将导致长丝具有沿该同一方向的主取向。虽然长丝看上去呈波浪形,或者在非织造纤网局部段甚至是无规取向的,但它们通常具有一种平行于将它们从挤出或成形设备带走的输送带移动方向的总纵向取向。
术语“纵向”当用于指薄膜时,指的是薄膜上平行于它离开挤出或成形设备时薄膜移动方向的方向。若薄膜被送过夹辊或例如急冷辊,则纵向是当薄膜与辊筒接触时薄膜上平行于辊筒表面运动的方向。
术语“纵向”当用于指包括至少一层薄膜和至少一层非织造纤网的层合物时,是指层合物的薄膜成分的纵向。
用于非织造纤网、薄膜或层合物的术语“横向”是指垂直于纵向的方向。沿横向测量的尺寸称之为“宽度”尺寸,而沿纵向测量的尺寸称之为“长度”尺寸。
术语“透气性薄膜”、“透气性层合物”或“透气性外包覆材料”是指,采用这里所描述的的WVTR试验程序,具有至少约500g/m2·24h的水蒸汽透过速率(“WVTR”)的薄膜、层合物或外包覆材料。术语“较高透气性”就是指某种第二材料具有高于第一材料的WVTR。透气性材料一般依靠蒸汽的分子扩散或者通过微孔的蒸汽通过,并且是基本不透液体的。
术语“液态水可透过材料”是指以一层或多层形式存在的材料如非织造布,它是多孔的,并且由于水和其他含水液体能够通过这些孔流动,因此是液态水可透的。非织造纤网中纤维或长丝之间的空间可能大到足以并且常常是足以让液态水透过该材料泄漏和流动。
术语“非织造布或纤网”是指其结构系由单根纤维或丝交叉铺置构成的纤网,但它们不是像针织物中那样按照规则或可辨认方式排列的。非织造布或纤网采用多种方法成形,如熔喷法、纺粘法、气流铺网法、共成形法以及粘合-梳理纤网法。非织造布的基重通常以每平方码材料的盎司数(osy)或每平方米的克数(gsm)表示;有用的纤维直径通常表示为微米数。(注:要从osy数值换算为gsm值,可用33.91乘上osy的数值)。
术语“微纤维”是指平均纤维旦数为约0.005~10的小直径纤维。纤维旦数被规定为每9000米纤维的克数。对于圆形断面的纤维来说,旦数可根据以微米表示的纤维直径取平方,乘上以g/cc为单位的密度,再乘上0.00707计算出来。相同聚合物制成的纤维,旦数越低,表明纤维越细;旦数越高,表明纤维越粗或越重。例如,已知聚丙烯纤维直径为15μm,要换算为旦数,可取平方,乘上0.89g/cc,再乘上0.00707。于是,15μm的聚丙烯纤维的旦数为约1.42,计算过程是(152×0.89×0.00707=1.415)。在美国以外,较常用的度量单位是“特(tex)”,其定义是每千米纤维的克数。特数可按旦数/9来计算。
术语“纺粘纤维”是指一类小直径纤维,其成形方法包括将熔融热塑性材料从纺丝板的多个纤细,圆形或其他形状的纺丝孔中挤出为丝束,随后,挤出丝束的直径,借助例如以下文献中的方法迅速拉细:Appel等人的美国专利4,340,563及Dorschner等人的美国专利3,692,618、Matsuki等人的美国专利3,802,817、Kinney的美国专利3,338,992及3,341,394、Hartman的美国专利3,502,763、Petersen的美国专利3,502,538、Dobo等人的美国专利3,542,615,在此均全文引入作为参考。纺粘纤维经急冷,当沉积到收集表面上时通常是不发粘的。纺粘纤维通常为连续状且平均旦数通常大于约0.3,更具体地,介于约0.6~10。
术语“熔喷纤维”是指按如下方法成形的纤维:将熔融热塑性材料从多个纤细,通常为圆形的纺丝孔中以熔融丝束形式挤出到逐渐汇聚的高速加热气流(例如空气流)中,气流将熔融热塑性材料丝束拉细,直径变小,可能小到微纤维的直径范围。然后,熔融纤维被高速气流夹带着,最后沉积在收集表面上,形成由随机分布的熔喷纤维组成的纤网。此类方法,例如公开在Buntin的美国专利3,849,241中。熔喷纤维属于微纤维,可以是连续的或不连续的,通常小于约1.0旦,且当沉积到收集表面上时通常自粘合。
术语“薄膜”是指采用薄膜挤出法,例如流延薄膜或吹胀薄膜挤出法制成的热塑性薄膜。该术语包括通过聚合物与填料的混合,再由该混合物成形为薄膜,然后拉伸该薄膜,而变得多孔的薄膜。
术语“微孔”是指具有由薄聚合物膜隔开的许多空隙的薄膜以及具有贯通薄膜的微孔的薄膜。空隙或微孔是在聚合物与填料的混合物挤出为薄膜,该薄膜再经过拉伸,优选沿纵向单轴拉伸时形成的。微孔薄膜往往由于水蒸汽透过膜或微孔的分子扩散作用而具有水蒸汽透过性,但基本上阻挡含水液体的透过。
术语“聚合物”包括但不限于:均聚物;共聚物,如嵌段、接枝、无规及交替共聚物、三元共聚物等;以及上述的共混物及各种改性形式。而且,除非另行具体限定,术语“聚合物”应涵盖该材料所有可能的分子几何构型。这些构型包括但不限于,全同立构、间同立构及无规立构的对称构型。
术语“服装”包括裤状吸收服装和医用和工业防护服装。术语“裤状吸收服装”包括但不限于尿布、训练裤、泳装、吸收性内裤、婴儿揩布、成人失禁用品和女性卫生产品。
术语“医用防护服装”包括但不限于手术服、罩衣、围裙、口罩和被单。术语“工业防护服装”包括但不限于防护制服和工作服。
术语“颈缩”或“颈缩拉伸”彼此通用,指的是织物、非织造纤网或层合物通过沿长度方向拉伸或增加布料长度进行拉伸,以致在宽度或其横向尺寸减少的条件下被拉长。该受控拉伸可在冷温度、室温或较高温度进行,并限制在直至织物、非织造纤网或层合物拉断所需要的伸长范围内沿被拉伸方向的总体尺寸的增加,大多数情况下约为1.2~1.6倍。当松弛时,织物、非织造纤网或层合物不完全返回到其原来尺寸。颈缩过程通常涉及将布从供布卷上退绕,并让其穿过以规定线速度驱动的制动夹辊组。卷取辊,由于是以高于制动夹辊的线速度运转的,因而将织物拉伸并产生使织物伸长并颈缩所需的张力。Morman并与本发明一起转让给同一受让人的美国专利4,965,122公开了一种可逆颈缩的非织造布材料,这种材料可通过使材料颈缩,然后将颈缩的材料加热,最后将颈缩材料冷却而制成,在此全文引入作为参考。颈缩材料的加热导致聚合物的额外结晶,从而赋予其部分热定形。如果颈缩材料是纺粘纤网,则纤网中的某些纤维可能在颈缩加工期间变成卷曲的,正如美国专利4,965,122中所解释的。
术语“可颈缩材料”或“可颈缩层”是指可以颈缩的任何材料或层,例如非织造布、机织或针织材料,或包含它们之一的层合物。本文所使用的术语“颈缩材料”是指任何已沿至少一个尺寸(例如,长度方向)拉伸过,从而导致横向尺寸(例如,宽度)减少,而当拉伸力解除后,材料可被拉回到其原来宽度的材料。颈缩材料一般具有比未颈缩材料高的单位面积基重。当颈缩材料被拉回到其原来宽度时,它应具有与未颈缩材料大致相等的基重。这不同于薄膜层的拉伸/取向,在后一种情况下薄膜变薄并且基重减小。优选用于本发明的非织造纤网由非弹性聚合物制成。
术语“颈缩百分率”是指通过测定可颈缩材料的未颈缩尺寸与颈缩尺寸之间的差值,然后用可颈缩材料的未颈缩尺寸去除该差值所确定的比值。
附图简述
图1(a)是尚未沿横向拉伸的本发明微孔薄膜的俯视图。
图1(b)表示图1(a)的薄膜,此时已在两个端部区域但不包括中间区域,沿横向拉伸过,从而赋予两个端部区域高透气性。
图2是沿图1线段3-3截取的微孔薄膜断面图。
图3表示纤维非织造布,可以是非织造纤网,尚未经过颈缩的俯视图。
图4表示纤维非织造布,可以是非织造纤网,经过颈缩之后的俯视图。
图5示意地表示可用于成形本发明透气性层合物的方法。
目前优选实施方案的详述
图1(a)、1(b)和2表示本发明的薄膜100。参考图1(a),薄膜100具有纵向102和横向104,并具有第一端部区域106、中间区域108和第二端部区域110。薄膜100,如图1(a)所示,尚未沿横向104拉伸。在此种第一状态,薄膜100可具有至少约500g/m2·24h的第一WVTR,合适的是至少约100g/m2·24h,较好至少约1500g/m2·24h。
图1(b)表示两个端部区域106和110已沿横向104拉伸,合适的是拉伸至其原来宽度的约125%的薄膜100。图1(b)所示薄膜100的构型对应于当薄膜100用于尿布或其他裤状吸收服装中时将会发生的那种拉伸类型。第一和第二端部区域106和/或110,对应于服装的前片和/或后片,在该服装穿戴在使用者身上期间将经历约25%横向拉伸(至其原来宽度的约125%)。中间区域108,对应于服装的裆部区域,在穿戴期间将不沿横向拉伸。按照本发明,第一和/或第二端部区域106和110(在第二状态,25%横向拉伸后)可具有第一WVTR的至少225%,合适的是第一WVTR的至少250%,较好为第一WVTR的至少300%的第二WVTR,同时该第二WVTR不小于约4000g/m2·24h。适宜的是,第二WVTR可以是至少约5500g/m2·24h,较好至少约7000g/m2·24h。中间区域106,依然处于第一状态(未沿横向拉伸)保持其针对图1(a)薄膜所表明的较低WVTR数值。本质上,25%横向拉伸在选择的区域内造成WVTR的大幅度提高。
于是,本发明的薄膜既用25%横向拉伸造成WVTR的增幅,也用经25%横向拉伸后较高的WVTR来表征。若薄膜100(或其一部分)横向拉伸前具有较高第一WVTR,譬如,2000g/m2·24h,则拉伸薄膜(或拉伸部分)的第二WVTR至少是第一WVTR的225%。然而,若薄膜100具有较低第一WVTR,譬如,500~1000g/m2·24h,则第二、拉伸后WVTR应至少是4000g/m2·24h,因而要求较高增幅。
横向拉伸后,薄膜100的高透气性端部区域(以及中间区域)应维持基本不透液态水。为通过低横向拉伸获得高透气性,同时维持防液性,薄膜组合物必须恰当选择。微孔薄膜100可以是单层薄膜或多层薄膜,具有一种基本透气层。在第一实施方案中,基本透气层可由包括单部位催化烯烃聚合物、齐格勒-纳塔催化烯烃聚合物和颗粒填料的组合物制成。令人惊奇的是,已经发现此种组合物经25%横向拉伸所产生的薄膜WVTR的增幅既高于a)包括单部位催化聚合物和填料但不包括齐格勒-纳塔催化聚合物的基本类似的组合物,也高于b)包括齐格勒-纳塔催化聚合物和填料但不包括单部位催化聚合物的类似的组合物。该成膜组合物应包括约10~55%(体积)颗粒填料和约45~90%(体积)总聚合物,合适的是约15~45%(体积)颗粒填料和约55~85%(体积)总聚合物,较好约25~40%(体积)颗粒填料和约60~75%(体积)总聚合物。术语“体积”是指聚合物和填料占据的总体积。大量颗粒填料,优选均匀地分散在聚合物当中,有助于薄膜拉伸时空洞的形成。空洞被薄的聚合物膜隔开,从而促进水蒸汽的透过(即,扩散),同时阻挡液态水流过。
术语“总聚合物”包括单部位催化烯烃聚合物和齐格勒-纳塔催化烯烃聚合物,以及其他最佳聚合物成分,只要不妨碍薄膜在横向拉伸前具有至少500g/m2·24h的第一WVTR,以及25%横向拉伸后具有a)第一WVTR的至少225%,和b)不小于4000g/m2·24h的第二WVTR。总聚合物可包括约10~90wt%单部位催化烯烃聚合物和约10~90wt%齐格勒-纳塔催化烯烃聚合物,合适的是约25~75wt%单部位催化烯烃聚合物和约25~75wt%齐格勒-纳塔催化烯烃聚合物,较好约30~60wt%单部位催化烯烃聚合物和约40~70wt%齐格勒-纳塔催化烯烃聚合物。
合适的烯烃聚合物包括聚烯烃,例如聚乙烯、聚丙烯、聚丁烯等,以及烯烃共聚物。合适的烯烃共聚物包括具有占主要重量分数(例如,70~99wt%)的乙烯和占次要重量分数(例如,1~30wt%)的C3~C12α-烯烃共聚单体的共聚物。此种共聚物通常被称之为线型低密度聚乙烯(此时其密度约为0.900~0.935g/cm3)或甚低密度聚乙烯(此时,其密度约为0.870~小于0.900g/cm3)。合适的烯烃共聚物还包括具有占主要重量分数(例如,70~99wt%)的丙烯和次要重量分数(例如,1~30wt%)的C2或C4~C12α-烯烃共聚单体的共聚物。烯烃聚合物应选择为使薄膜沿横向可伸长,就是说,可拉伸其原来宽度的至少25%而不致破裂或撕裂,且当拉伸力解除时回缩不超过其拉伸宽度与初始宽度之差的30%。
可伸长烯烃聚合物的其他例子包括某些柔性聚烯烃,例如,聚丙烯主链中具有无规立构和全同立构亚丙基基团的丙烯为主的聚合物。柔性聚烯烃(FP0)由Rexene公司销售。还包括Himont公司以商品名“catalloys”销售的多相丙烯-乙烯共聚物。多相聚合物是通过在不同阶段向反应器中加入不同量的丙烯和乙烯所生成的反应混合物。多相聚合物一般包括约10~90wt%第一聚合物链段A、约10~90wt%第二聚合物链段B以及0~20wt%第三聚合物链段C。聚合物链段A为至少80%结晶且包括约90~100wt%丙烯,呈均聚物或与最高10wt%乙烯的无规共聚物形式。聚合物链段B为小于50%结晶且包括约30~70wt%丙烯与约30~70wt%乙烯的无规共聚物。任选的聚合物链段C包含约80~100wt%乙烯和0~20%无规共聚的丙烯。
采用单部位催化剂制备的烯烃聚合物具有非常窄的分子量范围。低于4,甚至低于2的多分散性指数(Mw/Mn)对于金属茂生成的聚合物都是可能的。与其他均类似的齐格勒-纳塔生成型聚合物相比,这些聚合物还具有受控的短链支化分布。也可利用金属茂催化剂体系将聚合物的全同立构规整度控制得非常接近。一般而言,聚乙烯聚合物和密度等于或大于0.900g/cc的共聚物往往较不易伸长,而密度低于0.900g/cc的那些则较易伸长。一般而言,聚丙烯聚合物和包含0~10%乙烯或其他α-烯烃共聚单体的共聚物往往较不易伸长,而含大于10%共聚单体的丙烯-α-烯烃共聚物则较易伸长。
单部位催化聚合物的工业生产目前尚限于一定规模,但正在增长。此种聚合物可由Exxon-Mobil化学公司(Baytown,德克萨斯)按商品名ACHIEVE,作为丙烯为主的聚合物;以及EXACT和EXCEED,作为聚乙烯为主的聚合物购得。道化学公司(Midland,密歇根)按商品名AFFINITY市售供应这类聚合物。这些材料可以认为是采用非立构选择性金属茂催化剂生产的。Exxon-Mobil通常称他们的催化剂技术为单部位或金属茂催化剂,而道化学则称自己的为“可限形状”催化剂,商品名为INSITE,以便将其与传统多反应部位的齐格勒-纳塔催化剂区别开来。其他制造商,如Fina Oil、BASF、Amoco、Hoechst和Mobil正在这方面积极开展工作,据信按此种技术生产的聚合物的供应在下一个十年将大大增长。
不拟限于理论,但是可以认为,由单部位催化烯烃聚合物和填料生产并仅沿纵向拉伸至约其原来长度的1.1~7.0倍的薄膜具有比较低的透气性,因为单部位催化聚合物既结实又可伸长,但不容易形成空隙。用齐格勒-纳塔催化烯烃聚合物和填料生成并沿纵向类似地拉伸的薄膜则容易形成空隙和表现出较高透气性。本发明的薄膜,由于除填料外包含这两种聚合物类型,因此以某种方式结合了这两类性能,即,当仅沿纵向拉伸时显示较低WVTR,而当沿横向仅略微进一步拉伸时则显示高得多的WVTR。
图2表示可层合到非织造纤网上形成透气性层合物的透气性、可伸长微孔薄膜100的断面,如下所述。透气性微孔薄膜100可包括由上述的组合物成形的基本微孔芯层112。透气层112可与两个粘合用薄皮层122和124合在一起。替代地,薄膜100可包括基本微孔芯层112以及仅一个皮层122或124,或者没有皮层。
微孔层112包括:聚合物基质111;在基质中被较薄的微孔膜113包围的大量空隙114,于是构成许多曲折的路径;以及在每个空隙114中的一个或多个填料颗粒。层112是微孔和可透气的,其中空隙之间的微孔膜113允许水蒸汽靠分子扩散顺畅地从薄膜100的第一表面118到达第二表面120。替代地,一些和全部微孔可贯通薄膜,或者可彼此互连从而构成通路。聚合物基质111可包括单部位催化烯烃聚合物和齐格勒-纳塔催化烯烃聚合物,如上所讨论的。
填料颗粒116可包括任何合适的无机或有机填料。填料颗粒116优选应小到足以产生维持薄膜100的液态水不透过性能的微孔。一般而言,填料颗粒的平均颗粒直径应该约为0.1~7.0μm,优选约0.5~5.0μm,最优选约0.8~2.0μm。合适的填料包括但不限于碳酸钙、不可溶胀粘土、二氧化硅、氧化铝、硫酸钡、碳酸钠、滑石、硫酸镁、二氧化钛、沸石、硫酸铝、硅藻土、硫酸镁、碳酸镁、碳酸钡、高岭土、云母、碳、氧化钙、氧化镁、氢氧化铝和聚合物颗粒。碳酸钙是目前优选的填料。
填料颗粒116可以涂覆少量(例如,最高2wt%)脂肪酸或其他材料以便使它们容易分散在聚合物基质中。合适的脂肪酸包括但不限于硬脂酸或更长链的脂肪酸如二十二烷酸。
聚合物组成、填料含量、填料粒度以及拉伸度是帮助确定层合物中可伸长微孔薄膜100的透气性和阻挡液体性能的因素。一般而言,该取向的微孔薄膜100小于约50μm厚,优选小于约30μm厚,最优选小于约20μm厚。在层合到非织造纤网上之前,薄膜100可沿其纵向单轴拉伸到其原来长度的约1.1~7.0倍以产生透气性,优选到其原来长度的约1.5~6.0倍,最优选到其原来长度的约2.5~5.0倍。该纵向拉伸,反映在图1(a)所示的第一薄膜状态中,导致薄膜具有低水平的透气性,即,不大于约1000g/m2·24h的WVTR。拉伸温度范围约为38~150℃,取决于使用的具体聚合物,且优选约70~95℃。薄膜100可通过该层的浇注或吹胀膜共挤出,通过挤出涂布或通过任何传统层状成形方法来制备。
在图2的实施方案中,微孔透气性薄膜层112与一个或两个较薄的外皮层122和124相邻,组成二层或三层可伸长薄膜100。一或两个皮层的引入可改善薄膜的加工性,还可以为该透气性、可伸长薄膜100赋予热封性。外层122和124中的聚合物可与微孔层112中的聚合物相同或不同。优选的是,这一个或两个外层中的聚合物是可伸长的、软化点低于微孔层112的软化点,并且赋予薄膜100以热合性。为加强透气性,皮层122和124可包含最高等于微孔芯层112数量的颗粒填料,因而薄膜沿纵向取向后,皮层也可以是微孔的。
外层122和124的厚度和组成也应选择得基本不妨碍湿气经透气性薄膜100穿过。这样,微孔芯层112便可决定整个薄膜的透气性。为此,皮层122和124一般小于约10μm厚,优选小于约5μm厚。皮层合在一起应占到不大于整个薄膜厚度的25%,优选占薄膜厚度的约2~15%,更优选占整个薄膜厚度的3~5%。合适的低软化点可拉伸皮层包括乙烯与C3~C20α-烯烃共聚单体的、密度小于约0.89g/cc的无定形金属茂或齐格勒-纳塔催化共聚物。合适的还有无定形聚α-烯烃(APAO)聚合物,可以是乙烯、丙烯和丁烯的无规共聚物或三元共聚物,以及其他基本无定形或半结晶丙烯-乙烯聚合物。还包括乙烯-醋酸乙烯酯、丙烯-醋酸乙烯酯、乙烯-丙烯酸甲酯以及上述聚合物的任意共混物。
如上所述,本发明的一种实施方案涉及:属于单部位催化烯烃聚合物的第一聚合物A与属于齐格勒-纳塔催化烯烃聚合物的第二聚合物B和填料的组合,以及使用此种组合物成形薄膜100的基本透气性微孔层112,或者若薄膜100是单层的话,仅使用此一层。在第二种实施方案中,第一聚合物A可以是较高密度烯烃聚合物,而第二聚合物B可以是较低密度烯烃聚合物。这两种聚合物可与颗粒无机填料合在一起且彼此符合与上面描述的相同组成范围。具体地说,第一聚合物A可以是密度等于0.870到小于0.900g/cm3的甚低密度聚乙烯,而第二聚合物B可以是密度为0.900~0.935g/cm3的线型低密度聚乙烯。
成膜组合物的第二种实施方案可按照类似于成膜组合物的第一种实施方案的原则操作。当薄膜拉伸时,较低密度烯烃聚合物更容易伸长但不容易与填料颗粒分离而形成空隙。较高密度烯烃聚合物较硬,容易形成空隙,从而产生较高透气性,即便当薄膜仅沿纵向拉伸时也是如此。通过这两种聚合物的组合,所获得的薄膜在仅沿纵向拉伸时将显示低WVTR,且当随后沿横向仅拉伸25%时显示出高得多的WVTR。
在第三种实施方案中,第一与第二种实施方案的原则结合在一起。第一聚合物A可以是较低密度单部位催化烯烃聚合物,而第二聚合物B可以是较高密度齐格勒-纳塔催化烯烃聚合物。例如,第一聚合物A可以是密度等于0.870到小于0.900g/cm3的单部位催化的甚低密度聚乙烯。第二聚合物B可以是密度等于0.900~0.935g/cm3的齐格勒-纳塔催化线型低密度聚乙烯。这两种聚合物可彼此混合并与颗粒填料掺混,其中采用与上面第一种实施方案相同的组成范围。
在典型情况下,薄膜100在层合到非织造纤网上之前将仅沿纵向取向,并在层合后沿横向略微拉伸以产生大大改善的WVTR。这就是说,非织造纤网必须能沿横向拉伸,以便适应薄膜的拉伸。典型地,薄膜与非织造纤网将粘合在一起,其中薄膜的纵向与非织造纤网的纵向基本对齐。粘合可采用任何对薄膜的水蒸汽透过性能影响极小的技术完成。合适的技术包括热点粘合、超声波点粘合、粘合剂花纹粘合、粘合剂喷洒粘合以及其他粘合面积优选覆盖薄膜与非织造纤网之间界面的小于约25%的技术。
有各种各样非织造纤网适合用于本发明层合物中。参见图3,非织造纤网10,可以是纺粘纤网,包括大量单根热塑性纤维12彼此间利用粘合花纹断续地粘合在一起,在此种情况下,包括大量粘合点14。单根纤维12当在微观尺度上观察时表现为一种波浪的或略微无规的取向。当在宏观上观看,以致能够看到整个纤维长度时,纤维12具有由箭头16代表的平行于纵向的总体基本取向。如果非织造纤网是纺粘纤网,它可故意地制成高纵向单丝取向,并且热粘合也主要沿纵向取向。这将提供一种具有内在横向可拉伸性的纺粘纤网,酷似传统粘合梳理纤网中的情况。
非织造纤网优选是纺粘纤网但也可以是熔喷纤网、粘合梳理纤网和气流铺网纤网,或者是包括一层或多层非织造纤网的层合物或复合物。非织造纤网也可采用水刺法成形或改进。在一种实施方案中,非织造纤网或包括它的复合物是可颈缩的,如上面定义的。图4显示颈缩的非织造布材料20的俯视图,它可以是在层合到薄膜100上之前沿纵向16拉伸从而导致纤网沿纵向16伸长并沿横向18变窄,或颈缩的非织造纤网10。如图4所示,颈缩导致单丝12变得彼此排列更齐,且彼此靠近。当采用可颈缩非织造纤网或复合物时,它应具有至少约15%,更优选约25~75%,最优选约35~65%的颈缩百分比。颈缩之前,非织造纤网10应具有约0.05~4.0盎司每平方码(“osy”)的基重,优选约0.3~2.0osy,更优选约0.4~1.0osy。
当采用可颈缩非织造纤网时,非织造纤网可由各种各样聚合物构成。合适的不可伸长和伸长性较小的聚合物的例子包括但不限于某些聚烯烃、聚酰胺和聚酯。优选的聚合物(不论可否伸长)包括聚烯烃,例如聚丙烯和/或聚乙烯。其他合适的聚合物包括线型低密度聚乙烯共聚物和丙烯与最高约10wt%C2或C4~C12α-烯烃共聚单体的共聚物。
在另一种实施方案中,非织造纤网10由可伸长聚合物组合物制成,但不必在与薄膜100层合之前进行颈缩。合适的聚合物包括但不限于任何上面列举作为成膜组合物的可伸长聚合物和共混物,可伸长纤维12可由共混物,或可伸长与不可伸长聚合物的其他组合构成,只要可伸长聚合物以足以使非织造纤网沿横向可伸长的数量存在。
在第三种实施方案中,横向可伸长非织造纤网10由经过卷曲的纤维12构成。本领域已知有多种多样卷曲方法。卷曲的纤维具有手风琴状或弹簧状波纹或微波纹,因此当纤维被拉伸时,它们伸直和/或波纹的波幅缩小。当采用卷曲纤维时,结构聚合物不必是可伸长的,即,可以是可伸长或不可伸长的。
在另一种实施方案中,成形的非织造布中的纤维具有非常高的纵向(MD)和非常低的横向(CD)取向。随后,纤维进行粘合,让纤维尽可能少地CD粘合。这使得材料得以沿横向(CD)伸长。此种材料的一个例子是具有高CD可伸长性和低MD可伸长性的粘合梳理纤网(BCW)非织造布。其他非织造布,例如纺粘纤网,可通过将纺粘纤维成形为纤维沿纵向高度取向并以某种粘合花纹粘合单丝,使得材料容易沿横向伸长,而制成性能与BCW一样。此种粘合花纹将具有较低粘合面积百分率(小于25%),其中粘合点主要沿纵向排列。因此,许多纤维的纵向列与相邻的纤维纵向列彼此未粘合。这些未粘合纤维容许非织造布容易沿横向伸长,而粘合的纤维则为材料赋予了强度和耐磨性。BCW材料进一步描述在《聚合物科学与工程大全(Encyclopedia of PolymerScience and Enginearing)》,卷10,211~212页,Wiley &Sons(1987),在此引入作为参考。
任何非织造纤网都适合,只要它能适应层合物中薄膜的横向拉伸。颈缩非织造纤网是通过层合物横向拉伸期间回复到其原来、颈缩前状态实现这一点的。可伸长聚合物制成的纤网可简单地随薄膜一起拉伸。卷曲纤维构成的纤网是通过纤维拉直而沿横向伸长的。高纵向取向的纤网则通过增大相邻纤维未粘合部分之间的间距实现沿横向拉伸。
非织造纤网应选择为基本上不妨碍或降低薄膜所贡献的WVTR的类型。薄膜与纤网之间的粘合技术也应选择使得15~25%薄膜与纤网之间的界面被粘合剂或热粘合区域覆盖,以便基本上不损害WVTR。在25%横向拉伸之前,层合物可具有至少约500g/m2·24h,合适的是至少约1000g/m2·24h,较好至少约1500g/m2·24h的第一WVTR。25%横向拉伸后,层合物可具有第一WVTR的至少225%,合适的是第一WVTR的至少250%,较好为第一WVTR的至少300%的第二WVTR,同时该第二WVTR应不小于约4000g/m2·24h。合适的是,第二WVTR可至少约5500g/m2·24h,较好至少约7000g/m2·24h。
图5表示形成多层透气性薄膜和层合物的联合方法。参见图5,薄膜100由诸如可以是在线或离线的流延或吹胀膜设备之类的薄膜复合挤出设备40成形。在典型情况下,设备40将包括二或三台挤出机41。为制备芯层,包括聚合物基质材料和填料的充填树脂在混合机(未画出)中制备,并引导到挤出机41。为制备每一个皮层,可使用另外的类似混合设备(未画出)和挤出设备41将不相容聚合物组分混合并将它们挤出到芯层的一面或两面上成为皮层。多层薄膜100挤出到急冷辊42表面,从而使薄膜100冷却。与急冷辊相邻的真空箱43在急冷辊表面产生真空,以帮助使薄膜紧密保持在急冷辊表面。空气刀或静电针44也迫使薄膜100紧靠辊表面。
从薄膜挤出设备40或提供的离线辊筒出来,多层薄膜100来到薄膜拉伸单元47,后者可以是纵向取向的、由包括Marshall和Williams公司(Proyidence,罗德岛)在内的制造商市售供应的。设备47具有许多拉伸辊46a~e,它们沿纵向,也就是薄膜移动方向,逐步拉伸和拉薄薄膜。在加热到要求的拉伸温度的辊筒46a~e施加一定的应力并逐步将多层薄膜100拉伸到拉伸长度,此刻,芯层112转变为微孔和透气的,同时皮层122和124变得足够薄并很可能变成微孔的,以便不妨碍整个薄膜的透气性。虽然设备47被画成具有5个拉伸辊46a~e,但是辊筒数目可多可少,具体取决于要求的拉伸程度和每对辊筒之间的拉伸量。
有利的是,薄膜100在层合之前可单轴拉伸到原来长度的约1.1~7.0倍,尤其为原来长度的约1.5~6倍,合适的是其原来长度的约2.5~5倍,其间如上面所解释的,采用提高的拉伸温度。提高的拉伸温度可通过加热拉伸辊46a~e当中的某些或全部来维持。最佳拉伸温度随薄膜100的芯层和皮层聚合物不同而变化,一般低于芯层112中基质聚合物的熔融温度。
薄膜100可采用技术上已知的传统粘合剂粘合或热粘合技术层合到非织造纤网上。再次参见图5,薄膜100可在薄膜拉伸后立刻层合到非织造纤网20上。在一种实施方案中,可颈缩非织造纤网20,可以是纺粘纤网,从供应辊62上退绕。随后,该可颈缩材料20送过S形辊筒组的辊隙64,其中辊隙由呈箭头所示反S形缠绕路径布置的辊筒组68~70形成。辊筒68和70以比上游供应辊62更快的圆周速度旋转,从而造成张力和纤网20的颈缩。该张紧、颈缩的材料可从喷洒设备72(例如,熔喷模)下方通过,后者通过模头74将粘合剂73喷洒到纤网20表面。不论经过或未经粘合剂处理,颈缩纤网20随后可与多层薄膜100汇合,并在轧光辊58之间完成粘合,需要的话,轧光辊58可加热。辊筒58或者其中一个可以是光滑或者带花纹的。辊筒58可以是钢、橡胶或其他适当材料的。图5中的薄膜100同时以其另一面粘合到来自供应辊63的第二种材料30上。第二种可伸长材料30可以是第二非织造纤网,或者是另一个薄膜层。获得的层合物32卷绕并贮存在供应辊60上。除了所描述的粘合技术之外,其它粘合技术(例如,其他热、粘合剂或超声波粘合)也可采用。
薄膜与非织造纤网合在一起后,获得的层合物可容易地沿横向拉伸,以造成透气性的大大改善。替代地,层合物可选择地在层合物的某些区域沿横向拉伸,以便仅在这些区域造成透气性的改善。轻易的横向拉伸常常发生在层合物已转化为服装和服装已付诸使用之后。该横向拉伸通常可在室温下用手完成,可达25%或更高(导致层合物或层合物选择区域的宽度增大25%或更高)。这允许服装做得尺寸小一些,用此节省材料。随后,当服装被拉伸或选择地拉伸到与穿戴者轮廓共形时,服装的有效尺寸可在穿戴期间再扩大。
该横向可伸长、透气性层合物可用于多种多样裤状吸收服装中,包括但不限于尿布、训练裤、泳装、吸收性内裤、成人失禁用品、女性卫生产品等。当穿上这样的服装时,透气性层合物(可用作背衬)的横向拉伸主要发生在前和/或后腰区域及其以下,从而导致这些区域具有显著提高的WVTR。裆部区域不拉长,或者拉长得较少,因此仍然较少透气。横向可伸长、透气性层合物还可用在防护服装中,包括医用服装和工业防护服装。医用服装包括手术服、罩衣、围裙、口罩、吸收性被单等。工业防护服装包括防护用制服和工作服等。
试验程序
1、WVTR
试验程序
适合确定本发明薄膜或层合材料的WVTR(水蒸汽透过速率)值的技术是INDA(非织造布工业协会(Association of the NonwovenFabrics Industry))标准化的试验程序,编号IST-70.4-99,题为“STANDARD TEST METHOD FOR WATER VAPOR TRANSMISSION RATETHROUGH NONWOVEN AND PLASTIC FILM USING A GUARD FILM AND VAPORPRESSURE SENSOR(采用保护膜和蒸汽压传感器的非织造布和塑料薄膜水蒸汽透过速率标准试验方法)”,在此引入作为参考。该INDA程序提供WVTR的测定、薄膜对水蒸汽的渗透性、以及均匀材料的水蒸汽渗透系数。
该INDA试验方法是熟知的,故在此不再赘述。但是,该试验程序概述如下。用永久性保护膜和待测样品材料从已知温度和湿度的潮湿室中分隔出干燥室。保护膜的作用是限定一个确定的空气隙并在表征空气隙期间使空气隙内的空气保持静止或安静。干燥室、保护膜和潮湿室构成其中密封着试验薄膜的扩散室。样品夹具是Mocon/ModernControls公司(明尼阿波利斯,明尼苏达)制造的Permatran-W,型号100K。第一个试验测定保护膜和产生100%相对湿度的蒸发器组件之间空气隙的WVTR。水蒸汽透过空气隙和保护膜扩散,然后与正比于水蒸汽浓度的干燥气流混合。电信号连接到数据处理用电脑上。电脑计算空气隙和保护膜的透过速率并将该数值存储起来供将来使用。
保护膜和空气隙的透过速率作为CalC(计算浓度)被存储在电脑中。然后,将样品材料密封在测试室内。水蒸汽再次透过空气隙扩散到保护膜以及试验材料,然后与吹扫试验材料的干燥气流混合。同样,该混合物再次被带到蒸汽传感器。然后,电脑计算空气隙、保护膜与试验材料的组合的透过速率。该信息随后被用来按下式计算湿气透过试验材料传输的透过速率:
TR-1试验材料=TR-1试验材料,保护膜,空气隙-TR-1保护膜,空气隙
计算:
WVTR:WVTR的计算采用公式:
WVTR=Fp饱和(T)RH/Ap饱和(T)(1-RH))
其中:
F=水蒸汽流量,cc/min,
p饱和(T)=温度T下的饱和空气中的水密度
RH=测试室中规定部位的相对湿度,
A=测试室的横断面面积,以及
p饱和(T)=温度T时的水蒸汽饱和蒸汽压。
2、耐水头性
耐水头性是耐液体压力的尺度,它是薄膜或层合物承受液体外加载荷而不碎裂、破裂或撕裂的能力。薄膜的耐液压性取决于其厚度、材料组成、制造和加工方法、周围环境以及试验方法。这里给出的水头数值是按照联邦试验方法标准号191A的方法5514中描述的静水压试验测定的,相当于AATCC试验方法127-89和INDA试验方法80.4-92,在此引入作为参考。
下面的某些试验结果是针对“带支撑的”试样。对这些样品来说,试验材料由购自Walmart的尼龙网(T-246)支撑。网为约0.1mm厚,由尼龙线编成蜂窝状六角形构成。每个六角形截面约4mm。
实施例
实施例1~3
3种不同薄膜的样品在流延挤出线上制成,并沿纵向拉伸取向到其原来长度的约4.0倍。拉伸前,每种薄膜的厚度介于1.8~1.9密耳。每种薄膜的拉伸温度为约190℃。拉伸后的薄膜在210℃进行退火。薄膜具有如下组成。
实例1(对比例)
实例1的薄膜是三层A-B-A流延薄膜,由Huntsman Packaging公司(199 Edison Drive,华盛顿,佐治亚30763)以商品名Huntsman1885型销售。该薄膜具有包含42wt%(69%(体积))齐格勒-纳塔催化线型低密度聚乙烯的芯层。该聚乙烯具有辛烯共聚单体,密度是0.918g/cm3。该芯层还包含58wt%(31%(体积))平均直径约1μm、最大级分7μm的硬脂酸涂覆的碳酸钙颗粒。该薄膜具有2个皮层,各包含由下列组成的混合物:50.4wt%乙烯-醋酸乙烯酯(28wt%醋酸乙烯酯含量)、45.1wt%丙烯-乙烯共聚物的多相组合(商品名Montell KS-357Pcatalloy)、4wt%McCullough and Benton制造的SUPER FLOSS硅藻土以及0.5wt%Ciba Specialties公司制造的B-900抗氧化剂。皮层占总薄膜厚度的约3%。
实施例2
实施例2的薄膜是单层薄膜,包含48wt%(74.2%(体积))聚合物组合和52wt%(25.8%(体积))与实施例1所用一样的碳酸钙。该聚合物组合包含41.7wt%Dow EG-8200,密度0.87g/cm3的单部位催化甚低密度聚乙烯,以及Dow化学公司供应的辛烯共聚单体。该聚合物组合还包含58.3wt%Dowlex 2517,即一种密度0.917g/cm3的齐格勒-纳塔催化线型低密度聚乙烯,以及辛烯共聚单体,由Dow化学公司供应。
实施例3
实施例3的薄膜是单层薄膜,包含48wt%(74%(体积))聚合物组合和52wt%(26%(体积))与实施例1所用一样的碳酸钙。该聚合物组合包含20.3wt%Dow EG-8200和79.7wt%Dowlex 2517。
在下面给出的实验中,按如下所述制备试验薄膜和层合物样品。粘合剂施涂在Mocon金属样品夹具的一面上。样品夹具固定6个样品。粘合剂是利用3M粘合剂转移带施涂的,但双面胶粘带或其等同物也可接受。一片试验材料放在机械拉伸器上。机械拉伸器具有12英寸的长爪,彼此相隔20.3cm(8英寸)。一片试验材料放到机械夹具中,并拉长25%,即,爪的间距从20.3cm(8英寸)增加到25.4cm(10英寸)。样品夹具压靠在试验材料上,以便靠胶粘剂将拉伸的材料固定在样品夹具上。适当修剪材料片以便让样品夹具能够放入到Mocon单元中。非常重要的是保证所使用的胶粘剂应足够结实,以便阻止样品从样品夹具上脱离并回缩。
在第一组实验中,实施例2和3的薄膜进行a)WVTR和耐水头性试验,然后b)在室温下沿横向拉伸25%,然后c)再次测试WVTR和耐水头性。表1给出结果。 表1:薄膜样品的评估实施例号 WVTR,g/m2·24h横向拉伸前 横向拉伸后 水头,mbar 横向拉伸前 横向拉伸后有支撑 无支撑 有支撑 无支撑 2 500 12,000 166 42 159 51 3 17,000 64,000 165 68 165 65
如上所示,极小的横向拉伸可大大改善WVTR,且对耐水头性没什么影响。
在第二组实验中,实施例1~3的薄膜利用3g/m2 Ato Findley2525A熔喷粘合剂靠粘合剂层合到33%颈缩的聚丙烯纺粘纤网上。该层合物进行a)WVTR试验,然后b)在室温下沿横向拉伸25%,然后c)再次测试WVTR。表2给出结果。 表2:层合物样品的评估 实施例号 WVTR,g/m2·24h 横向拉伸前 横向拉伸后 1 16,000 32,000 2 800 7,000 3 19,000 37,000
如上所示,由实施例2的薄膜制成的层合物得出横向拉伸前低WVTR与横向拉伸后高得多的WVTR的最佳组合。
实施例4~7
下面的实施例进一步表示本发明各种薄膜以及包含该薄膜的薄膜/非织造布层合物的性能。每种薄膜皆在中试规模流延挤出线上制备,且具有约20英寸的初始宽度(拉伸前)和1.8~1.9密耳的初始厚度。每种流延膜沿纵向(MD)拉伸取向到其原来长度的约5倍,其间采用约155℃的拉伸温度。拉伸薄膜在210℃进行退火。某些MD拉伸薄膜层合到基重约14g/m2(gsm)且纤维旦数2.0~2.5dpf(单丝旦数)的聚丙烯纺粘纤网上。层合是采用熔喷施胶机将2~5gsm Findley 2525A热熔粘合剂沉积到纺粘纤网上,然后将薄膜和纺粘纤网一起送过一对夹辊之间在轻微压力下而完成的。
MD拉伸薄膜以及包括该MD拉伸薄膜的层合物采用实施例3中描述的方法横向(CD)拉伸其横向拉伸前宽度的25%,到达其横向拉伸前宽度的约125%。薄膜和层合物横向拉伸所需要的力,按照ASTM程序D-5035测量,其中做了用3英寸宽样品代替原来的2英寸宽样品的修改,并记录下25%横向伸长时的应力。分别测定CD拉伸前后薄膜和层合物的WVTR。
该薄膜具有如下组成。
实施例4
实施例4的薄膜是单层薄膜,包含47.5wt%(73.4%(体积))聚合物组合和52.5 wt%(26.6%(体积))与实施例1所用一样的碳酸钙。该聚合物组合包含35.8wt%Dow ENGAGE EG-8200(单部位催化甚低密度聚乙烯,密度0.87g/cm3,以及辛烯共聚单体)、63.8wt%Dowlex2517(齐格勒-纳塔催化线型低密度聚乙烯,密度0.917g/cm3以及辛烯共聚单体)和0.4wt%Ciba-Greigy Co.供应的Ciba B900抗氧化剂。
实施例5
实施例5的薄膜是包含芯层和两个皮层的三层复合挤出薄膜。芯层包含44wt%(29.5%(体积))聚合物组合和56wt%(70.5%(体积))与实例1一样的碳酸钙。该聚合物组合包含34.1wt%Dow ENGAGE EG-8200(单部位催化甚低密度聚乙烯,密度0.87g/cm3,以及辛烯共聚单体)、65.5wt%Huntsman 3106(齐格勒-纳塔催化线型低密度聚乙烯,密度0.919g/cm3以及辛烯共聚单体,由Huntsman化学公司供应)和0.4wt%Ciba B900抗氧化剂。芯层占整个薄膜厚度的98%。
每个皮层由Exxon-Mobil LQA-006(齐格勒-纳塔催化、支化低密度聚乙烯,密度0.918g/cc,Exxon-Mobil化学公司供应)组成。每个皮层占整个薄膜厚度的1.0%。
实施例6
实施例6的薄膜是与实施例5的薄膜相同的三层复合挤出薄膜,只是在芯层中的Huntsman 3106被等量Dow NG 3310(齐格勒-纳塔催化线型低密度聚乙烯,密度0.917g/cc,以及辛烯共聚单体,由Dow化学公司供应)所替代。其余成分、含量和层厚度与实施例5的薄膜一样。
实施例7
实施例7的薄膜是芯层组成与实施例6薄膜一样的三层复合挤出薄膜。该芯层占整个薄膜厚度的97%。
每个皮层包含:50.4wt%Montell KS357P catalloy(一种多相聚合物,包含i)50%丙烯-乙烯无规共聚物,其中乙烯占4%,丙烯占96%,全部按重量计,ii)5%乙烯-丙烯共聚物,含60%乙烯,基本为嵌段,和40%丙烯,以及iii)45%丙烯-乙烯无规共聚物,含20%乙烯和80%丙烯)、22.5wt%Exxon-Mobil LD755.12(乙烯-醋酸乙烯酯,密度0.951g/cc,且包含28%醋酸乙烯酯)、22.5 wt%Exxon-Mobil LD761(乙烯-醋酸乙烯酯,密度0.950g/cc,且包含28%醋酸乙烯酯)、4wt%硅藻土以及0.6wt%Ciba 900抗氧化剂。每个皮层占整个薄膜厚度的1.5%。
表3和4给出实施例4~7薄膜和层合物的25%CD拉伸前后的透气性,以及所需要的拉伸力。表3提供该薄膜的评估结果,而表4提供层合物的评估结果。 表3:薄膜样品的评估 实施例号 WVTR,g/m2·24h 横向拉伸前 横向拉伸后 拉伸力,g 4 8,000 无 325-350 5 14,000 40,200 325-350 6 11,000 24,800 325-350 7 11,000 33,900 325-350 表4:层合物样品的评估 实施例号 WVTR,g/m2·24h 横向拉伸前 横向拉伸后 拉伸力,g* 4 无 无 325-350 5 12,040 27,993 325-350 6 8,618 22,911 325-350 7 7,844 22,260 325-350*根据薄膜拉伸力估计的,其基本上控制了低横向伸长量的层合物的拉伸力。
如上所示,实施例4~7的薄膜和层合物具有低横向拉伸力,以致使用者能够在含薄膜和/或层合物的服装穿戴期间轻易地施加这样的力。该横向拉伸薄膜和层合物与未拉伸薄膜和层合物相比,还具有优异的水蒸汽透过性能和优异的透气性改善。
虽然本文公开的这些本发明实施方案目前被认为是优选的,但在不偏离本发明精神和范围的前提下仍可做出各种各样修改和改进。本发明的范围载于所附权利要求中,所有属于其等同含义和范围的变化一律视为包括在其中。