用于重型施工设备的液压阀控制装置 【技术领域】
本发明涉及一种用于重型施工设备的液压阀控制装置,它能够在把液压致动器向致动器保持阀芯轴筒方向下降时导致少量高压液压液体排出,从而在主轴置于空档或换档时防止致动器突然下降。背景技术
图1所示是用于重型施工设备的传统液压阀控制装置的主要部件。如图1中所示,重型施工设备的液压阀控制装置包括一个液压泵;一个与液压泵相连并在提供了液压液体时受驱动的致动器15;一个提升阀10,用于打开和关闭通道12,该通道可将从液压泵和与致动器15连通的通道13中排出的液压液体供给致动器15;一个与提升阀10上的节流口11连通的背压腔16,用于储存从致动器15的大腔15a中排出的液压液体;以及一个可根据导向信号压力Pi的要求向左或向右切换的致动器保持阀芯轴筒2,用于把背压箱16中的液压液体通过连通通道8的可调节流口5排入液压泵中。
标号3所表示地内容图中未示出,它表示一个以一定压力支撑阀芯轴筒2的弹性元件,用于弹性地把并闭的排泄口7偏置于初始状态;同时9表示以一定压力支撑提升阀10的弹性元件,用于弹性地把关闭的主阀芯轴筒上的通道12和致动器15上的通道13偏置于初始状态。
致动器15下降时从大腔15a中排出的高压液压液体通过与大腔15a连通的通道13和提升阀10上的节流口排入背压腔16中,同时,导向信号压力Pi流入导向孔6中,使阀芯轴筒2向图中所示左侧移动,从而将可调节流口5与排泄孔7连通。
于是,排入背压腔16中的高压液压液体依次通过通道8、可调节流口5、及排泄孔7被排入液压油箱中,因此,当致动器15从地面升起,停止,再降低时,就会出现致动器15突然下降至其初始位置甚至使其操作性能恶化的情况,从而导致在提升重型管道的情况下进行连接工作时造成加剧驾驶员疲劳的问题。
此外,当阀芯轴筒2处于中间位置时,背压腔16一侧的高压液压液体始终保持与阀芯轴筒2上的可调节流口5连通,从而导致阀芯轴筒2颈部的高压液压液体从左侧或左侧的环形缝隙中泄漏。也就是说,通过阀盖1与阀芯轴筒2间的环形缝隙会发生严重的泄漏。
此时,由于随着压力的升高液体的量增多,液体泄漏的量随着工作装置载荷的升高而增加,因此随着时间的推移,致动器15就会自动向地面下降,从而导致重型设备安全性恶化的问题。
图5所示为主阀芯轴筒冲程中液压液体的泄漏量。
如图5所示,以主阀芯轴筒打开时间为准,如果致动器保持阀芯轴筒2的开关时间先于主阀芯轴筒打开时间,由于大量液体从如“A”中所示致动器15的大腔15a中排出,致动器突然下降。
同时,如“B”中所示,致动器保持阀芯轴筒2在主阀芯轴筒打开时间之后打开,背压腔16内提升阀10上的压力实际上就会因液体量增加形成的背压力的影响而传递到提升阀10上。
因此,当提升阀因为背压力的变化而移动时,提升阀10不是正常而平稳地向上移动,而是要受到震动,同样致动器15在下降—停止—下降—停止形式的运动中下降时会有震动摇摆现象,从而导致工作中分散驾驶员注意力以致增加其疲劳并降低工作效率的问题。
据此,其中还存在很难通过设计使主阀芯轴筒的打开时间和致动器保持阀芯轴筒的操作时间相互同步的问题,同时复杂的结构也会使设计变得困难。发明内容
本发明的一个目的是提供一种用于重型施工设备的液压阀控制装置,该装置即使在主阀芯轴筒处于中间位置或切换通过向主阀芯轴筒段回流排出高压液压液体时也能防止致动器的突然下降,从而提高设备的操作性能。
本发明的另一个目的是提供一种用于重型施工设备的液压阀控制装置,可以在设计时无需考虑通过阀盖与阀芯轴筒间的缝隙的少量液体泄漏相互关联的主阀芯轴筒和致动器保持阀芯轴筒的时序,从而提高设计效率。
本发明的另一个目的是提供一种用于重型施工设备的液压阀控制装置,可以通过使致动器能够平稳下降减少驾驶员的疲劳并大大提高工作能力。
为了实现上述目的,本发明中用于重型施工设备的液压阀控制装置包括一个液压泵;一个与液压泵相连并在提供液压液体时受驱动的致动器;一个安装在液压泵与致动器间通道上的主阀芯轴筒,它在导向信号压力下切换,以控制致动器的启动、停止、和方向切换;一个安装在主阀芯轴筒和致动器之间通道上的提升阀,用于打开和关闭,并防止致动器下降;安装在背压腔与提升阀回流路径之间的阀芯轴筒,在导向信号压力作用下切换,以连通背压腔与主阀芯轴筒排泄口的通道;以及一个液体减流通道,连接背压腔与阀芯轴筒并且在切换阀芯筒时连通背压腔和回流通道,以减少从致动器中排出的液体。
最合理的是,液体减流通道直径形成得小于主阀芯轴筒排泄口的通道直径。
此外,在提升阀的左右两侧对称地设置节流口以连通致动器和背压腔。附图说明
下面参照附图对本发明优选实施例的上述方面和其它特征进行更为详细明确的说明,其中:
图1所示为用于重型施工设备的传统液压阀主要部件的剖面图;
图2所示为根据本发明的实施例用于重型施工设备的液压阀的剖面图;
图3所示为沿图2中A-A线的剖面图;
图4所示为根据本发明的实施例的液压阀控制装置的液压回流管;以及
图5所示为主阀芯轴筒冲程中液体泄漏量的示意图。具体实施例
下面参照附图,详细说明根据本发明的优选实施例的用于重型施工设备的液压阀控制装置。
图2所示为根据本发明的实施例用于重型施工设备的液压阀控制装置的剖面图,图3所示为沿图2中A-A线的剖面图,图4所示为根本发明的实施例的液压阀控制装置液压回流管路示意图。
如图2至图4所示,重型施工设备的液压阀控制装置包括一个未示出的液压泵,一个与液压泵连接并在提供液压液体时受驱动的致动器40,一个安装在液压泵与致动器40之间通道上的主阀芯轴筒42,根据导向信号压力Pi切换,用于控制致动器40的致动、停止和方向切换,以及一个安装在主阀芯轴筒42和致动器40间通道上的提升阀34,用于打开和关闭该通道,其上有一个左右对称的节流口,用于防止机构40的下降。
该液压阀控制装置还包括安装在提升阀34上的背压腔41与回流路径之间的主阀芯轴筒42,它在导向信号压力Pi下切换,使背压腔41分别与主阀芯轴筒42排泄口上的通道36和用于减少液体量的小直径通道37相通,后者又与连接背压腔41的通道39相通,并在阀芯轴筒22切换时依次通过阀芯轴筒22和回流路径29、30、32及33把背压腔41的高压液压液体排入主阀芯轴筒42上的通道36中。
标号23的标注对象图中未示出,它表示以一定压力支撑阀芯轴筒22的阀弹簧,用于于初始状态弹性地偏置背压腔41和主阀芯轴筒42间关闭了的通道,38表示以压力支撑提升阀34的阀弹簧,用于弹簧地于初始状态偏置主阀芯轴筒和致动器间关闭的通道。
下面参照附图,根据本发明的优选实施例,详细说明该用于重型施工设备的液压阀控制装置的操作。
如图2和图4所示,导向信号压力Pi通过导向口25流入并克服了阀弹簧23的弹性力,使阀芯轴筒22向图2中所示左侧切换,一个直径极小,可以是无穷小,的通道和阀芯轴筒的颈部被连通,从而使背压腔41中的高压液压液体依次通过通道39和27、阀芯轴筒的颈部28、回流路径29、30、32和33,然后流向提升阀34和主阀芯轴筒42间的通道。
此外,如图4中所示,导向信号压力Pi作用于主阀芯轴筒42的右端,因此使主阀芯轴筒42同时向左切换,从而使沿通道36排出的液压液体借助于主阀芯轴筒42的移动排入液压油箱中,把背压腔41中的压力降至较低水平。
因此,与致动器40上大腔40a连通的通道37中的高压液压液体克服压力支撑提升阀34的阀弹簧38的弹性力,并使把提升阀34如图2中所示向上移动,从而使致动器40由于与主阀芯轴筒42排泄口的通道36连通而逐渐下降。
此时,由于一定量的致动器40下降时排出的液体在提升阀34上升前通过较细通道27排出,泄漏液体的量大大减少,从而防止了致动器40的突然下降。
因为,排出的液体的流量为Q=Cd×A×ΔP]]>
(其中,Cd:流量系数,A:液流的截面面积,ΔP:压力损失)
根据上式,泄漏的液体的量(Q)与截面积(A)或载荷压力(P)是成比例的,所以,液体的流量(Q)随载荷压力(P)的升高或液压液体通过的截面积的增加而增加。
因此,无需考虑主阀芯轴筒42(如图5中”C”所示)的打开时序,由于致动器40的下降而排出的高压液压液体通过小通道27向主阀芯轴筒42回流,从而防止了主阀芯轴筒42处于中间位置或切换时致动器的突然下降,改善了设备的操作性能,提高了工作能力。
此外,通过阀盖与阀芯轴筒22间缝隙的液体泄漏的减少,使得设计主阀芯轴筒42和致动器保持阀芯轴筒22相互关联的切换时间时无需考虑液体的泄漏,因此提高了设计效率并使致动器40平稳下降,从而使驾驶员能够集中注意力并减少疲劳,进而提高工作能力。
上面介绍了本发明的优选实施例,这是为了使熟悉本发明相关领域的技术人员理解本发明而不是对本发明限制,在不背离本发明权利要求中所述思想和范围的前提下,还可以有其它各种变化和改进。