有机场致发光器件 本发明涉及一种有机电致发光器件(有机EL器件),其中,一个具有发光区的有机层设置在阳极和阴极之间。
轻型高效的平板显示器已经得到广泛地研究和开发,例如它们可以用作计算机和电视机的显象管。
由于阴极射线管(CRT)发光强度高并且具有良好的彩色再现性,因而目前被广泛用于显示。但是,仍旧存在各种问题,例如管体笨重、功耗大。
作为高效率的轻型平板显示器,已经在市场上推出了有源矩阵驱动式的液晶显示器。但是,液晶显示器存在如下问题,其视场角窄,不依靠自发光,因而当置于暗环境时需要较大功耗用于背光,对将来可能使用的高精度的高速视频信号缺乏足够的响应。特别是,制造大图象尺寸的液晶显示器存在难度,同时在高的制造成本上也存在问题。
使用发光二极管的一类显示器可以作为一种代替,但是这种显示器的制造成本也很高,同时还有其它问题,例如难以在一个基体上形成发光二极管的矩阵结构。因此,考虑作为代替阴极射线管使用的低成本显示器的选择时,这种类型的显示器在投入实用之前必须解决很多问题。
作为有可能解决这些问题的平板显示器,使用有机发光材料的有机电致发光器件(有机EL器件)近来已经得到关注。更具体地讲,通过使用有机化合物作为发光材料,已经可以实现使用自发光的平板显示器,它具有高响应速度并且不依赖于视场角。
有机电致发光器件是这样配置的,在透光阳极和金属阴极之间形成有机薄膜,其含有借助于电流的电荷能够发光的发光材料。在公开于《应用物理文集》“Applied Physics Letters”,Vol.51,No.12,pp.913-915(1987)的研究报告中,C.W.Tang和S.A.VanSlyke提出了一种器件结构(具有单异质结构地有机EL器件),它具有一个双层结构,包括作为有机薄膜的由空穴迁移材料组成的薄膜和由电子迁移材料组成的薄膜。该器件中,通过从各个电极注入有机膜的空穴和电子的复合而产生发光。
在这种器件结构中,无论是空穴迁移材料还是电子迁移材料均用作发光材料。在对应于发光材料的基态和激励状态之间的能隙的波段产生发光。当使用这种双层结构时,可以显著降低驱动电压,同时改善发光效率。
此后,又有人开发了由空穴迁移材料、发光材料和电子迁移材料构成的三层结构(具有双异质结构的有机EL器件),见C.Adachi,S.Tokita,T.Tsutsui和S.Saito的研究报告,公开于《日本应用物理期刊》“JapaneseJournal of Applied Physics”,Vol.27,No.2,pp.L269-L271(1988)。此外,公开在《应用物理期刊》“Journal of Applied Physics”,Vol. 65,No.9,pp.3610-3616(1989)的C.W.Tang,S.A.VanSlyke和C.H.Chen的研究报告提出了一种包括存在于电子迁移材料中的发光材料的器件结构。通过这些研究,已经证实了在低电压发出强光的可能性,由此引起了近来极为广泛的研究和开发。
用作发光材料的有机化合物被认为是有利的,因为其种类多种多样,通过改变其分子结构在理论上可以随意地改变发光色彩。因此,与使用无机材料的薄膜EL器件相比,借助适当的分子设计可以容易地提供具有全色显示所必需的良好色纯度的R(红)、G(绿)和B(蓝)三色。
但是,有机电致发光器件仍旧存在需要解决的问题。更具体地讲,开发具有高亮度的稳定红色发光器件存在困难。在用作近来报导的电子迁移材料的三(8-羟基喹啉)铝(以下缩写为Alq3)中掺杂DCM[4-二氰基亚甲基-6-(对二甲氨基苯乙烯基)-2-甲基-4H-吡喃]而获得红光的情形中,就最大发光和可靠性而言这种材料不足以作为显示材料。
在有机和无机电致发光会议(柏林,1996)上由T.Tsutsui和D.U.Kim报导的BSB-BCN能够实现1000cd/m2以上的高亮度,但是就用作全色显示的红色的色度而言并不总是良好的。
目前需要解决的问题是如何实现亮度高、稳定和色纯度高的红色发光的器件。
在日本未审专利公报平7-188649(日本专利平6-148798)中,已经提出使用特定类型的二苯乙烯基化合物作为有机电致发光材料。但是,预计的发光色彩是蓝色,而不是红色。
因此,需要一种确保高亮度和稳定的发红光的有机电致发光器件。
为解决上述问题作了大量研究,结果已经发现当使用特定种类的二苯乙烯基化合物作为发光材料,可以提供高度稳定的发红光器件,这对于实现高亮度、稳定的全色显示器是非常有用的,从而实现了本发明目的。
更具体的是,本发明涉及一种有机电致发光器件,其包括位于阳极和阴极之间具有发光区的有机层,其中含有作为必要成分的可通过施加电流发光的有机材料,其特征在于有机层含有作为有机发光材料的至少一种以下通式(1)或通式(3)代表的二苯乙烯基化合物。
通式(1):
其中,上面通式(1)的R1,R2,R3和R4各自是相同或不同基团,代表苯基或以下通式(2)的芳基
通式(2):
和其中上面通式(2)的R11,R12,R13,R14和R15各自是相同或不同基团,代表氢原子,或至少其中之一是饱和的或不饱和的烷氧基或烷基,优选甲基或叔丁基,以及R5,R6,R7,R8,R9和R10可以是相同或不同基团,各自代表氢原子,氰基,硝基或卤素原子(包括F,Cl,Br或I)。
作为发光材料使用上述通式(1)和/或(3)代表的二苯乙烯基化合物使得不仅可以获得高亮度稳定红光,而且提供了对电,热或化学有很好稳定性的器件。通式(1)或(3)的二苯乙烯基化合物可以单独使用或联合使用。
下面描述用于本发明有机电致发光器件的二苯乙烯基化合物。
通式(1)代表的和用作本发明有机电致发光器件的发光材料的二苯乙烯基化合物可以是至少具有以下分子结构的一种,例如,以下结构式(4)-1,(4)-2,(4)-3,(4)-4,(4)-5,(4)-6,(4)-7,(4)-8,(4)-9和(4)-10。所有这些都是带有烷氧基苯基,烷基苯基或未取代的苯基的双(氨基苯乙烯基)萘基化合物。
结构式(4)-1:
结构式(4)-2:
结构式(4)-3:
结构式(4)-4:
结构式(4)-5:
结构式(4)-6:
结构式(4)-7:
结构式(4)-8:
结构式(4)-9:
结构式(4)-10:
通过阅读如下详述部分和权利要求以及参考以下的附图将使得本发明的其它目的和优点显而易见。
图1为根据本发明有机电致发光器件基本部件的一个实施方案剖视图。
图2为根据本发明有机电致发光器件的基本部件的另一实施方案剖视图。
图3为根据本发明有机电致发光器件的基本部件的又一实施方案剖视图。
图4为根据本发明有机电致发光器件的基本部件的再一实施方案剖视图。
图5为使用本发明有机电致发光器件的全色平板显示器的配置图。
图6为本发明实施例1的有机电致发光器件的发射光谱图。
图7为本发明实施例2的有机电致发光器件的发射光谱图。
图8为本发明实施例5的有机电致发光器件的发射光谱图。
图9为本发明实施例6的有机电致发光器件的发射光谱图。
图10为本发明实施例1的有机电致发光器件的电压-亮度特性图。
图11为本发明实施例2的有机电致发光器件的电压-亮度特性图。
图12为本发明实施例5的有机电致发光器件的电压-亮度特性图。
图13为本发明实施例6的有机电致发光器件的电压-亮度特性图。
应当明白附图未必是按比例制得的,实施例有时可用图标,虚线,图示和局部视图解释。在某些情况中,略去了对理解本发明不必要的细节和使得其它细节难以被看到的细节。当然可以理解本发明并不局限于在此解释的特定实施例。
图1-4分别展示了根据本发明的有机电致发光器件的实施例。
图1展示了透射式有机电致发光器件A,其中发光20穿过阴极3,也可以从保护层4一侧观察发光20。图2展示了反射式有机电致发光器件B,其中在阴极3反射的光也可以作为发光20获得。
图中,参考标号1代表形成有机电致发光器件的基体,可以由玻璃、塑料和其它适合的材料制成。在有机电致发光器件与其它类型显示器件组合使用时,可以共同使用基体1。参考标号2代表透明电极(阳极),它可以使用ITO(氧化铟锡)、SnO2等。
参考标号5代表有机发光层,含有上述二苯乙烯基化合物作为发光材料。对于获得发光20的层配置,发光层可以具有迄今已知的各种类型的层配置。正如以下所述,如果用于空穴迁移层或者电子迁移层的材料具有发光特性,例如可以使用这些薄膜的组合结构。并且,为了在满足本发明的目的的范围内提高电荷迁移性,空穴迁移层或电子迁移层或者两者可以具有多种类型材料制成的薄膜的组合结构,或者可以使用多种类型材料的混合物构成的薄膜,对此并无限制。此外,为了改善发光特性,可以使用至少一种荧光材料来提供其中荧光材料薄膜夹在空穴迁移层和电子迁移层之间的结构。另外,可以使用其它类型结构,其中至少一种荧光材料存在于空穴迁移层或电子迁移层中,或者存在于两者之中。在这些情形下,为了改善发光效率,可以在层配置中引入用于控制空穴或电子迁移的薄膜。
由结构式(4)表示的二苯乙烯基化合物具有电子迁移性和空穴迁移性,并且可以在器件配置中用作也起电子迁移层作用的发光层,或者用作也起空穴迁移层作用的发光层。此外,还可以提供其中二苯乙烯基化合物形成夹在电子迁移层和空穴迁移层之间的发光层的配置。
在图1和2中,可以注意到参考标号3表示阴极,电极材料可以由活性金属例如Li、Mg、Ca等和金属例如Ag、Al、In等的合金制成。另外,也可以采用这些金属的薄膜的组合结构。在透射式有机电致发光器件中,通过控制阴极厚度可以获得预计应用所需的光透射。图中,参考标号4表示密封/保护层,当有机电致发光器件被其整体覆盖时,其效果增大。对此可以使用适当材料,只要能够保证气密性即可。参考标号8表示用于加载电流的驱动电源。
在本发明的有机电致发光器件中,有机层可以具有如下的有机组合结构(单异质结构),其中设有空穴迁移层和电子迁移层,并且其中上述二苯乙烯基化合物用作形成空穴迁移层或者电子迁移层的材料。另外,有机层也可以具有如下有机组合结构(双异质结构),其中空穴迁移层、发光层和电子迁移层被依次形成,发光层由上述二苯乙烯基化合物形成。
本发明展示了具有这种有机组合结构的有机电致发光器件。更具体地讲,图3展示了具有由组合结构构成的单异质结构的有机电致发光器件C,在透光基体1上,所述组合结构包括按如下顺序依次层叠的透光阳极2、由空穴迁移层6和电子迁移层7构成的有机层5a,和阴极3,用保护层4密封组合的层结构。
采用如图3所示层配置(其中省略了发光层),具有给定波长的发光20从空穴迁移层6和电子迁移层7之间的界面发射。从基体1一侧观察到这种光。
图4展示了具有由组合结构构成的双异质结构的有机电致发光器件D,在透光基体1上,所述组合结构包括按如下顺序依次层叠的透光阳极2、由空穴迁移层10、发光层11和电子迁移层12构成的有机层5b,和阴极3。用保护层4密封组合结构。
在如图4所示的有机电致发光器件D中,在阳极2和阴极3之间施加DC电压时,从阳极2注入的空穴借助空穴迁移层10到达发光层11,从阴极3注入的电子借助电子迁移层12也到达发光层11。最终,电子/空穴在发光层复合产生单态激子,从而导致从单态激子产生具有给定波长的光。
在上述有机电致发光器件C和D中,基体1可以适当地采用透光材料,例如玻璃、塑料等。在该器件与其它类型显示器件组合使用时,或者在如图3和4所示组合结构配置成矩阵形式时,可以共同使用基体。器件C和D两者均可具有透射式或者反射式的结构。
透明电极组成的阳极2可以采用ITO(氧化铟锡)、SnO2等。为了改善电荷注入效率,可以在阳极2和空穴迁移层6(或者空穴迁移层10)之间设置有机材料或者有机金属化合物制成的薄膜。应注意在保护层4由导体材料例如金属形成时,可以在阳极2一侧设置绝缘膜。
有机电致发光器件C的有机层5a由空穴迁移层6和电子迁移层7的组合有机层构成。上述二苯乙烯基化合物可以包含在这两层之一或者两者中,提供发光空穴迁移层6或者电子迁移层7。有机电致发光器件D的有机层5b由空穴迁移层10、包含上述二苯乙烯基化合物的发光层11和电子迁移层12的组合有机层构成。层5b可以采用其它类型的组合结构。例如,空穴迁移层和电子迁移层之一或者两者可以具有发光特性。
特别是,优选空穴迁移层6或者电子迁移层7以及发光层11分别由本发明所用的二苯乙烯基化合物制成的层构成。这些层可以仅由上述二苯乙烯基化合物形成,或者通过上述二苯乙烯基化合物和其它类型的空穴或电子迁移材料(例如芳族胺、吡唑啉等)的共淀积形成。此外,为了改善空穴迁移层中的空穴迁移性,可以形成多种可以组合的空穴迁移材料构成的空穴迁移层。
在有机电致发光器件C中,发光层可以是电子迁移发光层7。此时,根据从电源8施加的电压,光可以从空穴迁移层6或者其界面发射。与此类似,在有机电致发光器件D中,发光层除了层11之外,还可以是电子迁移层12或者空穴迁移层10。为了改善发光性能,最好提供在空穴迁移层和电子迁移层之间夹置含至少一种荧光材料的发光层11的结构。另外,荧光材料可以包含在空穴迁移层或者电子迁移层中,或者包含在这两层中。在这方面,为了改善发光效率,可以在层配置中设置一层用于控制空穴迁移或电子迁移的薄膜(空穴阻挡层或者激子发生层)。
用作阴极3的材料可以是活性金属例如Li、Mg、Ca等和金属例如Ag、Al、In等的合金。另外,也可以使用这些金属的层的组合结构。适当选择阴极厚度和合金类型,能够制造适于其应用的有机电致发光器件。
保护层4起密封膜作用,配置成用其整体覆盖有机电致发光器件,从而确保提高电荷注入效率和发光效率。应注意,如果要保证气密性,则针对此目的可以适当地选择材料,包括单一金属例如铝、金、铬等及其合金。
施加于以上指出的各个有机电致发光器件的电流通常是直流电,但是也可以采用脉冲电流或者AC电流。电流值和电压值的要求并不严格,只要处于器件不被击穿的范围内即可。尽管如此,考虑到有机电致发光器件的功耗和寿命,最好使用尽可能小的电能来产生有效的发光。
接着,图5展示了平板显示器的配置,其中使用了本发明的有机电致发光器件。如图所示,例如在全色显示的情形中,能够产生红(R)、绿(G)和蓝(B)三原色发光的有机层5(5a、5b)配置在阴极3和阳极2之间。阴极3和阳极2可以设置成相互交叉的条状,利用亮度信号电路14和内置有移位寄存器的控制电路15适当选择,对其施加信号电压。结果,位于被选择的阴极3和阳极2的交叉位置(象素)的有机层发光。
更具体地讲,图5展示了例如8×3RGB简单矩阵,其中空穴迁移层,以及由发光层和电子迁移层至少之一组成的组合体5设置在阴极3和阳极2之间(见图3或4)。阴极和阳极按条状布图,在矩阵中相互交叉,按时间序列从内置有移位寄存器的控制电路15和14施加信号电压,从而在交叉位置产生电致发光或者光发射。具有这种配置的EL器件不仅可以用于字母/符号的显示,而且还可以用于图象再生设备。此外,阳极3和阴极2的条状图形可以配置以用于红(R)、绿(G)和蓝(B)色的每一种,由此可以制造多色或全色式的固态平板显示器。
实施例
本发明将通过实施例更具体地描述,但本发明并不局限于此。
实施例1
此实施例解释具有单异质结构的有机电致发光器件的制造,其中作为空穴输运发光材料使用以下结构式(4)-1化合物,其是通式(1)的二苯乙烯基化合物,其中R2和R3各自代表3-甲氧基苯基,和R6和R9各自代表氰基。
结构式(4)-1:
30mm×30mm玻璃基体,在其一表面形成由ITO制成的100nm厚的阳极,并将其放入真空淀积装置中。在靠近基体处放置具有多个2.0mm×2.0mm单元开孔的金属掩模作为淀积掩模。上述结构式(4)-1的化合物在10-4Pa或更低的真空中采用真空淀积方法形成如50nm厚的空穴输运层(也作为发光层)。真空淀积速率是0.1nm/秒。
其次,使用以下结构式的Alq3(三(8-羟基喹啉)铝)作为电子输运材料并接触空穴输运层来淀积。将Alq3制成的电子输运层设为例如50nm厚度,淀积速率是0.2nm/秒。
Alq3:
使用镁和银的组合膜作阴极材料。为此,镁和银各自以1nm/秒的淀积速率淀积形成例如50nm厚(镁膜)和150nm厚(银膜)。通过这种方式制成图3中显示的实施例1的有机电致发光器件。
应用正偏置DC电压在氮气中进行评估如此制成的实施例1的有机电致发光器件的发光性能。发光色是红色,然后器件接受光谱测定,结果显示于图6中,获得具有650nm发光峰值的光谱。使用Otsuka.,Electronic Co.,Ltd.生产的光谱仪和使用光电二极管阵列作为检测器进行光谱的测定。而且器件接受电压-亮度测定,可获得图10中具体显示的8V时的3000cd/m2亮度。
制造有机电致发光器件后,器件在氮气中放置一个月,并没有观察到器件的老化。此外,通过保持一定电流水平的同时使器件以起始亮度300cd/m2持续发光强制老化进行时间测定。结果在亮度减小到一半之前需1500小时。
实施例2
此实施例解释具有单异质结构的有机电致发光器件的制造,单异质结构中作为电子输运发光材料使用结构式(4)-1化合物,其是通式(1)的二苯乙烯基化合物,其中R1和R2各自代表3-甲氧基苯基,和R6和R9各自代表氰基。
30mm×30mm玻璃基体,在其一表面形成由ITO制成的100nm厚的阳极,并将其放入真空淀积装置中。在靠近基体处放置具有多个2.0mm×2.0mm单元开孔的金属掩模作为淀积掩模。以下结构式的α-NPD(α-萘基苯基二胺)采用真空淀积在10-4Pa或更低的真空中形成如50nm厚的空穴输运层。真空淀积速率是0.1nm/秒。
α-NPD:
其次,使用结构式(4)-1化合物作为电子输运材料接触空穴输运层进行淀积。将由结构式(4)-1化合物组成的电子输运层(也作为发光层)制成如50nm厚度,以及淀积速率是0.2nm/秒。
使用镁和银的组合膜作阴极材料。更具体地说,镁和银各自以1nm/秒的淀积速率淀积形成例如50nm厚(镁膜)和150nm厚(银膜)。通过这种方式制成图3中显示的实施例2的有机电致发光器件。
应用正偏置DC电压在氮气中进行评估如此制成的实施例2的有机电致发光器件的发光性能。发光色是红色,然后如实施例1使器件接受光谱测定,结果如图7所示,获得具有650nm发光峰值的光谱。而且进行器件的电压-亮度测定,可获得图11中具体显示的8V时的2600cd/m2亮度。
制造有机电致发光器件后,器件在氮气中停留一个月,并没有观察到器件的退化。此外,通过保持一定电流水平的同时使器件以起始亮度300cd/m2持续发光强制老化进行时间测定。结果在亮度减小到一半之前需1200小时。
实施例3
此实施例解释具有双异质结构的有机电致发光器件的制造,双异质结构中作为发光材料使用结构式(4)-1化合物,其是通式(1)的二苯乙烯基化合物,其中R2和R3各自代表3-甲氧基苯基,和R6和R9各自是代表氰基。
30mm×30mm玻璃基体,在其一表面形成由ITO制成的100nm厚的阳极,并将其放入真空淀积装置中。在靠近基体处放置具有多个2.0mm×2.0mm单元开口的金属掩模作为淀积掩模。上述结构式的α-NPD在10-4Pa或更低的真空采用真空淀积形成如30nm厚的空穴输运层。真空淀积速率是0.2nm/秒。
其次,使用上述结构式(4)-1化合物作为发光材料接触空穴输运层进行淀积。结构式(4)-1化合物组成的发光层的厚度制成如30nm厚度,以及淀积速率是0.2nm/秒。
上述结构式的Alq3用作电子输运材料与发光层接触淀积。Alq3层的厚度制成如30nm厚度,以及淀积速率是0.2nm/秒。
使用镁和银的组合膜作阴极材料。更具体地说,镁和银各自以1nm/秒的淀积速率淀积形成例如50nm厚(镁膜)和150nm厚(银膜)。通过这种方式制成图4中显示的实施例3的有机电致发光器件。
应用正偏置DC电压在氮气中进行评估如此制成的实施例3的有机电致发光器件的发光性能。发光色是红色,然后进行器件的光谱测定,结果获得具有650nm发光峰值的光谱。而且进行器件的电压-亮度测定,可获得8V时的4000cd/m2亮度。
制造有机电致发光器件后,器件在氮气中停留一个月,并没有观察到器件的退化。此外,通过保持一定电流水平的同时使器件以起始亮度300cd/m2持续发光强制老化进行时间测定。结果在亮度减小到一半之前需2100小时。
实施例4
除用以下结构式的TPD(三苯基二胺衍生物)替代α-NPD作为空穴输运材料外,对于层排列和膜形成过程重复实施例2的过程,由此制造出有机电致发光器件。
TPD:
同实施例2,此实施例的有机电致发光器件设定为红光。光谱测定结果是与实施例2的有机电致发光器件的光谱一致。
实施例5
此实施例说明具有单异质结构的有机电致发光器件的制造,单异质结构中作为空穴输运发光材料使用结构式(4)-6化合物,其是通式(3)的二苯乙烯基化合物,其中R17和R20各自代表氰基。
结构式(4)-6:
30mm×30mm玻璃基体,在其一表面形成由ITO制成的100nm厚的阳极,并将其放入真空淀积装置中。在靠近基体处放置具有多个2.0mm×2.0mm单元开口的金属掩模作为淀积掩模。上述结构式(4)-6的化合物在10-4Pa或10-4Pa以下的真空中采用真空淀积形成如50nm厚的空穴输运层(也作为发光层)。真空淀积速率是0.1nm/秒。
其次,使用上述结构式的Alq3(三(8-羟基喹啉)铝)作为电子输运材料接触空穴输运层进行淀积。Alq3的电子输运层制成如50nm厚度,以及淀积速率是0.2nm/秒。
使用镁和银的组合膜作阴极材料。更具体地说,镁和银各自以1nm/秒的淀积速率淀积形成例如50nm厚(镁膜)和150nm厚(银膜)。通过这种方式制成图3中显示的实施例5的有机电致发光器件。
应用正偏置DC电压在氮气中进行评估如此制成的实施例5的有机电致发光器件的发光性能。发光色是红色,然后进行器件的光谱测定,结果获得具有640nm发光峰值的光谱。使用Otsuka Electronic Co.,Ltd.生产的光谱仪和使用光电二极管阵列作为检测器进行光谱测定。而且器件接受电压-亮度测定,可获得图12中具体显示的8V时的4000cd/m2亮度。
制造有机电致发光器件后,器件在氮气中放置一个月,并没有观察到器件的老化。此外,通过保持一定电流水平的同时使器件以起始亮度300cd/m2持续发光强制老化进行时间测定。结果在亮度减小到一半之前需2000小时。
实施例6
此实施例说明具有单异质结构的有机电致发光器件的制造,单异质结构中作为电子输运发光材料使用结构式(4)-6化合物,其是通式(3)的二苯乙烯基化合物,其中R17和R20各自代表氰基。
30mm×30mm玻璃基体,在其一表面形成由ITO制成的100nm厚的阳极,并将其放入真空淀积装置中。在靠近基体处放置具有多个2.0mm×2.0mm单元开口的金属掩模作为淀积掩模。上述结构式的α-NPD(α-萘基苯基二胺)在10-4Pa或更低的真空中采用真空淀积形成如50nm厚的空穴输运层。真空淀积速率是0.1nm/秒。
而且,使用结构式(4)-6化合物作为电子输运材料接触空穴输运层进行淀积。由结构式(4)-6化合物组成的电子输运层(也作为发光层)制成如50nm厚度,以及淀积速率是0.2nm/秒。
使用镁和银的组合膜作阴极材料。更具体地说,镁和银各自以1nm/秒的淀积速率淀积形成例如50nm厚(镁膜)和150nm厚(银膜)。通过这种方式制成图3中显示的实施例6的有机电致发光器件。
应用正偏置DC电压在氮气中进行评估如此制成的实施例6的有机电致发光器件的发光性能。发光色是红色,然后进行如实施例1的光谱测定,结果显示于图9,获得具有640nm发光峰值的光谱。而且进行器件的电压-亮度测定,可获得图13中具体显示的8V时的3500cd/m2亮度。
制造有机电致发光器件后,器件可在氮气中放置一个月,并没有观察到器件的老化。此外,通过保持一定电流水平的同时使器件以起始亮度300cd/m2持续发光强制老化进行时间测定。结果在亮度减小到一半之前需1500小时。
实施例7
此实施例说明具有双异质结构的有机电致发光器件的制造,双异质结构中作为发光材料使用结构式(4)-6化合物,其是通式(3)的二苯乙烯基化合物,其中R17和R20各自代表氰基。
30mm×30mm玻璃基体,在其一表面形成由ITO制成的100nm厚的阳极,并将其放入真空淀积装置中。在靠近基体处放置具有多个2.0mm×2.0mm单元开口的金属掩模作为淀积掩模。α-NPD在10-4Pa或10-4Pa以下的真空中采用真空淀积形成如30nm厚的空穴输运层。真空淀积速率是0.2nm/秒。
而且,使用上述结构式(4)-6化合物作为发光材料接触空穴输运层进行淀积。结构式(4)-6化合物组成的发光层制成如30nm厚度,以及淀积速率是0.2nm/秒。
上述结构式Alq3用作电子输运材料接触发光层进行淀积。Alq3层制成如30nm厚度,以及淀积速率是0.2nm/秒。
使用镁和银的组合膜作阴极材料。更具体地说,镁和银各自以1nm/秒的淀积速率淀积形成例如50nm厚(镁膜)和150nm厚(银膜)。通过这种方式制成图4中显示的实施例7的有机电致发光器件。
应用正向偏置DC电压在氮气中进行评估如此制成的实施例7的有机电致发光器件的发光性能。发光色是红色,然后进行器件的光谱测定,结果获得具有640nm发光峰值的光谱。而且进行器件的电压-亮度测定,可获得8V时的5200cd/m2亮度。
制造有机电致发光器件后,器件在氮气中放置一个月,并没有观察到器件的老化。此外,通过保持一定电流水平的同时使器件以起始亮度300cd/m2持续发光强制老化进行时间测定。结果在亮度减小到一半之前需2350小时。
实施例8
除用TPD(三苯基二胺衍生物)替代α-NPD作为空穴输运材料外,对于层排列和膜形成过程重复实施例6的过程,由此制造出有机电致发光器件。
同实施例6,此实施例的有机电致发光器件设定为红光。光谱测定结果是与实施例6的有机电致发光器件的光谱一致。
根据本发明有机电致发光器件,其中含有发光区的有机层位于阳极和阴极之间,有机层含有至少一种通式(1)或(3)的二苯乙烯基化合物,所以形成具有高亮度和确保稳定的红色发光的有机电致发光器件。
从上面的描述可以明确已实现本发明目的。虽然在上文中仅列出某些特定实施方案,显然本领域技术人员可作变换的实施方案和各种改变。这些和其它的变换应视为等效并且在本发明的精神和范围之内。