具有双隧道结的磁阻存储器件 【技术领域】
本发明一般涉及磁阻存储器件,特别是,本发明涉及利用用于增强位存储的双隧道结的磁阻存储器件。
背景技术
磁性随机存取存储器(“MRAM”)是用于短期和长期数据储存的非易失存储器。MRAM具有低于短期存储器如DRAM、SRAM和闪烁存储器的功耗。MRAM可以比常规长期储存器件如硬驱动器更快地(几个数量级)进行读和写操作。此外,MRAM比硬驱动器更紧凑和消耗更高的功率。MRAM还被认为可用于埋置应用,如超快处理器和网络设备。
典型的MRAM器件包括存储单元阵列、沿着存储单元的行延伸的字线、和沿着存储单元的列延伸的位线。每个存储单元位于字线和位线的交叉点处。
存储单元可以是以隧道磁阻(TMR)器件如自旋相关隧道结(SDT)为基础的。典型的SDT结包括针扎(pin)层、读出层以及夹在针扎层和读出层之间的绝缘隧道阻挡层。针扎层具有磁化取向,其是固定的以便施加在感兴趣范围内的磁场时不旋转。读出层具有在两个方向的一个方向即与针扎层磁化相同的方向或与针扎层磁化相反的方向取向的磁化。如果针扎层和读出层的磁化处于同一方向,则SDT结的取向被认为是“平行的”。如果针扎层和读出层的磁化是相反方向,则SDT结的取向被认为是“反平行的”。这两个稳定取向即平行和反平行可以对应逻辑值“0”和“1”。
通过在下面形成抗铁磁(AF)针扎层可以固定针扎层的磁化取向。AF针扎层提供大交换场,其保持针扎层的磁化在一个方向。在AF层的下面通常是第一和第二籽晶层。第一籽晶层允许第二籽晶层生长为<111>晶体结构取向。第二籽晶层建立用于AF针扎层和其它后来生长地磁性层的<111>晶体结构取向。
目前的发展已经发现多个针扎参考层可以单独设置,但是必须生长在<111>晶体结构上,以便提供更灵敏的参考层。此外,在现有的解决方案中已经提出使用具有单个读出层和两个分离针扎层的双磁性隧道结。然而,缺少提供不需要针扎或针扎层以及制造它们所需要的复杂材料的双MTJ单元的能力。
【发明内容】
根据本发明,公开的磁性存储器件包括磁阻单元,其具有采用软参考层的双隧道结。
通过下面结合附图的详细说明将使本发明的其它特征和优点更明显,其中附图以举例形式表示本发明的特征。
附图的简要说明
图1表示根据本发明的包括双隧道结的磁阻存储器件的剖视图。
图2表示根据本发明制造的双隧道结单元的剖视图。
图3是在本发明内实施的具有支持逻辑的存储阵列的示意图。
【具体实施方式】
下面参照附图中所示的示意实施例,并具体说明这些实施例。不用说,本发明的范围不限于此。对于具有本公开的本领域技术人员来说,这里示出的本发明的特征的改变和进一步改进以及这里所述的本发明的原理的其它应用都被认为在本发明的范围之内。
图1示出了磁存储器件100的剖视图,其包括导电读出层102、第一导体层104、第二导体层106、第一磁性隧道结108和第二磁性隧道结110。磁性隧道结108和110形成磁性双隧道结单元。
磁性存储器件100的实际物理结构还以剖面图形式示于图2中。图2示出了在形成图1中所示的导体层、双隧道结和读出层时需要的制造层。在制造阶段器件,在半导体、通常为硅的衬底材料上形成第二导体层106,但是其它类型的半导体材料也适合于制造磁性双隧道结存储单元器件100。导体层106用于两个目的。层106首先用作底部导体,以便在特殊操作期间提供使电流流过的通路。其次,层106用作籽晶层,以便帮助具有所希望材料特性的后面层的生长,如下所述。
导体层106可以由公知材料制造,如Cu、Ta、Ta/Cu、Ta/Ru或Cu/Ru,或这些材料的多层组合。可以任意选择这些材料,因为它们能够促进具有<111>晶体结构的膜的连续生长。这允许在层106上连续淀积NiFe层,使其晶体结构具有更高的<111>取向。为后面叠层中的参考层中实现针扎效果就需要生长取向,其中在叠层中后面层也有<111>晶体结构。值得注意的是,<111>晶体结构提供在底部电极中以促进底部自旋值,还提供在顶部电极中以促进顶部自旋值。
在第二导体层106上制造软参考层118。软参考层118被称为“软”是因为它由软磁材料如NiFe或NiFeCo构成的。有几种方法可以实现软参考层。一种方法是形成“超软”材料,以使软参考层的低于矫顽力低于位层的矫顽力。软参考层118还假设是<111>晶体结构以促进增强的磁性取向,用于在两个状态中的一个状态校正磁场。形成软参考层的另一种方法是用铁磁材料(例如NiFe)包覆位线。包覆法形成软或超软参考线,其中位线的矫顽力低于位层102的矫顽力。通过降低矫顽力或通过包覆位线使其成为软参考线形成的软参考层的例子在共同授予美国专利申请No.09/963171中有记载,在这里引证供参考。
在软参考层118上形成阻挡层116。阻挡层116通常是允许在读出层102和软参考层118之间发生量子机械隧道效应的绝缘隧道阻挡层。这个隧道现象是与电子自旋相关的,使磁性隧道结的电阻成为软参考层118和读出层102的磁化矢量的相对取向的函数。例如,如果磁性隧道结的磁化取向是平行的,则磁性隧道结的电阻是第一值(R),如果磁化取向是反平行的,则磁性隧道结的电阻是第二值(R+ΔR)。绝缘隧道阻挡层116可以由氧化铝(Al2O3)、二氧化硅(SiO2)、氧化钽(Ta2O5)、氮化硅(SiN4)、氮化铝(AlNx)、或氧化镁(MgO)制成。其它绝缘材料和某些半导体材料都可以用作绝缘隧道阻挡层116。绝缘阻挡层116的厚度在约0.5纳米到约3纳米的范围内。
然后在阻挡层116上形成读出层102。读出层102由比软参考层118“更硬”的磁性材料制成。应该注意读出层和参考层都由软磁性材料构成,这里术语“更硬”是相对的。这样,读出层102的矫顽力远远高于软参考层118的矫顽力。软参考层118被认为比读出层102“更软”,因为其磁化矢量更容易倒转。通过使用不同位形状、几何形状、成分、厚度等的两层118和102,可以使两层118和102的矫顽力不同。电位铁磁层材料包括镍铁(NiFe)、镍铁钴(NiFeCo)、钴铁(CoFe)、NiFe和Co的其它软磁合金、掺杂非晶铁磁合金、和PERMALLOYTM。例如。读出层102可以由如NiFe或CoFe等材料构成,参考层108可以由相同或不同材料构成,例如NiFeCo,如前所述。
层102、阻挡层116和参考层118形成第二磁性隧道结110。
形成读出层102之后,在其上制造阻挡层112。接着,在阻挡层112上制造参考层114。最后,在软参考层114上形成第一导体层104。用于阻挡层112的材料与前述阻挡层116的材料相同。同样,用于形成软参考层114的材料与用于软参考层118的材料相同。此外,导体层104通常用与用于制造层106相同的方式形成。这样,在存储器件100的制造中存在关于读出层102对称的倒置或镜像材料顺序。读出层102、阻挡层112和软参考层114形成第一磁性隧道阻挡结108。结108以与前述结110相同的方式工作。这两个稳定取向即平行和反平行对应逻辑值“0”和“1”。
由铁磁层构成并且其磁化可以从一个方向向另一方向自由转换的读出层102用作读出/自由/数据层。结108(或110)中的其它导体层由铁磁参考层114(或118)构成,这些铁磁参考层比读出层的“磁性更软”,即具有低于读出层的矫顽力。导体层104用于在工作期间对读出层102上的电流施加影响,并且还用作存储阵列中的位线,其中第一底部导体106和第二顶部导体104用作该阵列中的字线。
应注意到,当留下它们自己时,软参考层118和114可以或不可以具有它们自己的固定磁化。当经过通过导体层106的电流或通过层104、102和106的组合电流施加外部场时,层118的磁化改变了取向,并最后转换到公知方向。同样,当经过通过导体层104的电流或通过层104、102和106的组合电流施加外部场时,层114的磁化改变了取向,并最后转换到公知方向。由于一旦施加电流就知道了层118和114的方向,因此它们可以用作参考层。这些层114和118如此制造以便它们具有低于位层102的矫顽力。这样,在较小足够的施加电流(因此磁场),软参考层114和118可以取向,而不会显著改变储存在位或读出层102中的位的状态。在较高磁场时,参考层114和118仍然取向,如果需要的话,可以转换位层102。因此,当软参考层114或118的磁化取向处于与读出层102的磁化相同方向时产生平行取向。同样,当软参考层114或118的磁化取向与读出层102的磁化取向相反时产生反平行。
有影响地,两个参考层114和118可以互相单独设置。这意味着每个参考层可以设置成与另一个相同或相反的方向。此外,由于不需要针扎层材料,因此消除了由于使用这种材料而使制造存储器件复杂化。此外,传统针扎层为了适当设置其针扎场而需要退火步骤。由于在本实施例中没有针扎层,因此可以省略退火步骤。
此外,使用耦合到单个读出线上的双隧道结允许每单元存储两位。另外,双结允许数据位存储在一个结中,而参考位可以存储在第二个结中,这就允许进行不同的读出操作。或者,通过在串联单元中使用两个隧道结,可以增加每个单元的隧道磁阻。这就可以不再需要差分读出单元,并通过只使用一个隧道结在现有技术基础上提高了储存位的精度。这样,两个结上的电压高于一个结上的电压,这消除了或至少克服了在现有技术系统中发生的某些信号衰减。
通过经过导体层104和106给读出层102提供写电流,可以将数据写到由读出层102、阻挡层112和116、以及软参考层114和118形成的磁性隧道结中。输送给读出层102的电流围绕读出层102产生磁场,并且输送给导体层104和106的电流产生分别围绕导体层104和106的磁场。当这两个磁场组合时其超过了读出层102的矫顽力,因此使读出层102的磁化矢量设置在所希望的取向,这取决于输送给层102、104和106的电流的方向。读出层102的一个磁化取向确定了逻辑值1,相反取向确定了逻辑值0。由于它们的矫顽力低于读出层的矫顽力,因此参考层114和118还可以被磁场强制定向。由于只在读取过程中需要将参考层放在已知取向上,因此这不会出现问题。
下面介绍读取过程。当电流施加于导体层104和106时,经过导体层104和导体层106在磁性双隧道结100上施加电压。该电压使读出电流流过在读出层102、软参考层114和118、以及分别夹在读出层102和软参考层114和118之间的阻挡层112和116之间形成的磁性隧道结。
通过检测流过磁性隧道结的电流来测量磁性隧道结的电阻。检测到的电流与磁性隧道结的电阻成反比。这样,Is=V/R或Is=V/(R+ΔR),其中V是施加电压,Is是检测的电流,R是器件100的额定电阻,ΔR是由于从平行磁化取向向反平行磁化取向转换时引起的电阻的变化。
图3示出了磁性随机存取存储器(MRAM)器件510,其包括字线102和位线104和106,即图1中的第一和第二导体层。磁性双隧道结100位于字线102和位线104和106的交叉点处。磁性双隧道结100排列成行和列,行沿着X方向延伸,列沿着Y方向延伸。为简化MRAM器件510的表示,只示出了相对少量的磁性双隧道结100。实际上,可以使用任何尺寸的阵列。
用作字线102的迹线在阵列512的一侧的平面中沿着X方向延伸。字线102用作磁性双隧道结100内的读出层并夹在由绝缘材料构成的阻挡层之间。用作位线104和106的迹线在阵列512的相邻侧的平面中沿着X方向延伸。位线104和106分别与图1的第一和第二隧道结108和110的软参考层接触。阵列512的每个行可以有一个字线102,阵列512的每个列可以有两个位线104和106。
MRAM器件512还包括第一和第二行解码器514a和514b、第一和第二列解码器516a和516b、以及读/写电路519。读/写电路519包括读出放大器522、接地连接器524、行电流源526、电压源528以及列电流源530。
在被选磁性双隧道结100上的写操作期间,第一行解码器514a将被选字线102的一端连接到行电流源526,第二行解码器514b将被选的字或读出/位线102的相反端连接到地,第一列解码器516a将被选导体或字线104的一端连接到地,第二列解码器516b将另一被选导体线106连接到列电流源530。结果是,写电流流过被选字或读出线102和导体线104和106。写电流产生使磁性双隧道结100转换的磁场。列解码器516a和516b还使电流穿过被选磁性双隧道结100流过读出层102。
在被选磁性双隧道结100上的读操作期间,第一行解码器514a将电压源528连接到被选字线102,第一列解码器518a将被选导体线104连接到读出放大器522的模拟接地输入端。同时,第一和第二列解码器516a和516b使稳定读取电流或双极电流脉冲穿过被选磁性双隧道结100流过读取线。如果稳定读取电流输送给被选读取线,通过读出放大器522检测被选磁性双隧道结100的电阻状态。如果双极脉冲输送给被选读取线,则读出放大器522检查结电阻的转变。
磁性双隧道结100通过很多平行通路耦合在一起。在一个交叉点检测的电阻等于在平行于其它行和列中的磁性双隧道结100的电阻的另一交叉点的磁性双隧道结100的电阻。这样,磁性双隧道结100的阵列512可以以交叉点电阻器网络为特征。
由于磁性双隧道结100作为交叉点电阻器网络连接,因此寄生或潜通路电流可能干扰在被选磁性双隧道结100上的读操作。阻挡器件如二极管或晶体管可以连接到磁性双隧道结100上。这些阻挡器件可以阻挡寄生电流。
或者,可以使用在共同授权的美国专利No.6259644中公开的“等电位”方法处理寄生电流,在这里引证该参考文献供参考。如果使用等电位方法构成,读/写电路102可以给未选位线104和106提供与被选位线104/106相同的电位,或者可以给未选字线102提供与被选位线104/106相同的电位。
第一行解码器514a将电压源528连接到被选读出线102,第一列解码器516a将被选导体线104的一端连接到读出放大器522的模拟接地输入端。结果是,读出电流(Is)流过被选磁性隧道结100并到达读出放大器522。第二列解码器516b将列电流源530连接到另一被选位线106。结果是,读取电流(Ir)流过被选位线104和106并到达读出放大器522。读取电流(Ir)设置参考层的磁化矢量。读出放大器520读出读出电流和读取电流的和(Is+Ir)。由于读取电流(Ir)的幅度已知,因此可以确定读出电流(Is)的幅度以及磁性双隧道结100的电阻和逻辑状态。
虽然前面已经结合TMR器件介绍了本发明,但是本发明不限于此。本发明可以应用于具有相同工作特性的其它类型的磁阻器件。例如,本发明可以应用于大型磁阻(GMR)器件。GMR器件具有与TMR器件相同的基本结构,除了数据和参考层被导电非磁性金属层而不是绝缘隧道阻挡层(图3的阻挡层110)分开之外。分开的范围为0.5-3nm。典型的间隔层金属包括金、银和铜。数据和参考层磁化矢量的相对取向影响GMR器件的面内电阻。
应该理解上述参考设置只是本发明的原理的示意性应用。在不脱离本发明的精神和范围的情况下可以做出各种修改和替换设置。例如,自旋值结构不只限于存储器应用。精确相同的结构可用于场传感器、磁性读取头。当然每个应用都需要关于隧道结特性(TMR值、绝对电阻、矫顽力、转换场等)的再设计,但是这种再设计是在只有适当实验经验的本领域技术人员的能力范围之内的。前面已经在附图中示出了本发明,并结合本发明的最佳实施例详细、完整地说明了本发明,对于本领域普通技术人员来说,很显然在不脱离由权利要求书所述的本发明的原理和概念的情况下可以做出各种修改。