具有整体式传感器的井孔探测装置 本发明涉及结合着井孔探测装置的测井仪器。
使用在仪器或设备底部配备一种具有横向弹性性能的装置的井孔探测,在井下测量的后勤工作中是一件常见的事。此种装置典型地采用同质弹性体或其他类似的弹性材料制造。如图1至2所示,该装置的一种基本的形态为光滑、具有退拔轮廓、以横截面邻近仪器或设备均匀地增加,以便提供抵抗朝向工具末端横向挠曲的更大刚性的弯矩。材料选择、横截面轮廓、长度和突出部的应用可有多种变化。无论此种装置的具体机械设计如何,该装置的目的都是为了将设备或仪器导入地下钻井中至其所预期达到的位置,而无关于钻井具有何种方位、弯曲部或尺寸,或井孔壁的条件、地质结构或其他特性。
用电学、声学、机械或核子装置测量或探测井下环境的探测钻井液体或者地下岩层(地层)都已是公认的实践。但是,目前测量井下环境的技术与执行钻井探测功能的技术互不兼容。
本发明的目的在于提供具有整体式传感器的井孔探测装置,该探测装置可将井下或岩层环境的测量或探测性能从内部(诸如通过采用核子源/传感器)或作为一个井孔探测装置的一个部分有效地结合起来使得该装置皆可同时地或连续地提供机械和探测功能。
本发明地一个这样的实施例为一个探测工具,该工具结合一系列电极,该电极则作为在该井孔探测装置的末端上的探头,使得该井孔探测装置在其导引设备穿过钻井时能够测量钻井液体电阻率Rm和自然电位Sp。各该电极彼此间以及与周围环境的定向和位置与其设计密切相关。大量的模拟试验已经证明,在本发明的申请文件中用作实例的该电极的安排以及其优选的实施例具有优异的测量品质、最大程度地减少钻井的尺寸和邻近效果。
图1是现有技术井孔探测装置的视图,该装置安装有螺纹保护套。
图2是图1中现有技术井孔探测装置(拆除了螺纹保护套)的视图,其中部分示出其剖面以显示用以将该井孔探测装置安装于测井仪器的装置。
图3是包含电极传感器的现有技术探头视图。
图4是本发明的井孔探测装置的视图,其中,图3中的探头电极传感器结合在该井孔探测装置的底端部。
图5是沿图4中的截线5-5截取的本发明的井孔探测装置的剖面图。
图3示出叙述在授权予塔巴诺乌(Tabanou)等人的美国专利US5,574,371中的探头,该探头可以结合在一井孔探测装置的末端部。上述专利公开的内容通过引用而结合在本发明中。如图4所示,该测量探头26牢固地连接在并键合在该井孔探测装置的底部(意即末端部)。为便于叙述,本申请中示于图3至5中的测量探头26采用的参考标号与该美国专利US5,574,371的图5中的测量探头采用的参考标号相同。该测量探头26适宜于使用在灌填泥浆钻井中测量泥浆的自然电位Sp和液体电阻率Rm。当将测井仪器放置在钻井中时,该测量探头26包括:一个放置在该探头26的底部的底部电极32(A0),一个用以测量自然电位Sp的第二电极34(A1),和至少一个放置在底部电极32(A0)附近并用以测量该泥浆的一个区域的电位降的测量电极36(M1,M2),该泥浆位于紧靠该测量探头26的底部电极32(A0)的正下方。当该测量探头26接通电源时,便有电流通过在底部电极32(A0)和第二电极34(A1)之间的泥浆中。该电流开始从该底部电极32(A0)向该泥浆中发出,并在一个方向上流动,该方向与该测井仪器的工具钻杆的纵轴大致平行。由于该测量电极36(M1,M2)放置在紧靠该底部电极32(A0)处,该测量电极36(M1,M2)便可测量在底部电极32(A0)正下方的泥浆区域与液体电阻率Rm相关的电位降。此外,由该测量电极36(M1,M2)所测量的该泥浆区域的该电位降受由该底部电极32(A0)发出的或接收的并在该区域流动的电流的控制。
由于由该测量探头26的底部电极32(A0)开始发出的或接收的电流在泥浆中传播在一个方向上,该方向与该探头26的纵轴大致平行,只有极少量电流穿过钻井中的泥浆和由钻井钻透的岩层之间的界面。结果,该测量电极36(M1,M)测出的电位降主要由紧靠并在该底部电极32(A0)正下方的泥浆区域中存在的电位降所控制。因此,尽管在该钻井中导电的泥浆和由钻井所穿透的岩层之间的界面处的电阻率可能存在很大的差别,由于在该底部电极32(A0)接收的和由该底部电极32(A0)发出的大部分电流未能穿越该界面,该电阻率差别未严重地破坏该测量探头26测出的泥浆电阻率Rm的准确性。
该自然电位Sp可以由任何电极进行测量。在本实例中,选择用该上方电极进行测量,这是由于其尺寸和位置邻近该钻井所致。该自然电位Sp测量为众所周知,其包含测量井下相对于地表处一个电极的直流电压。该测量值用以描述透水层、估计泥质含量、确定岩层水质电阻率以及各种因素之间的相互关系。由于该数值特别重要及具有广泛的应用性,在邻近该测量仪器所接近的底部处进行测量极为有利。
图1和图2为现有技术井孔探测装置10的部分剖面图。在各图中,一个配备以螺纹13的连接件12(称为螺纹现场接头)将井孔探测装置10连接在一个测井工具(未显示)的底部。用诸如橡胶的材料制成该井孔探测装置的主体14并通过内部几何结构与该连接件12相连接,该几何结构有助于支持一种金属-橡胶结合部12a(如示于图2中)。一个螺纹保护套15用以在运输过程中(即非使用时)保护该螺纹13,且还可另外用作提携手柄。然而以这种构形,如图3中所示的一个探头26为例,就无法将之安装在图1和图2中的井孔探测装置10的底部,因为此种设计不提供与这一种探头相连通的现成装置。该工具的能力将仅限于井孔探测功能,而无法提供任何钻井特性的测量功能。
图4和图5示出了本发明一个实施例的井孔探测装置/探头10a。在井孔探测装置/探头10a的末端部安装以诸如图3中示出的探头26。电线16穿过模制在该井孔探测装置/探头10a或钻凿在该井孔探测装置/探头10a中的一个通道19。如果采用如图2中所示的连接件12之类的连接件即螺纹现场接头将井孔探测装置/探头10a连接到该钻杆,则必须通过延长该通道19使之通过该连接件12而将该连接件12改型,以便提供在该探头26电极和位于该测井仪器中或地表面的其他测量设备之间的连通关系。在图4和图5所示的实施例中,该井孔探测装置/探头10a利用螺栓或定位螺钉(未显示)穿过嵌入件18中的螺孔17直接连接到钻杆上,而通过在该井孔探测装置/探头10a的该通道19中的电线16便使得那种连通关系变为可能。如上文所述,在此实例中,该井孔探测装置/探头10a导引该工具进入钻井、绕过障碍物并沿钻井弯曲部行进,与此同时该探头26测量钻井或地层环境的特性即电阻率Rm和自然电位Sp。该井孔探测装置/探头10a的部分14a采用弹性材料制成,该材料例如可以是丢洛硬度为90的腈橡胶之类的弹性体材料。另一种可供优先选用的材料是肖氏硬度“A”为80-85的氯丁橡胶(德克萨斯州沃斯堡的S&B技术产品公司、Maloney技术产品公司提供的Maloney化合物330-R)。该井孔探测装置还可用其他聚合物材料、弹簧、两者的组合、或其他能对侧向力提供刚性度变化的实物材料制造。
图5是沿图4的截线5-5截取的该井孔探测装置/探头10a的剖面图。该图是在该螺孔17通过之处截取的视图,该螺孔17中接纳螺栓或定位螺钉(未显示)用以将该井孔探测装置/探头10a安装在测井工具(未显示)上。该螺孔17穿过该嵌入件18,该嵌入件18嵌镶在该弹性材料制成的部分14a中,该嵌入件18最好用低碳钢制成。
本发明的井孔探测装置/探头可有不同的实际结构,并且本发明并不限于任何特定制造工艺/技术之综合或工艺/技术制造程序。
与现有技术相比,本发明具有很大优点,即,其提供钻井特性测量能力,有助于导引该工具在钻井中下行,而几乎不对岩层产生影响,亦不受岩层的影响。此外,该自然电位Sp测量的探测点移动到探测仪器底部,从而可以在钻井底部进行岩层测量。
上文已经结合在实例性的实施例中测量自然电位Sp和泥浆电阻率测Rm的测量装置对本发明的优先选用实施例作出描述。但是,人们将认识到本发明不限于这些测量,可将本发明扩展到如采用上述电学、声学、机械或核子等类型的设备来测量其他钻井或岩层特性。在不偏离本发明的发明构思的前提下,可对本发明的基本设计作出变化、改型和改进。此外,以上所述的变化、改型和改进在包含在本申请的前述教导的指引下,对于本领域的普通技术人员而言,将是显而易见的。所有上述变化、改型和改进均认为属于本发明由附上的权利要求书所限定的范围。