固态发光元件及光源模组 【技术领域】
本发明涉及一种固态发光元件,以及一种包含该固态发光元件的光源模组。
背景技术
发光二极管(Light Emitting Diode,LED)作为固态发光元件,其电、光特性及寿命对温度敏感,在此,一种在温度变化过程中还能保持稳定光强的新型发光二极管可参见YukioTanaka等人在文献IEEE Transactions On Electron Devices,Vol.41,No.7,July 1994中的A Novel Temperature-Stable Light-Emitting Diode一文。通常,较高的温度会导致低落的内部量子效应并且寿命也会明显缩短;而半导体的电阻随着温度的升高而降低,滑落的电阻会带来较大的电流及更多的热产生,造成热累积现象的发生;此一热破坏循环往往会加速破坏发光二极管的工作效能。
如图1所示,一种典型的固态发光元件100包括:一个基板102,一个发光二极管芯片104及一个树脂层106。该发光二极管芯片104设置在该基板102上,该树脂层106与该基板102相结合以密封该发光二极管芯片104。操作时,将该固态发光元件100设置在一个电路板108上,其中,该发光二极管芯片104与该电路板108打线连接。该发光二极管芯片104发光时所产生的热量一部分经树脂层106传导至外界,而其大部分则经由该基板102传导至该电路板108上进行散热。然而,由于该基板102(通常采用塑胶或高分子聚合物制成)的散热效率不高,导致该发光二极管芯片104所产生的热量不能及时散出,致使该固态发光元件100的整体散热性能不佳。
有鉴于此,有必要提供一种散热性能良好的固态发光元件,以及一种包含该固态发光元件的光源模组。
【发明内容】
下面将以实施例说明一种具有良好散热性能的固态发光元件,以及一种包含该固态发光元件的光源模组。
一种固态发光元件,其包括一个陶瓷封装体及至少一个固态发光芯片,该陶瓷封装体具有一个第一表面,该至少一个固态发光芯片通过该第一表面与该陶瓷封装体相接合,该陶瓷封装体上开设至少一个第一通孔,该至少一个第一通孔的一端贯穿该第一表面,且该至少一个第一通孔内填充与该至少一个固态发光芯片热接触的第一金属,该陶瓷封装体包含有含氧化硅的氧化铝复合材料。
一种光源模组,其包括一个电路板、设置在该电路板上的至少一个固态发光元件,以及一个金属板。该至少一个固态发光元件包括一个陶瓷封装体及至少一个固态发光芯片。该陶瓷封装体具有一个第一表面,该至少一个固态发光芯片通过该第一表面与该陶瓷封装体相接合。该陶瓷封装体上开设至少一个第一通孔,该至少一个第一通孔的一端贯穿该第一表面,且该至少一个第一通孔内填充与该至少一个固态发光芯片热接触的第一金属。该陶瓷封装体包含有含氧化硅的氧化铝复合材料。该电路板对应该至少一个第一通孔开设至少一个第二通孔,该至少一个第二通孔与该至少一个第一通孔相贯通且其内填充有第二金属。该金属板与该电路板的远离该至少一个固态发光元件的一侧热性连接。
相对于现有技术,所述固态发光元件具有陶瓷封装体,该陶瓷封装体包含有含氧化硅的氧化铝复合材料,而该陶瓷封装体具有填充有第一金属的第一通孔以传导固态发光芯片所发出的热量。该复合材料的热膨胀系数与第一金属的热膨胀系数之间的差异较小,有利于减少陶瓷封装体与第一金属之间受热不均匀所造成的挤压现象,该固态发光元件因此可较佳地通过该陶瓷封装体及第一金属进行散热,从而获得良好的散热性能。
【附图说明】
图1是现有技术中一种固态发光元件的截面示意图。
图2是本发明第一实施例的固态发光元件的截面示意图。
图3是本发明第二实施例的固态发光元件的截面示意图。
图4是本发明第三实施例的固态发光元件的截面示意图。
图5是本发明第四实施例的光源模组的截面示意图。
【具体实施方式】
下面将结合附图对本发明实施例作进一步的详细说明。
参见图2,本发明第一实施例提供的具良好散热性能的固态发光元件10,其包括:一个陶瓷封装体11、一个固态发光芯片12及一个树脂层15。
陶瓷封装体11包括一个第一表面110,一个环绕该第一表面110的第二表面112。该第一表面110与该第二表面112相接形成一个收容空间114。该第一表面110上开设一个第一通孔116,该第一通孔116内填充有第一金属,如铜、银等。优选地,该第一金属为银,其可达到430W/mk的导热率且具有较佳的抗氧化能力。当然,该第一金属也可为含银合金。该陶瓷封装体11可选用热稳定性能及热传导性能均较佳的陶瓷材料。该陶瓷封装体11可采用含氧化硅(SiO2)的氧化铝(Al2O3)复合材料。该复合材料的热膨胀系数(thermal expansivity)优选地为5.8~6.2ppm/℃,而填充在第一通孔116内的银等金属的热膨胀系数优选地为7~10ppm/℃,因此,该陶瓷封装体11与第一金属之间热膨胀系数的差异较小,有利于减少陶瓷封装体11与第一金属之间受热不均匀所造成的挤压现象。
固态发光芯片12设置在陶瓷封装体11地第一表面110上,其与第一通孔116相对,并且与该第一通孔116内的第一金属热接触。另外,该固态发光芯片12位于收容空间114内。该树脂层15填充该收容空间114以密封该固态发光芯片12。在本实施例中,固态发光芯片12为发光二极管芯片,该树脂层15为硅树脂(silicone)或环氧树脂(epoxy resin)等。
该固态发光元件10还包括一个正电极170及一个负电极172。固态发光芯片12先通过打线连接至该正、负电极170、172,再进一步通过金属导线180电连接至外部电路板(图1未标示)。当固态发光芯片12工作时,其发出的热量可大部分通过第一通孔116内的第一金属进行传导,而少部分则可通过陶瓷封装体11进行传导,从而获得良好的散热性能。
参见图3,本发明第二实施例提供的固态发光元件20,其与上述第一实施例所提供的固态发光元件10基本相同,不同之处在于:陶瓷封装体21上开设多个填充有第一金属的第一通孔216(图3中示出其数目为四个),该多个第一通孔216并列设置,其所填充的第一金属分别与固态发光芯片22热接触。
参见图4,本发明第三实施例提供的固态发光元件30,其与上述第二实施例所提供的固态发光元件20基本相同,不同之处在于:该固态发光元件30包括两个固态发光芯片32,该两个固态发光芯片32间隔设置且分别通过打线连接至正、负电极370、372,树脂层35同时密封该两个固态发光芯片32,每个固态发光芯片32与多个第一通孔316(图4中示出其数目为三个)内的第一金属热接触。相对于固态发光元件10、20,该固态发光元件30可发出更高强度的光。
可以理解的是,该固态发光元件30所包含的固态发光芯片32的数目并不局限于图4中所示出的两个,其也可为两个以上。
请参阅图5,本发明第四实施例提供的光源模组40,其包括一个电路板41,多个固态发光元件,以及一个金属板43。
该多个固态发光元件可选自上述第一、第二、第三实施例中任意一种固态发光元件10、20、30以及其任意组合。在本实施例中,该固态发光元件选自第一实施例中的固态发光元件10。每个固态发光元件10具有一个填充有第一金属的第一通孔116。
电路板41可为陶瓷电路板,优选地选用玻璃纤维电路板(FR4),其具有一个第三表面410,一个与第三表面410相对的第四表面412。该多个固态发光元件10设置并通过金属导线180电连接至第三表面410上。
该电路板41的第三表面410上开设对应该多个第一通孔116的多个第二通孔416,该多个第二通孔416分别与该多个第一通孔116相贯通,且其内填充有第二金属。该第二金属与第一金属热接触。
该电路板41的第四表面412与金属板43之间通过一个粘结片42(bonding sheet)进行粘结。该粘结片42为绝缘胶状材料制成。同时,该粘结片42上也开设与该多个第二通孔416分别相对应且相贯通的多个第三通孔426,且该多个第三通孔426内分别填充有第三金属。该金属板43优选地采用铝作为材料。该第二、第三金属可采用热传导性较佳的金属如铝,铜等作为材料,优选地,该第一、第二、第三金属选用同样的材料,即其均为银或含银合金。
该固态发光芯片12发光时所发出的热量通过第一、第二及第三通孔116、416及416的第一、第二及第三金属依次传导到该金属板43上进行散热。例如,在实际应用中,该光源模组40可具体为一个路灯,该金属板43可为路灯灯壳的一部分,由此,传导至金属板43上的热量可经由该金属板43扩散至空气中。
该光源模组40可进一步包括一个散热装置45以增强其散热散率。具体地,该散热装置45包括一个基座450,以及由该基座450向远离金属板43的一侧延伸出来的多个散热鳍片452。对应地,该金属板43应尽量制作得较薄,以具备一定的柔性。优选地,该金属板43的厚度为1.1mm。由此,传导至金属板43上的热量可进一步快速地传导至散热装置45的散热鳍片452,以通过该散热鳍片452扩散至空气中。
为了保证发光模组40的散热性能,该电路板41上开设的第二通孔416内的第二金属应与第一通孔116内的第一金属充分接触,该第二通孔416的截面积大于或等于第一通孔116的截面积。
可以理解的是,本领域技术人员还可于本发明精神内做其它变化,只要其不偏离本发明的技术效果均可。这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。