由再生聚合物制得的纺粘型非织造织物及其生产方法 【发明领域】
本发明涉及改进的纺粘型非织造织物的生产方法,更特别涉及循环聚合物在纺粘型非织造织物生产中的应用。
背景技术
非织造工业中的主要目的是降低成本。同时,社会上越来越关注减少对自然环境的污染。固体废料的处理方法对这种日益增长的环境保护有很大影响。
在生产聚丙烯非织造织物的过程中,工艺开始阶段就开始产生大量的聚丙烯废料,这些废料来源于按客户需求分割非织造纤网时剩余的边角料,或者是非织造织物在轧辊处可能被轻微损害或者是不符合客户的要求。这些聚丙烯废料来自先前纺丝地聚丙烯纤维和由先前纺丝的聚丙烯纤维构成的纤网,可以安全地送到固体废料填埋场。但是,因为这些是非常纯净的聚丙烯,它们也可以再次熔化而循环返回到纺粘工艺。因此,循环使用满足了两个目的,即节省了废料聚丙烯的成本和降低了固体废料对自然环境的污染。
循环使用这种聚丙烯的方法是在非织造工业中公知的。但是,一旦聚丙烯经历了纺丝工艺,它就会由于氧化而被部分降解,导致聚合物分子量降低。这种作用可以通过添加抗氧化剂优化而部分缓解。但是,总是存在一些降解。这种降解可以通过检测经加工的聚合物的熔体流速来确定。熔体流速将会升高。聚丙烯的熔体流速可以按照ASTMD-1238所述在230℃和2.14kg的条件下检测。
因为分子量降低,所以循环的聚丙烯一般不再适于本身应用在纺粘型非织造织物的生产中。所以,通常将其与纯聚丙烯共混。但是,可以循环的先前纺丝过的聚丙烯的用量受到限制。如果使用过多的循环聚丙烯与原料树脂共混,就会使纺丝断裂(断裂的单纤维)的数目增加。这些断裂的单纤维会引起纺粘型非织造织物成品的质量缺陷,或在严重的情况下导致生产工艺的完全破坏。第二,存在过多的循环聚丙烯会降低所得纺粘型非织造织物的拉伸强度。因为这些原因,循环返回该工艺的聚丙烯的量通常限制在小于聚丙烯总重量的约20%。
发明概述
本发明使之有可能使用高用量的再生聚合物,同时保持与使用100%原料聚合物时相当的产品质量,包括优异的成型性。
根据本发明,纺粘型非织造织物是由多组分单纤维制成,在单纤维横截面内至少有两种不同的聚合组分占据不同区域,而其中聚合物组分之一含有从先前纺丝的聚丙烯纤维或由先前纺丝的聚丙烯纤维构成的纤网回收的再生聚丙烯。在具体实施方案中,单纤维是鞘-芯式双组分单纤维,再生聚丙烯存在于芯组分中。双组分单纤维的芯可以含有多达100%的再生聚丙烯。
为了生产纺粘型非织造织物,我们开发了一种特殊方法,该法能高速生产具有高再生聚丙烯含量的双组分单纤维,这是实际和经济工业生产所必需的。纺粘型非织造织物具有优异的成型性和产品质量。
根据本发明,提供了一种生产纺粘型非织造织物的方法,包括以下步骤:分别熔融两种或多种聚合物组分,其中至少一种聚合物组分包含从先前纺丝的聚丙烯纤维或由先前纺丝的聚丙烯纤维构成的纤网回收的再生聚丙烯;引导熔融的两种或多种聚合物组分分别通过分配板,该分配板设计成使得熔融的各聚合物组分在多个喷丝孔中混合,形成含有两种或多种聚合物组分的单纤维;将来自喷丝孔的多组分单纤维挤出到骤冷室中;引导骤冷空气从第一个独立可控的鼓风机进入骤冷室并与单纤维接触,从而冷却并固化单纤维;引导单纤维和骤冷空气进入并通过单纤维细化器(attenuator),进行气动拉细并拉伸该单纤维;引导来自细化器的单纤维进入并通过单纤维沉积单元;使来自沉积单元的单纤维无规地沉积到正在移动的连续透气带上,形成基本连续单纤维的非织造纤网;用位于透气带之下的第二个独立可控的鼓风机进行抽吸,从而驱使空气通过沉积单元和透气带;引导该纤网通过粘合器并粘合单纤维,从而将该纤网转化成粘结的非织造织物。
在另一个更具体的方面,本发明提供一种生产纺粘型非织造织物的方法,包括以下步骤:从先前纺丝的聚丙烯纤维或由先前纺丝的聚丙烯纤维构成的纤网再生聚丙烯;分别熔融含有纯聚丙烯的第一聚合物组分和含有再生聚丙烯的第二聚合物组分;分别引导熔融的第一和第二聚合物组分通过分配系统,该分配系统设计成使得熔融的各聚合物组分在多个喷丝孔中混合,形成双组分单纤维,这种单纤维含有第二聚合物组分的芯和第一聚合物组分的周围鞘层;将来自喷丝孔的双组分单纤维挤出到骤冷室中;引导骤冷空气进入骤冷室并与单纤维接触,从而冷却并固化单纤维;引导单纤维和骤冷空气进入并通过单纤维细化器,进行气动拉细并拉伸单纤维;引导来自细化器的单纤维进入并通过单纤维沉积单元;使来自沉积单元的单纤维无规地沉积到正在移动的连续透气带上,形成基本连续单纤维的非织造纤网;和引导该纤网通过粘合器并粘合单纤维,从而将该纤网转化成粘结的非织造织物。
本发明还提供一种按上述方法生产的纺粘型非织造织物。
在另一方面,本发明涉及一种纺粘型非织造织物,它含有基本连续的多组分单纤维,在单纤维横截面内至少有两种不同的聚合物组分占据不同的区域,其中聚合物组分之一含有从先前纺丝的聚丙烯纤维或由先前纺丝的聚丙烯纤维构成的纤网回收的再生聚丙烯。该纺粘型非织造织物适用于卫生制品中的组分,例如尿布和失禁者用品。该非织造织物显示优异的成型性,这显示在透气性变化系数小于约7%。
在另一个具体实施方案中,纺粘型非织造织物包含基本连续的鞘/芯式双组分单纤维,鞘组分含有聚丙烯,芯组分含有熔体流速比鞘组分熔体流速高出至少5个单位的再生聚丙烯。
在一个具体实施方案中,对两种或多种聚合物组分的初始处理、熔融和进料操作在各自的单独挤出机中进行。用纺丝箱将这些单独的聚合物组分混合并挤出成多组分单纤维,该纺丝箱配备了,来自Hills,Inc.的具有独特分配板排列的喷丝组合件,如美国专利5162074、5344297和5446410所述。使用公知为Reicofil III系统的系统,将挤出的单纤维进行骤冷、拉细并沉积到正在移动的透气性传送带上,如美国专利5814349所述。在传送带上形成的单纤维的纤网可以通过经过粘合器而以该形式或以与额外层或组分组合的形式粘合。粘合器可以包括加热的压延机,它具有带图案的压延辊,在织物内形成离散的粘合点。或者,粘合器可以包括通空气的粘合器。然后使用商购牵引设备将织物卷成筒形。
附图简述
附图示意性地表明了应用本发明生产双组分纺粘型非织造织物的系统组件的布置。
发明详述
下面参考附图详细描述本发明,从中可以看出本发明的优选实施方案。但是,本发明还可以体现为许多不同的形式,不应该理解为仅限于以下阐述的实施方案;相反,提供该实施方案是为了使本公开内容能够被完全深入地理解,使得本领域技术人员能完全理解本发明的范围。相似的数目表示通过的相似组分。
附图示意性地说明了用于实施本发明工艺过程的系统组成。在所阐述的实施方案中,该系统包括两个挤出机11、12,用于接收和加工两种分别的成纤聚合物材料,这些材料通常来自聚合物片料的生产厂。这些挤出机配备有入口加料斗13、14,用于接收粒料或薄片形式的聚合物材料进料。这些挤出机包括加热的挤出机机筒,其中安装了挤出机螺杆,螺杆具有螺槽或螺纹,用于将片状或薄片聚合物材料输送通过一系列加热区,同时将聚合物材料加热到熔融态,并用挤出机螺杆混合。这种挤出机在商业上可通过各种途径获得。或者,可以向这两个挤出机或其中之一加入从聚丙烯单纤维或纤网直接获得的聚丙烯的熔融聚合物。例如,用于向鞘/芯式双组分单纤维的芯组分供应聚合物的挤出机(例如附图中的挤出机12)可以配备有额外的辅助加料挤出机(未显示),用于直接接收聚丙烯纤网或单纤维并将其熔化,然后将熔融的再生聚丙烯聚合物供应到主挤出机(例如挤出机12)的机筒中。主挤出机可以用来自该辅助加料挤出机的100%再生聚丙烯操作,或再生聚丙烯可以与由加料斗14供应的纯聚丙烯树脂共混。
纺丝箱体(beam)组件(assembly)通常表示为20,与各挤出机的排料端连接,用于接收来自挤出机的熔融聚合物材料。纺丝箱体组件20沿着与设备加工方向交叉的方向伸展,所以确定了所要生产的非织造织物的宽度。纺丝箱体组件通常有几米长。在纺丝箱体组件上安装有一个或多个可替换的喷丝组合件(pack),设计成用于接收来自两个挤出机的熔融聚合物材料,并过滤该聚合物材料,然后引导该聚合物材料通过在喷丝板中形成的细毛细管。在压力下将聚合物从毛细管孔挤出,形成细的连续单纤维。对于本发明而言重要的是提供高密度的喷丝孔。优选,喷丝头应该具有至少3000个孔/每米纺丝箱体长度,更优选至少4000个孔/米。考虑高达6000个孔/米的孔密度。
每个喷丝组合件是由一系列夹心的板组装而成。在喷丝组合件的下游端或底部是喷丝板22,它具有上述喷丝孔。在上游端或顶部是顶板,具有用于接收熔融聚合物的各物流的入口。在顶板下面是筛网支撑板,用于支撑过滤熔融聚合物所用的滤网。在筛网支撑板下面是计量板,在其中具有流动分配孔,用于分配熔融聚合物的各物流。位于计量板下面且直接位于喷丝板22上面的是分配板24,它形成了通道,用于分别输送从上面计量板的流动分配孔接收的各种熔融聚合物材料。在分配板中的通道设计成用作各种熔融聚合物物流的通道,用于将聚合物物流引入合适的喷丝头入口位置,使得各种熔融聚合物组分在喷丝孔入口端处组合,从而在单纤维横截面内获得所希望的几何图案。当熔融聚合物材料从喷丝孔挤出时,各聚合物组分占据了单纤维横截面的不同面积或区域。例如,图案可以是鞘/芯型、并列型、分段派型、岛-海型、尖端分布型、十字格型、桔皮皱纹型(orange peel)等。喷丝孔可以具有圆形横截面或具有各种横截面例如三叶形、四叶形、五叶形、狗骨形、三角形等,用于生产具有各种横截面的单纤维。
薄分配板24易于制造,特别是通过蚀刻进行,这比常规机械方法更节约成本。因为这些板是薄的,它们传热良好并占据非常小的聚合物体积,从而显著减少了在喷丝组合中的停留时间。当挤出具有显著不同熔点的聚合物时,这是特别有利的,因为这时喷丝组合件和纺丝箱体必须在高于熔点较高的聚合物的熔点的温度下操作。其它(低熔点)聚合物材料在纺丝组合件中处于这种较高的温度,但停留时间很短,从而有助于减少聚合物材料的降解。用于生产双组分或多组分纤维的使用上述类型分配板的喷丝组合是由W.Melborne Florida的Hills Inc.生产,描述在美国专利5162074、5344297和5466410中有述,其公开内容在此引入供参考。
离开喷丝板后,新挤出的熔融单纤维向下引入骤冷室30。来自独立控制的鼓风机31的空气引入该骤冷室,并与单纤维接触并将其冷却和固化。单纤维连续向下游移动时,进入单纤维细化器32。在单纤维和骤冷空气通过细化器时,细化器的横截面构造使得来自骤冷室的空气在向下通过拉细室时被加速。加速空气所夹带的单纤维也被加速,从而使单纤维在通过细化器时被拉细(拉伸)。通过调整鼓风机的速度、细化器通道的间隙和收敛几何结构,可以使工艺更灵活。
在单纤维细化器32下面安装有单纤维沉积单元34,它设计成使得单纤维在下面不断移动的透气带40上铺置时无规地分布,形成无规则排列的单纤维未粘结丝网。单纤维沉积单元34由发散几何结构的扩散器和可调节的侧壁组成。在透气带40下面是抽吸单元42,它将空气向下抽过单纤维沉积单元34,并有助于单纤维铺置在透气带40上。在细化器32下端和单纤维沉积单元34上端之间有空气间隙36,使得大气能进入沉积单元。这样便于在沉积单元中获得连续但无规的单纤维分布,从而使非织造织物在加工方向和交叉于加工方向的方向上都具有良好的均匀性。
骤冷室、单纤维细化器和单纤维沉积单元可以从德国Troisdorf的Reifenhauser GmbH&Company Machinenfabrik商购。该系统在美国专利5814349中有详细描述,其公开内容在此引入供参考。该系统由Reifenhausef以商业目的销售称作“Reicofil III”系统。
在连续不断移动的带子上的单纤维纤网随后可以直接通过粘合器粘合,形成粘结的非织造织物。粘合可以通过任何公知技术进行,例如通过一对加热压延辊44的尖端或通过通空气的粘合器。或者,单纤维纤网可以与一种或多种额外组分混合,粘合形成复合非织造织物。这些额外组分可以包括例如膜,熔喷纤网,或连续单纤维或短纤维的额外纤网。
多组分单纤维的聚合物组分按照比例选择,其所具有的熔点、结晶性能、电性能、粘度和混溶性能使多组分单纤维进行熔融纺丝并能把所需要的性能传给非织造织物。至少一种组分是由从先前纺丝的聚丙烯纤维或由先前纺丝的聚丙烯纤维构成的纤网回收的再生聚丙烯形成的。再生聚丙烯已经经历了至少两次热历史,在此过程中聚丙烯被熔融和再固化:一次是当纯聚丙烯树脂(粒料或片料形式,来自聚合物生产厂)进行初始熔融和挤出形成初始单纤维和纤网时,和至少再一次是当再生聚丙烯进行再熔融并形成本发明的单纤维和纤网时。在许多情况下,作为回收的单纤维或纤网形式的废料聚丙烯再次熔融并形成适合于在纺粘设备的挤出机中加工的粒料或片料形式时,聚丙烯又经历了额外的熔融和再固化。由于先前的热历史,再生聚丙烯具有比纯聚丙烯更高的熔体流速,通常高出至少5个流动单位。
在一个优选实施方案中,多组分单纤维是鞘/芯式双组分单纤维,含有再生聚丙烯的组分存在于鞘/芯式单纤维的芯中。该组分可以含有多达100重量%的再生聚丙烯,从而可以显著提高的再生聚丙烯在单纤维中的量。鞘层含有100重量%的纯聚丙烯树脂或者纯聚丙烯树脂与少量在芯中存在的再生聚丙烯的共混物。因为再生聚丙烯的含量较高,所以芯组分将具有比鞘组分高的熔体流速,通常比鞘组分高出至少5个流动单位。
优选的是,双组分单纤维的芯组分将占单纤维重量的25-75%,更优选占单纤维重量的40-60%。在这种情况下,再生聚丙烯将占单纤维总重量的25%。
通过将再生聚丙烯引入单纤维的芯中并用由纯聚丙烯或者纯聚丙烯与再生聚丙烯的共混物形成的鞘层围绕芯,单纤维的纺丝行为与完全由鞘组分形成的单组分单纤维的纺丝行为相当。该工艺可以在与通常生产由单组分单纤维形成的纺粘型织物的工艺相当的速度下操作,操作效率和单纤维断裂情况也是相当的。而且,织物的物理性能和成型性保持与由原料聚合物常规单组分单纤维形成的织物相当。非织造织物显示优异的成型性,体现在透气性变化系数小于约7%。
当非织造织物用于生产婴儿尿布或成人失禁者所用尿布时,成型质量是主要因素。良好的成型允许以高速度生产,不需要考虑例如粘合剂从非织造织物的一层泄漏到尿布的其它部分。衡量成型性的一个手段是用透气性的标准偏差除以透气性平均值再乘以100%所得到的比率。该比率有时称为变化系数。透气性变化系数低的非织造织物表明纤维在构成非织造织物纤网中的分布均匀。纤维在纤网中分布差的非织造织物将显示高的透气性变化系数。
本发明的纺粘织物可以完全由多组分或双组分单纤维生产,或可以由含有再生聚合物的多组分或双组分单纤维与常规单组分单纤维的共混物生产。
下面的实施例用于说明本发明。
实施例1(对比)
使用的纺粘机配备有三个顺序排放的纺丝箱体(表示为A、B和C),各纺丝箱体具有独立的聚合物分配系统并配备有能生产鞘-芯双组分单纤维的纺丝头。在每个纺丝箱体A、B和C中,形成双组分单纤维的鞘的聚合物组分和形成双组分单纤维的芯的聚合物组分由纯聚丙烯树脂(EXXON Resin PP3155)构成,使得所得的单纤维由100%纯聚丙烯组成。向纺丝箱体A、B和C的聚合物进料速率使得这些纺丝箱体产生0.40盎司/平方码(13.8克/平方米)总基重。所得的纤网不是本发明的一部分,由100%纯聚丙烯聚合物组成。该纤网用具有210个压花点/平方英寸并具有25%粘合区域的图案压延辊进行压延粘合。该织物然后用表面活性剂处理,使得该织物适合用作成人失禁尿布的顶片。对该织物进行物理测试,结果列在表1中。
对于表1中给出的数据,基重通常按照ASTM D3776-96的方法测定。MD和TD拉伸、伸长率以及韧性或TEA通常按照ASTM D5035-95的方法检测1英寸宽的非织造织物条来测定。对于用作婴儿尿布或成人失禁尿布的顶片而言重要的织物的液体输送性能采用击穿(strike-through)和再润湿实验来评价。击穿和再润湿或表面再润湿通过与美国专利4041951和4391869所述相似的方法评价,在此引入供参考。将5ml合成尿溶液放置在击穿板孔中,当尿液通过样品织物进入吸收垫时检测击穿性能。表面再润湿由克数表示,是通过使合成尿通过样品织物进入吸收垫直至吸收垫接近饱和来评价。因此,样品在实验开始时被润湿。使用约4g合成尿/g吸收样品的负载因子。然后施加均匀的0.5psi负荷压力,该过程在上述专利中有所描述。以克表示的再润湿性能衡量了在0.5psi负荷下受压时,能从芯的顶片输送返回到面向顶片的滤纸片的液体重量。织物的亨特(Hunter)色度通常按照ASTM E-308检测,得到与表面反射亮度有关的“L”值,与从片材反射的红色(+)或绿色(-)有关的“a”值,和与片材反射的黄色(+)或蓝色(-)有关的“b”值。成型性是衡量纤维在粘结的非织造织物的纤网内分布均匀性的手段。熟练的检测人员通过目测比较非织造织物对比样品(标准)与要评价的织物所显示出的纤维分布均匀性的不同程度。按照从5代表非常好的成型性到1代表非常差的成型性的标准,在5到1之间给分。透气性通常按照ASTM D-737检测。透气性是在两个织物表面之间的压差下空气流过材料的比率。
实施例2(15%再生对比)
用实施例1中描述的纺粘机生产约0.4盎司/平方码(13.8克/平方米)总基重的纺粘型非织造织物。在纺丝箱体A和C中,形成双组分单纤维中鞘的聚合物组分由纯聚丙烯树脂(EXXON PP3511)组成。在纺丝箱体A和C中,形成双组分单纤维中芯层的聚合物组分也是由纯聚丙烯树脂(EXXON PP3155)组成。向纺丝箱体B供应85%纯聚丙烯树脂(EXXON PP3155)和15%再生聚丙烯树脂的均匀共混物,其中再生聚丙烯是从先前纺丝的聚丙烯纤维或由先前纺丝的聚丙烯纤维构成的纤网回收的。将该聚合物供应给所得纺丝单纤维的鞘和芯。所得的纤网(不是本发明的一部分)按照实施例1所述进行粘合,然后检测,得到的结果列在表1的实施例2一栏中。
实施例3(双组分,在芯中具有100%再生聚丙烯)
用实施例1中描述的纺粘机生产0.4盎司/平方码(13.9克/平方米)总基重的且含有再生聚丙烯的纺粘型非织造织物。在纺丝箱体A和B中,形成双组分单纤维中鞘层的聚合物组分是由纯聚丙烯树脂(EXXON PP3155)组成。在纺丝箱体A和B中,形成双组分单纤维中芯层的聚合物组分是由100%再生聚丙烯树脂组成,这些再生聚丙烯是从先前纺丝的聚丙烯纤维或由先前纺丝的聚丙烯纤维构成的纤网回收的。纺丝箱体C用供应给鞘层和芯层的纯聚丙烯树脂(EXXON PP3155)操作,使得所得的单纤维由100%纯聚丙烯组成。所得的纤网是本发明的产品,按照实施例1所述进行粘合和表面处理,然后检测,得到的结果列在表1中,与在相同条件下但用100%纯聚丙烯生产的实施例1中的对比织物进行比较。表1列出的结果显示,实施例1和3的纤网在关键性能方面是相似的。因此,实施例3的产品适用于成人失禁产品中的顶片。
实施例4(对比)
按照实施例1中所述使用100%纯聚丙烯树脂(EXXON PP3155)生产实施例4的产品,不同的是粘合是通过具有144个压花点/平方英寸和18%粘合区域的压延辊进行。三个纺丝箱体共同操作,生产出约相等的产品量,得到的最终纤网基重是0.7盎司/平方码(23克/平方米)。实施例4的织物性能列在表1中。该产品用作婴儿尿布生产中的顶片。
实施例5(15%再生对比)
按照实施例2中所述生产实施例5的产品,不同的是粘合是通过具有144个压花点/平方英寸和18%粘合区域的压延辊进行。三个纺丝箱体共同操作,生产出约相等的产品量,得到的最终基重是0.65盎司/平方码(22.1克/平方米)。实施例5的产品性能列在表1中。
实施例6(双组分,芯中具有100%再生)
实施例6,是本发明的产品按照实施例3中所述进行生产,不同的是粘合是通过具有144个压花点/平方英寸和18%粘合区域的压延辊进行。三个纺丝箱体共同操作,生产出约相等的产品量,得到的最终基重是0.65盎司/平方码(22.1克/平方米)。实施例6的产品性能列在表1中。
通过上面描述和相关附图,本领域技术人员将理解本发明的许多改进和其它实施方案。所以,应该理解的是本发明不限于公开的具体实施方案,其它改进和其它实施方案也包括在所附权利要求的范围内。虽然在这里使用了专门术语,但是它们是按照广义和通用含义使用,不起限制作用。
表1
产品 实施例-1 实施例-2 实施例-3 实施例-4 实施例-5 实施例-6
AVER STD. AVER STD. AVER STD. AVER STD. AVER STD. AVER STD.
DEV DEV. DEV DEV. DEV. DEV.
基重 (g/m2) 13.79 0.33 13.85 0.32 13.86 0.31 22.98 0.41 22.13 0.46 21.95 0.58
条料拉伸强度-MD (g/cm) 523 70 500 73 490 64 749 86 735 80 608 69
条料伸长率-MD (%) 43 9 44 7 55 8 60 8 58 8 55.6 8
条料TEA韧性-MD (cm- 197 39 191 43 202 52 207 66 297 63 248 52
gm/cm2)
条料拉伸强度-CD (gm/cm) 238 45 247 66 275 61 493 77 486 73 400 66
条料伸长率-CD (%) 46 8 47 10 56 10 58 11 60 9 57 9
条料TEA韧性-CD (cm- 98 25 105 32 118 38 198 52 198 46 164 41
gm/cm2)
击穿 (秒) 2.18 0.42 2.13 0.19 2.26 0.4 2.11 0.26 1.99 0.21 2.07 0.24
再润湿 (gm) 0.14 0.03 0.13 0.02 0.16 0.02 0.11 0.02 0.11 0.01 0.12 0.02
亨特色度-L 96.6 0.33 96.32 0.41 96.52 0.38 97.08 0.34 97.04 0.46 96.76 0.46
亨特色度-a -0.38 0.09 -0.27 0.05 -0.31 0.05 -0.39 0.11 -0.33 0.04 -0.48 0.34
亨特色度-b 0.52 0.08 1.04 0.28 0.95 0.15 0.46 0.22 0.88 0.2 1.02 0.26
成型性 3.66 0.48 3.17 0.4 3.1 0.3 3.98 0.2 3.95 0.25 3.99 0.08
透气性 (f3/f2/min) 917 53 930 48 884 46 693 30 672 26 701 37
透气性变化系数 5.3 5.2 5.2 4.3 3.9 5.3
实验的透气性 88 >20 >20 152 >20 >20