CN200780035020.0
2007.09.18
CN101517345A
2009.08.26
授权
有权
专利权人的姓名或者名称、地址的变更IPC(主分类):F28F 1/10变更事项:专利权人变更前:汉拿伟世通空调有限公司变更后:翰昂系统有限公司变更事项:地址变更前:韩国大田广域市变更后:韩国大田广域市|||专利权人的姓名或者名称、地址的变更IPC(主分类):F28F 1/10变更事项:专利权人变更前:汉拏空调株式会社变更后:汉拿伟世通空调有限公司变更事项:地址变更前:韩国大田广域市变更后:韩国大田广域市|||授权|||实质审查的生效|||公开
F28F1/10
汉拏空调株式会社
全永夏; 金起弘; 李祯宰
韩国大田广域市
2006.9.21 KR 10-2006-0091660
北京三友知识产权代理有限公司
党晓林
本发明涉及一种具有管的热交换器,该管具有凹坑结构,通过凹坑结构在管中产生湍流,由此提高热交换性能。热交换器包括:多个管(20);入口水箱(11);散热片(30);以及出口水箱(12),其中凹坑(21)形成为满足上式(I)。
1. 一种热交换器(100),包括:多个管(20),所述管以规则的距离平行布置成与流通方向平行,热交换介质流动经过所述管;入口水箱(11),所述热交换介质被引入该入口水箱中,然后分配到所述多个管(20);散热片(30),该散热片置于管(13)之间,从而增大与经过所述管(20)之间的空气的接触表面;以及出口水箱(12),流经所述管(20)的所述热交换介质被收集在该出口水箱中,然后排出,其中凹坑(21)形成在各个管(20)中而向所述管(20)的内部突出,并且当所述凹坑(21)的总截面积Adimipte表达为各个凹坑(21)的宽度d和深度h的乘积的和,且所述管(20)的截面积表达为管(20)的长度L和高度H的乘积时,满足下式:2、 根据权利要求1所述的热交换器,其特征在于,所述凹坑(21)的所述深度h和所述管(20)的所述高度H满足下式:3、 根据权利要求1或2所述的热交换器,其特征在于,在所述管(20)的上表面和下表面处形成横向布置从而形成列的所述多个凹坑,且所述管(20)的所述上凹坑列和所述下凹坑列沿所述管(20)的所述长度交替布置。4、 根据权利要求3所述的热交换器,其特征在于,所述上凹坑列和所述下凹坑列的所述凹坑(21)还沿所述管(20)的宽度交替布置,使得所述上凹坑列和下凹坑列的所述凹坑(21)不相互重合,所述下凹坑列的所述凹坑(21)中的一个置于所述上凹坑列的两个相邻凹坑(21)之间,同样所述上凹坑列的所述凹坑(21)中的一个置于所述下凹坑列的两个相邻凹坑(21)之间。5. 根据权利要求3所述的热交换器,其特征在于,所述管(20)的所述上凹坑列的凹坑(21)的数量等于所述管(20)的所述下凹坑列的凹坑(21)的数量。
热交换器 技术领域 本发明涉及热交换器,更具体地涉及一种具有管的热交换器,该管具有凹坑结构,通过凹坑结构在管中产生湍流,由此提高热交换性能。 背景技术 图1是表示一般的车辆冷却和加热系统的视图。在车辆发动机1中,高温高压气体被点燃并燃烧。因此,如果气体这样离开车辆发动机1,其将是过热的,并且用于构造发动机1的金属材料熔融,因此汽缸、活塞等可能被严重损坏。为了防止此类损坏,如图1所示,储存冷却水的水套(未示出)围绕车辆发动机1的汽缸形成,并且冷却水通过水泵5循环经过散热器2或加热器芯3从而冷却发动机1。根据加热和冷却的目的,冷却水可不经过加热器芯3,而是经过旁路回路6直接返回水套。这时,自动调温器4设置在用于冷却水的通道中,从而用作控制装置来通过基于冷却水温度控制通道的打开/关闭度而防止发动机1过热。 散热器2是一种用于散去冷却水的热的热交换器,所述冷却水在发动机1中循环时被发动机1的热量加热。散热器2置于车辆的发动机室中,并在其中心部分设有冷却风扇从而冷却散热器芯。而且,加热器芯3是车辆空调器的一部分,且还用作所述一种热交换器,其使用高温冷却水为车辆内部供应暖空气,所述高温冷却水在发动机1中循环时吸收发动机1产生的热。在加热器芯3中,由发动机1的热量加热的高温冷却水经过加热器芯3的散热片和管从而将热传递给从外部供给的空气,由此为车辆内部提供暖空气。 为了适当地加热车辆内部,应提高加热芯的热交换性能。然而,在热交换器安装在车辆中的情况下,由于与其他部件连接以及发动机室内部空间受限的问题而难以改变热交换器的基本结构,例如难以改变热交换介质的入口/出口的尺寸或位置。为了增大散热量而不改变热交换器的基本结构,典型地,采用了增大基本上实现热交换的管的截面积并因此增加管中流量的设计。然而,如果增大管的截面积,那么在低流速的情况下产生层流,并因此存在散热量减小的问题。日本特开公报No.1996-136176(下文中称为“引用参考”)提出通过在数值上限制管和散热片而改进散热性能。在引用参考中,层流区总是维持在60Km/h或更低的行进速度,以此来减小在车辆以60Km/h或更高的速度行进时的加热性能与在车辆处于空转状态时的加热性能之间的较大差别,由此改进加热性能。然而,因为在低流速情况下产生层流,所以如上所述,热交换性能恶化。 发明内容 技术问题 本发明的一个目的是提供一种热交换器,在该热交换器中在低流速情况下较早产生湍流,由此确保优化的热交换性能。 本发明的另一个目的是提供构成热交换器管的各个元件的优化设计范围,以此来满足优化的热交换器性能。 技术方案 为了达到上述目的,提供的热交换器包括:多个管20,所述管20以规则的距离平行布置成与流通方向平行,热交换介质流经所述管20;入口水箱11,热交换介质被引入该入口水箱中,然后分配到多个管20;散热片30,其置于管13之间,从而增大与经过管20之间的空气的接触表面;以及出口水箱12,流经管20的热交换介质被收集在该出口水箱12中然后排出,其中凹坑21形成在各个管20中而向管20的内部突出,并且当所述凹坑21的总截面积Adimiplc表达为各个凹坑21的宽度d和深度h的乘积的和,且管20的截面积表达为管20的长度L和高度H的乘积时,满足下式: 优选地,凹坑21的深度h和管20的高度H满足下式: 优选地,在管20的上表面和下表面处形成横向布置从而形成列的多个凹坑,且管20的上凹坑列和下凹坑列沿管20的长度交替布置。 优选地,上凹坑列和下凹坑列的凹坑21还沿管20的宽度交替布置,使得上凹坑列和下凹坑列的凹坑21不相互重合,下凹坑列的凹坑21中的一个置于上凹坑列的两个相邻凹坑21之间,同样上凹坑列的凹坑21中的一个置于下凹坑列的两个相邻凹坑21之间。 优选地,管20的上凹坑列的凹坑21的数量等于管20的下凹坑列的凹坑21的数量。 有益效果 根据本发明,因为即使在热交换器管中的热交换介质的流速情况不利时仍较早地产生湍流,所以能够在所有流速情况下提高热交换性能并且还优化热交换性能。而且,能够容易地设计凹坑的形状和尺寸,以通过调节流体的流动特性而优化热交换性能,由此节省了劳动力、成本、时间等。 附图说明 在结合附图给出的对优选实施方式的以下描述中,本发明的上述和其他目的、特征和优点将变得显而易见,其中: 图1是一般的车辆冷却和加热系统的视图。 图2是热交换器的立体图。 图3是具有凹坑结构的管的立体图和剖面图。 图4是表示根据本发明实施方式具有凹坑结构的管的制造方法的视图。 图5是表示凹坑和管的尺寸的视图。 图6是表示热交换器的有效面积的视图。 图7是表示单位有效面积的热交换性能相对于各个因子的曲线图。 主要元件的详细描述 100:热交换器 10:水箱 11:入口水箱 12:出口水箱 20:管 30:散热片 21:凹坑 22:分隔壁 具体实施方式 在下文中将参照附图详细描述本发明的实施方式。 图2是热交换器100的立体图。热交换介质流入热交换器100,且热交换器100包括多个管20,所述管20以规则的距离平行布置成与流通方向平行;以及水箱10,其分别接合至管20的两端。水箱10分成入口水箱11和出口水箱12,热交换介质被引入所述入口水箱11然后分配到多个管20,经过管20运动的热交换介质被收集在所述出口水箱12中然后排出。管20之间设置散热片30,从而增大与在管20之间流动的空气的接触表面积。如上所述,热交换介质经过入口水箱11的入口引入,经过管20被收集在出口水箱12中,然后经过出口水箱12的出口排出。当热交换介质流经管20时,在管20中接收的热交换介质与经过管20和置于管20之间的散热片30的外部空气之间发生热交换。 在下文中,将简要描述发生在热交换器中的热交换现象。首先,通过管20中的热交换介质与管20的内表面之间的对流而发生热交换,热从管20的内表面传递到管20和散热片30的外表面。最终,在管20和散热片30的外表面与外部空气之间通过对流发生热交换。如上所述,发生在热交换器中的热交换现象取决于对流热交换,热交换量还取决于接触表面积和流速。具体地说,当热交换介质处于湍流情况下时,热交换介质和管20之间的热交换进行得更顺利。因此容易理解的是,如果在管20中强行产生热交换介质的湍流,就会提高热交换性能。 图3是具有凹坑结构的管的立体图和剖面图。在管20中,形成有突出到管20中的凹坑21以及沿管20的长度将管20的内部分隔的分隔壁22。如上所述,凹坑21用于形成在管20中接收的热交换介质的湍流。图3b是沿图3a的线A-A’剖取的管20的剖面图,图3c是沿线B-B’剖取的管20的剖面图。在管20的上表面和下表面处,形成有横向布置从而形成列的多个凹坑。上凹坑列和下凹坑列沿管20的长度交替布置。而且,上凹坑列和下凹坑列的凹坑21还如图3b和3c中所示交替布置。换言之,下凹坑列的凹坑21中的一个置于上凹坑列的两个相邻凹坑21之间,同样上凹坑列的凹坑21中的一个置于下凹坑列的两个相邻凹坑21之间,使得上凹坑列和下凹坑列的凹坑21不相互重合。优选地,上凹坑列的凹坑21的数量等于下凹坑列的凹坑21的数量。通过此类结构可更顺利地产生湍流。 图4是表示根据本发明的实施方式具有凹坑结构和分隔壁的管的制造方法的视图。如图4a中所示,在管的材料(例如,金属板)中通过压制工艺或其他工艺形成凹坑21。参照图4a和4b,A部分变成管20的下表面,C1和C2部分弯曲形成管20的侧表面,B1和B2部分变成管20的上表面,D1和D2部分在B1和B2之间的边界线上弯曲,从而向管20的内部突出并因此形成分隔壁22。如果管20通过弯曲工艺制造,则上表面A和下表面B1和B2彼此相对。因此,当在管20的材料中形成凹坑时,所有凹坑21都形成为沿相同方向突起并因此指向管20内部。当然,具有凹坑21或凹坑21和分隔壁22的管20可通过其他方法形成。 图5是表示凹坑和管的尺寸的视图。假定管20的宽度是L,高度是H,凹坑21的宽度是di,高度是hi,对于具有多个凹坑21的管20中的特定位置的截面,凹坑21的截面积的和表达如下: Adimple=Σi=1ndi·hi]]>[式1] 其中Adimiple是所有凹坑21的近似截面积值,N是单位截面积的凹坑21的数量,di和hi分别是第i个凹坑21的宽度和深度。 在具有凹坑结构的管中,直接影响热交换性能并因此具有特定的相互关系的凹坑和管的尺寸表达如下: AdimpleL×H,hH]]>[式2] 因为当外部空气经过管20之间时在管20中的热交换介质与外部空气之间进行实际的热交换,所以热交换基本上在管20和散热片30的垂直于外部空气的流动方向的表面积处进行。 该表面积是图6中所示的有效表面积Seff。为了在不考虑热交换器的尺寸的情况下表达热交换性能,仅通过有效表面积Seff得到了热交换性能的估值。假设基本上产生的热交换量是Q,单位有效表面积的热交换量QAe表达如下: QAe=QSeff]]>[式3] 因为本发明提供了能够使单位有效表面积的热交换性能最大化的管20和凹坑21之间的尺寸关系,所以基于车辆中需要的单位有效表面积的热交换量Q0估算单位有效表面积的热交换性能。单位有效表面积的热交换性能η表达如下: η=QAeQ0]]>[式4] 图7是表示单位有效面积的热交换性能相对于各个因子的曲线图,其中图7a表示η相对于Adimiple/L×H的变化,图7b表示η相对于h/H的变化。大的Adimiple值意味着管20的单位截面积形成许多凹坑。形成的凹坑越多,产生的湍流越多。然而,如果凹坑过度形成且因此Adimiple值接近管的截面积(L×H),那么热交换介质的通道的截面积太小,因此热交换介质不能平滑地流动经过该通道。如上所述,在阻力增大的情况下,热交换系数减小,由此降低热交换性能。因此要理解的是,Adimiple值应以相对于管的截面积(L×H)的适当比率确定。图7a表示了通过实验实际确认的此类趋势。参照图7a,当Adimiple/(L×H)的值为8.80~13.60时,单位有效表面积的热交换性能η被优化。因此,从这可以推导出管和单位截面积凹坑的尺寸之间的关系,从而优化单位有效表面积的热交换性能η。 图7b表示热交换性能η相对于凹坑的深度h和高度H之间关系的变化。随着h/H比率增大(即凹坑的深度相对增大),热交换性能逐渐提高并且然后从峰值点降低。参照图7b,当h/H的值为0.25~0.4时,单位有效表面积的热交换性能η被优化。基于图7a和7b的曲线图,能够相对于某个管的宽度和高度设计凹坑的优化宽度和深度,从而优化单位有效表面积的热交换性能η。 本领域的技术人员将认识到,以上描述公开的概念和具体实施方式可被容易地用作修改或设计实现本发明相同目的的其他实施方式的基础。本领域的技术人员还将认识到,此类等价实施方式不脱离如所附权利要求所述的本发明的精神和范围。 工业应用性 根据本发明,因为即使在热交换器管中的热交换介质的流速情况不利时仍较早地产生湍流,所以能够在所有流速情况下提高热交换性能并且优化热交换性能。而且,能够容易地设计凹坑的形状和尺寸,以通过调节流体的流动特性而优化热交换性能,由此节省了劳动力、成本、时间等。
《热交换器.pdf》由会员分享,可在线阅读,更多相关《热交换器.pdf(15页珍藏版)》请在专利查询网上搜索。
本发明涉及一种具有管的热交换器,该管具有凹坑结构,通过凹坑结构在管中产生湍流,由此提高热交换性能。热交换器包括:多个管(20);入口水箱(11);散热片(30);以及出口水箱(12),其中凹坑(21)形成为满足上式(I)。 。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1