点火控制方法 现有技术
本发明涉及确定内燃机加速时点火控制参数的方法。
这类方法已经在“Bosch技术报告,具有λ-调节器的点火及汽油喷射组合系统,Motronic”(19877222011,KH/VDT-09.895-DE)中给出。
在这种已有的点火控制装置中,不同的工作参数,如转速、负荷、压力、温度,通过内燃机外围上相应的传感器测得,并接着被传送到控制装置中。所测得的传感信号的处理在相应配置的传感信号处理电路或处理单元中完成,其中这些处理电路既可以被安置于控制装置的外部,也可以在控制装置之中。控制装置的计算单元此外根据得到的信号、最好根据转速信号和负载信号来确定相应的点火控制参数。为进行这种确定工作,在控制装置内存储了一个点火特性曲线,它的横坐标是转速和负载。例如,这些特性曲线可以预先在发动机测试台上应用最佳运行条件测得。为点火控制参数的确定配置了一个爆震调节,它的作用是在汽缸中发生了一次爆震燃烧后,将点火时刻向后延迟,离开爆震界限。另外,为了确定点火时刻,还配置了一个加法调节,对从特性曲线上得到的点火时刻进行调节,它根据出现的动态状况调节此前确定的点火时刻。通过对所谓的动态超前的计算,将点火时间延迟推移。接下来该加法调节在时间上被调节,点火时刻又向特性曲线点火时刻方向改变。通过这样的加法变化,可以保证点火时刻不与爆震界限过于接近,从而避免出现爆震运行。最后,加速时点火时刻匹配起到的作用是提供最大的转矩。在进行可能会导致点火时刻地跳跃式变化从而恶化行驶性能的强力加速时,这种变化在时间上缓慢地进行,仅仅在迫切需要进行急速变化的情况下,例如从部分负载向满负载的过渡中,控制装置才允许发生快速的跳跃式变化。
本发明的优点
与已有方法相比较,具有独立权利要求特征的本发明方法的优点是,通过引入第二个动态阈值,从该阈值起,使动态超前向提前方向进行适应修改,使得内燃机的运行能够达到这样的要求,即,为了给出超前要确定一个较低的动态阈值;而为了向前适应修改需确定一个高的动态阈值。这样,动态超前的给出和适应修改之间的配合得到改善,从而使其具有有效性。
通过从属权利要求中给出的措施,能够对独立权利要求中给出的方法进行有利的进一步构造和改善。
特别有利的是,在应用中测得两个动态阈值并存储于一个存储器中。另一个优点是,当超过第一个动态阈值时,给出的动态超前写入一个特性曲线中,该特性曲线在负载和转速上变化。这样,点火时刻的变化能够很好地与当前的运行状态相匹配。最后,还有一个优点在于动态超前向提前方向适应修改的逐步回复,这样获得平缓的行驶状态,和更好的驾驶舒适性。
图例
附图中示出了本发明的实施例,并且在下面的说明中予以进一步解释。图示为:
图1为实施本发明方法的控制装置的基本原理构造,
图2是实施本发明方法的程序运行框图。
实施例说明
图1示出了用于确定点火控制参数的控制单元的基本原理构造。这里,由传感器测量的运行参数如转速n、基准标记BM(Bezugsmarke)、温度T、压力p等作为输入参数11传输给一个控制装置10。另外,至少一个爆震传感器KS12的信号被输送给控制装置10。在控制装置10中,设置有装置13来识别爆震,爆震信号就输送给它们。对于是否发生了爆震燃烧的识别,是由已知的方法进行的,即与一个标准化的参考电平进行比较得出。有关后者的报到已经有大量的文献描述,因而这里无需再对其进行详细说明。在控制装置空中还设置了一个动态识别级14,它可以对例如转速信号n或者节气阀的位置进行计算分析,从而给出内燃机是否处于动态状态下。在控制装置10中另外还安置了一个点火控制单元15,它的输出信号输送给图1中未明确示出的一个外部终端级。在控制装置15中,如开始时描述的那样,根据当前的运行参数,从一个特性曲线上获得点火时刻,然后对终端级相应地进行控制。如果在受控制的汽缸中测得了爆震燃烧,就对该汽缸的点火时刻进行单汽缸的延迟调节。当该汽缸经过了一个可预先设定数量的无爆震燃烧后,其点火时刻又逐步地回复到特性曲线上的点火时刻。动态状态的检测在动态识别级14中完成。这种动态状态例如通过节气阀的敞开角度检测,并且依司机是否想使负载改变来确定。
图2示出了在所出现的动态中点火控制的原理性流程框图。在第一个执行步骤20中检测当前的负载梯度dr1。该负载梯度dr1在下一步的判别21中与第一个可预先给定的动态阈值1.DYN-SCHW相比较。如果负载梯度dr1大于第一个可预先给定的动态阈值,即dr1<1.DYN-SCHW,判别21就执行“是”输出,进入执行步骤22。在这个执行步骤22中,从一个存储器中读出一个动态超前wkrdy,将它加到当前的点火角ZW上去,于是使点火控制参数延迟调节了该动态超前量wkrdy。对于内燃机的所有汽缸进行这个加法的点火延迟。
接下来在判别23中进行检验,在执行步骤20中测得的负载梯度dr1是否大于第二个可预先设定的动态阈值2.DYN-SCHW。如果dr1>2.DYN-SCHW,执行“是”-过程而进入判别24,其中要检验在当前给出的点火角下是否会发生爆震KL。如果在该动态阶段的计算分析处理的燃烧中没能求出爆震过程,则判别24执行“否”-过程,进入判别25。这里的检验内容是,是否在通过爆震调节确定的点火控制参数下,已经进行了可预先设定数量的无爆震燃烧。如果是这样,就在由“是”转移到的后续执行步骤26中,使所给出的动态超前wkrdya以一个增量逐级减小,将点火重新向提前方向调节,从而向爆震界限接近。接近爆震界限的运行意味着提供更高的转矩、因而效率更高。
关于负载梯度是否超过第二个可预先设定的动态阈值2.DYN-SCHW的判别,如果是否定性的结论,则判别23由“否”输出转入执行判别27,在其中,再对该动态阶段的燃烧中发生的爆震进行监测。如果测得爆震KL,如同判别24输出端“是”那样,判别27的“是”输出端转向随后的判别28。这里,对测得的爆震事件KL这样进行分析处理,测得爆震事件的强度并进行分析处理。如果是一次强度超过了可预先设定的爆震事件,在随后的执行步骤29中,当前使用的动态超前wkrdya将被加大一个可预定的量,从而使点火总体上延迟。
最后来看判别21的“否”输出,即负载梯度dr1小于第一个动态阈值1.DYN-SCHW;和判别27的“否”输出,即没有测得爆震;以及判别28的“否”输出,也就是说所测得的爆震很弱;以及判别25的“否”输出,即仅能测得单个的或者很少的无爆震燃烧,这些输出转入执行步骤30。这里确定,存储器中存放的动态超前wkrdya得以保持。接着程序运行过程重新开始来处理下一个动态阶段,其中,一个动态阶段由一个预先设定数量的燃烧循环组成。这种自适应在每个动态阶段中进行一次。
在出现负载变化、即在动态情况下,必需将点火时刻这样调节,使得输出转矩最大。在具体的情况下,这意味着点火控制参数必须被调节得提前。同时,点火控制参数很强的提前调节的后果是导致爆震倾向的增大。因此,利用本发明的方法,实现了一种可能性,将彼此互相矛盾的要求,即内燃机无爆震地运行与内燃机为了达到高的效率尽可能高的转矩,自然地彼此联系在一起。
通过负载梯度的第一个动态阈值的定义,确保了点火的延迟调节,不会因一个极小的短时间的负载变化就会发生。这样,保证了高的效率。超过第一个动态阈值时给出的动态超前,在本发明的方法中,依据当前的运行条件来进行适应变化,然后分别存放到一个存储器中,直到动态超前必需改变为止。因而,当内燃机在该区域重新运行时,它可以从存储器中被读出,并且能够被用来进行点火的延迟调节。为了使动态超前匹配,人们有两种可能方式。一种是将动态超前放大,它意味着将点火进一步延迟,或者将动态超前减小,即点火向爆震界限方向调节提前。如果负载梯度超过了第二个动态阈值,并且无爆震的燃烧已经进行了预先给定的数量,就将动态超前减小。在这种情况下,人们的出发点是,通过动态超前所起到的与爆震界限的“安全距离”过大,点火能够逐步地提前调节。如果第二个动态阈值未被负载梯度超过,所发生的爆震事件的强度需要进行检验。在出现很强的爆震倾向的情况下,动态超前要加大,使点火进一步延迟调节,从而远离爆震界限。