发明内容
本发明的目的在于克服现有技术中的不足,提供一种成本低、制备过程简单的二氧化钛纳米管掺杂纳米银颗粒的方法,该方法可以实现纳米颗粒的均匀分布和提高二氧化钛纳米管的电催化效率。
本发明的目的通过下面技术方案予以实现。
一种在二氧化钛纳米管中掺杂纳米银颗粒的方法,按照下述步骤进行:
(1)利用两电极系统制备二氧化钛纳米管:将作为阳极使用的钛合金或者纯钛装入阳极氧化装置中,阴极为铂片或者石墨,电解液为水和甘油的混合溶液,其中甘油与水的体积比为0.4-3,NH4F的浓度为0.1-0.5mol/L,通入的恒定电压为10-60V,通入电压的时间为10min-4h,可制得自组装TiO2纳米管;
(2)将步骤(1)制备的有TiO2纳米管的钛合金或者纯钛置于硝酸银溶液中在40℃-50℃下沉积3-11h,所述硝酸银溶液中,乙二醇和水的体积比为(3-2)∶(2-3),聚乙烯吡咯烷酮的浓度为0.00002-0.0026mol/L,NaBH4的浓度为0.026-0.068mol/L,AgNO3的浓度为0.035-0.060mol/L。
所述步骤(1)中使用的钛合金为Ti-Zr合金,其中Ti和Zr的原子摩尔比为(7-9)∶(3-1),优选Ti和Zr的原子摩尔比为7∶3、8∶2或者9∶1。
所述步骤(1)中使用的钛合金为Ti-Zr-Nb合金,其中Ti、Zr和Nb的原子摩尔比为(73-74)∶(2-4)∶(22-25),优选Ti、Zr和Nb的原子摩尔比为74∶4∶22或者73∶2∶25。
所述步骤(1)使用的钛合金为Ti-Zr-Nb-Sn合金,其中Ti、Zr、Nb和Sn的原子摩尔比为72∶4∶22∶2。
所述步骤(1)中,甘油与水的体积比优选为1,NH4F的浓度优选为0.27mol/L。
所述步骤(1)中,通入的恒定电压优选为30V,通入电压的时间优选为3h。
所述步骤(2)中的沉积温度为40-45℃,沉积时间为3-7h。
所述步骤(2)中,硝酸银溶液中乙二醇和水的体积比为(3-2)∶(2-3),优选为两者等体积比;聚乙烯吡咯烷酮的浓度为0.00002-0.0026mol/L,优选0.0016-0.0026mol/L,更优选0.0016mol/L;NaBH4的浓度为0.026-0.068mol/L,优选0.048-0.068mol/L,更优选0.048mol/L;AgNO3的浓度为0.035-0.060mol/L,优选0.035-0.045mol/L,更优选0.045mol/L。
本发明的方法成本费用低,操作简便,耗时较短,与传统制备方法相比,主要有以下几个优势:(1)解决了颗粒团聚的特点,使其均匀分布在纳米管之上(如附图1所示);(2)反应时间大大缩短,且操作简单;(3)可以有效控制颗粒的粒径大小;(4)可以牢固地附着在TiO2纳米管基体上。首先通过自组装得到二氧化钛纳米管(如附图2所示,在450℃退火后得到了锐钛矿型TiO2,因此在自组装后退火之前已经成功制备了无定型态的二氧化钛),然后通过沉积在TiO2纳米管表面制备得到分布均匀的纳米银颗粒(如附图1和3所示)。在碱性乙醇溶液中进行电催化试验(溶剂为水、氢氧化钠的浓度为0.1mol/L、乙醇的浓度为0.5mol/L),得到掺杂有纳米银颗粒的二氧化钛纳米管的氧化峰与还原峰的电流密度可达1mA/cm2和3.2mA/cm2,具有较高的电催化效率。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
实施例1
(1)采用两电极系统(阳极为钛片,阴极为铂片),电解液浓度:甘油∶水的体积比为1∶1,NH4F的浓度为0.3mol/L,电压为30V,时间为3h,制得自组装TiO2纳米管。
(2)将步骤(1)制备的有TiO2纳米管的钛片置于硝酸银溶液中在40℃下沉积7h,所述硝酸银溶液中,乙二醇和水的体积各为25ml,聚乙烯吡咯烷酮的浓度为0.001mol/L,NaBH4的浓度为0.048mol/L,AgNO3的浓度为0.045mol/L。
实施例2
(1)采用两电极系统(阳极为Ti-Zr-Nb合金,其中Ti、Zr和Nb的原子摩尔比为73∶2∶25,阴极为铂片),电解液浓度:甘油∶水的体积比为1∶1,NH4F的浓度为0.3mol/L,电压为30V,时间为3h,制得自组装TiO2纳米管。
(2)将步骤(1)制备的有TiO2纳米管的Ti-Zr-Nb合金置于硝酸银溶液中在40℃下沉积3h,所述硝酸银溶液中,乙二醇和水的体积各为25ml,聚乙烯吡咯烷酮的浓度为0.001mol/L,NaBH4的浓度为0.048mol/L,AgNO3的浓度为0.045mol/L。
实施例3
(1)采用两电极系统(阳极为钛片,阴极为铂片),电解液浓度:甘油∶水的体积比为1∶1,NH4F的浓度为0.3mol/L,电压为30V,时间为3h,制得自组装TiO2纳米管。
(2)将步骤(1)制备的有TiO2纳米管的钛片置于硝酸银溶液中在50℃下沉积7h,所述硝酸银溶液中,乙二醇和水的体积各为25ml,聚乙烯吡咯烷酮的浓度为0.001mol/L,NaBH4的浓度为0.048mol/L,AgNO3的浓度为0.045mol/L。
实施例4
(1)采用两电极系统(阳极为Ti-30Zr合金,其中Ti和Zr的原子摩尔比为7∶3,阴极为铂片),电解液浓度:甘油∶水的体积比为1∶1,NH4F的浓度为0.3mol/L,电压为30V,时间为3h,制得自组装TiO2纳米管。
(2)将步骤(1)制备的有TiO2纳米管的Ti-30Zr合金置于硝酸银溶液中在50℃下沉积11h,所述硝酸银溶液中,乙二醇体积为30ml,水的体积为20ml,聚乙烯吡咯烷酮的浓度为0.0016mol/L,NaBH4的浓度为0.068mol/L,AgNO3的浓度为0.035mol/L。
实施例5
(1)采用两电极系统(阳极为Ti-Zr-Nb合金,其中Ti、Zr和Nb的原子摩尔比为74∶4∶22,阴极为石墨),电解液浓度:甘油∶水的体积比为3∶1,NH4F的浓度为0.1mol/L,电压为60V,时间为10min,制得自组装TiO2纳米管。
(2)将步骤(1)制备的有TiO2纳米管的Ti-Zr-Nb合金置于硝酸银溶液中在45℃下沉积5h,所述硝酸银溶液中,乙二醇体积为30ml,水的体积为20ml,聚乙烯吡咯烷酮的浓度为0.0016mol/L,NaBH4的浓度为0.026mol/L,AgNO3的浓度为0.060mol/L。
实施例6
(1)采用两电极系统(阳极为Ti-Zr合金,其中Ti和Zr的原子摩尔比为8∶2,阴极为石墨),电解液浓度:甘油∶水的体积比为0.4∶1,NH4F的浓度为0.5mol/L,电压为40V,时间为1h,制得自组装TiO2纳米管。
(2)将步骤(1)制备的有TiO2纳米管的Ti-Zr合金置于硝酸银溶液中在50℃下沉积3h,所述硝酸银溶液中,乙二醇体积为20ml,水的体积为30ml,聚乙烯吡咯烷酮的浓度为0.0016mol/L,NaBH4的浓度为0.068mol/L,AgNO3的浓度为0.060mol/L。
实施例7
(1)采用两电极系统(阳极为钛片,阴极为石墨),电解液浓度:甘油∶水的体积比为2∶1,NH4F的浓度为0.2mol/L,电压为30V,时间为4h,制得自组装TiO2纳米管。
(2)将步骤(1)制备的有TiO2纳米管的钛片置于硝酸银溶液中在45℃下沉积10h,所述硝酸银溶液中,乙二醇体积为20ml,水的体积为30ml,聚乙烯吡咯烷酮的浓度为0.00002mol/L,NaBH4的浓度为0.048mol/L,AgNO3的浓度为0.045mol/L。
实施例8
(1)采用两电极系统(阳极为Ti-Zr合金,其中Ti和Zr的原子摩尔比为9∶1,阴极为石墨),电解液浓度:甘油∶水的体积比为1.5∶1,NH4F的浓度为0.3mol/L,电压为40V,时间为30min,制得自组装TiO2纳米管。
(2)将步骤(1)制备的有TiO2纳米管的Ti-Zr合金置于硝酸银溶液中在45℃下沉积6h,所述硝酸银溶液中,乙二醇体积为20ml,水的体积为30ml,聚乙烯吡咯烷酮的浓度为0.00002mol/L,NaBH4的浓度为0.026mol/L,AgNO3的浓度为0.06mol/L。
实施例9
(1)采用两电极系统(阳极为钛片,阴极为铂片),电解液浓度:甘油∶水的体积比为1∶1,NH4F的浓度为0.4mol/L,电压为50V,时间为50min,制得自组装TiO2纳米管。
(2)将步骤(1)制备的有TiO2纳米管的钛片置于硝酸银溶液中在40℃下沉积10h,所述硝酸银溶液中,乙二醇体积为20ml,水的体积为30ml,聚乙烯吡咯烷酮的浓度为0.0002mol/L,NaBH4的浓度为0.068mol/L,AgNO3的浓度为0.035mol/L。
实施例10
(1)采用两电极系统(阳极为Ti-Zr-Nb-Sn合金,其中Ti、Zr、Nb和Sn的原子摩尔比为72∶4∶22∶2,阴极为铂片),电解液浓度:甘油∶水的体积比为3∶1,NH4F的浓度为0.5mol/L,电压为10V,时间为3h,制得自组装TiO2纳米管。
(2)将步骤(1)制备的有TiO2纳米管的Ti-Zr-Nb-Sn合金置于硝酸银溶液中在40℃下沉积5h,所述硝酸银溶液中,乙二醇体积为25ml,水的体积为25ml,聚乙烯吡咯烷酮的浓度为0.0008mol/L,NaBH4的浓度为0.048mol/L,AgNO3的浓度为0.045mol/L。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。