发动机扭矩减小控制方法 【技术领域】
通常,本发明涉及一种发动机扭矩减小控制方法(engine torquereduction control method)。更具体地,本发明涉及一种用于提高发动机怠速控制性能的发动机扭矩减小控制方法。
背景技术
通常,在换档中所执行小的发动机扭矩减小很小,所述换档为例如N-D换档、N-R换档、停车减档(power-off downshift)、以及起步提升(LFU)换档(lift-foot-up shift),由于随后的弹指状态(tip-in state)(即,踩下加速踏板),该起步提升换档与当前的停车状态(power-offstate)无关。
少量扭矩减小是用于准备后面的弹指状态,并且当在换档期间保持怠速状态时,不能提高换档感觉。
如上所述,变速器管理系统(TMS)请求点火正时延迟,以便在发动机怠速状态期间产生出少量扭矩减小的状态。
另外,为了后面的弹指状态,发动机管理系统(EMS)使点火正时提前。
因此,在常规技术中,存在的问题是TMS的点火正时延迟和EMS的点火正时提前在怠速状态时彼此抵触。
本发明背景技术部分内公开的信息只用于增强对本发明背景的理解,而不应该作为确认或任何形式的暗示,对于本领域普通技术人员来说,这个信息形成在本国已经公知的现有技术。
【发明内容】
本发明的动机是提供一种发动机扭矩减小控制方法,其非限定性优点是提高发动机怠速控制性能。
根据本发明实施例的示例性发动机扭矩减小控制方法包括:在已经从变速器管理系统(TMS)中接收到扭矩减小请求信号的情况下,判断节气门开度是否大于预定节气门开度;如果判定节气门开度大于预定节气门开度,则执行与接收的扭矩减小请求信号对应的发动机扭矩减小控制;以及如果确定节气门开度不大于预定节气门开度,则只有当满足点火正时提前条件时,才执行与接收的扭矩减小请求信号对应地发动机扭矩减小控制。
【附图说明】
包含在本说明书中并构成本说明书一部分的附图图解了本发明的实施例,并且连同说明书一起用来解释本发明的原理,其中:
图1是表示根据本发明实施例的发动机扭矩减小控制方法的流程图;
图2是用于执行根据本发明实施例的发动机扭矩减小控制方法的系统图。
【具体实施方式】
在下文中将参考附图详细描述本发明的实施例。
图2是用于执行根据本发明实施例的发动机扭矩减小控制方法的系统图。
如图2中所示,用于执行根据本发明实施例的发动机扭矩减小控制方法的系统可以包括变速器管理系统(TMS)201、发动机管理系统(EMS)203、节气门205、发动机207、以及变速器209。
TMS 201根据有关换档信息依据预定控制方案对变速器209进行优化控制。
另外,TMS 201对可能安装在变速器209内的液压控制模块211进行控制,并且控制液压到变速器209的各种摩擦元件的供应和液压从变速器209的各种摩擦元件的释放。
EMS 203是发动机管理系统,用于控制燃料量、点火正时等等,并且可以包括电气控制单元(ECU)。
节气门205根据来自EMS 203的控制信号,来调节进入发动机的空气-燃料混合物量。
节气门位置传感器213检测节气门开度。
TMS 201和EMS 203可以分别通过由预定程序控制的一个或多个处理器来实现,并且可以对预定程序进行编程以执行依据本发明实施例的方法的每个步骤。
图1是表示根据本发明实施例的发动机扭矩减小控制方法的流程图。参考图1,将在下文中详细描述根据本发明实施例的发动机扭矩减小控制方法。
首先,在步骤S11中,EMS 203判断是否已经从TMS 201接收到扭矩减小请求信号。
对于本领域普通技术人员来说,显而易见,TMS 201根据至少一个换档控制参数可以确定是否需要发动机扭矩减小控制,所述换档控制参数包括涡轮转速(rpm)、涡轮扭矩、以及变速器输出轴转速(rpm)。
当在步骤S211中确定已经从TMS 201接收到扭矩减小请求信号时,EMS 203在步骤S12中判断节气门开度是否大于预定节气门开度。
预定节气门开度优选设定为5%,但本领域普通技术人员可以把它修改成其它值。预定节气门开度(即5%)是怠速状态期间的节气门开度。
当在步骤S12中节气门开度大于预定节气门开度即5%时,接着在步骤S13中,EMS 203执行发动机扭矩减小控制以便减小发动机扭矩。
执行发动机扭矩减小控制之后,TMS 201通过控制液压控制模块211来执行液压控制。
当在步骤S12中节气门开度不大于预定节气门开度时,在步骤S14中,EMS 203判断发动机点火正时提前条件是否存在。
EMS 203可以根据入口空气温度、冷却液温度等来确定发动机点火正时提前条件是否存在。
因为对于本技术领域普通技术人员来说,发动机点火正时提前条件是显而易见的,所以将省略对其进一步说明。
如果在步骤S14中确定发动机点火正时提前条件存在,则在步骤S15中,TMS 201通过控制液压控制模块211来执行液压控制,而无需执行发动机扭矩减小控制。因此,可以避免扭矩减小请求和点火正时提前请求之间的冲突。
在这种情况下,如果像在现有技术中执行发动机扭矩减小控制,则TMS 201的扭矩减小请求会与发动机点火正时提前条件相抵触。
因为对于本技术领域普通技术人员来说,步骤S15的液压控制是显而易见的,所以将省略对其详细说明。
另一方面,如果在步骤S14中确定发动机点火正时提前条件不存在,则EMS 203在步骤S13中执行发动机扭矩减小控制。
因为在这种情况下EMS 203没有判定点火正时提前条件存在,所以扭矩减小请求和点火正时提前请求之间的抵触不会出现。
将在下文中描述根据本发明的发动机扭矩减小控制方法的优点。
根据本发明的实施例,当在怠速状态下满足点火正时提前条件时,不执行发动机扭矩减小控制,因此,由来自TMS的不必要扭矩减小请求引起的点火正时延迟不会出现。
另外,根据本发明的实施例,可以减少不必要的维护费用,因为防止了类似发动机故障的负作用。
而且,因为提高了怠速性能,所以改善了NVH(噪音、振动和刺耳(harshness))特性,从而提高了驾驶员舒适性。
虽然已经结合目前认为最实用和优选的实施例描述了本发明,但应该理解,本发明不局限于公开的实施例,而相反,旨在覆盖包含在附属权利要求书的本质和范围内的各种修改和等效布置。