薄型平面散热器 发明简述
本发明总体上涉及一种热分布装置,例如与微处理器或其它微电子装置结合使用的装置。更具体地,本发明涉及一种通过采用平面毛细管流体通道分布热量的薄型平面散热器。
【发明背景】
半导体元件的尺寸不断减小。与这种尺寸减小相对应的是半导体元件功率密度的提高。这随之造成了所必须解决的热量激增问题,因为过热将使半导体元件的性能降低。
热管和热虹吸管已经用于冷却半导体元件。热管和热虹吸管的操作均在闭合的两相循环下进行,利用蒸发潜热传递热量。
热虹吸管一般是一根包容有某种流体的管子。当与某种半导体元件,例如微处理器结合使用时,称为蒸发器或汽化器的热虹吸管的第一端联接到半导体元件的发热表面。称作冷凝器的热虹吸管的第二端自该半导体元件垂直延伸,在该处由环境空气冷却。
在一第一循环中,来自半导体元件的热量使热虹吸管内的流体蒸发。在蒸发过程中,该流体蒸气吸收了一定量的所谓蒸发潜热的热量。在蒸发器内形成的蒸气温度高且因此比冷凝器内的蒸气的压力高。因此,该蒸气自蒸发器流向冷凝器。
在一第二循环中,蒸气在热虹吸管的冷凝器壁上冷凝。该冷凝操作导致热量的释放。结果,热量从蒸发器转移到冷凝器。重力随后使冷凝器内地冷凝液流回到蒸发器。此两相循环过程而后重复进行。
尽管热虹吸管的内表面有时可衬有槽或微孔结构,以促进冷凝液返回蒸发器或提高热传递系数,但是热虹吸管原则上是依靠局部的重力使流体返回蒸发器的。因此明确地讲,为了正常操作,热虹吸管的蒸发器必须处于冷凝器之下。
热管按照与热虹吸管相同的原理操作。热管的一项特殊性能是它采用了某种不连续的虹吸结构来促进流体自冷凝器向蒸发器的流动。该虹吸结构使热管能在相对于重力呈水平取向的状态下使用,或者甚至使蒸发器的取向与重力相反,尽管该装置的效率根据不同的物理取向会有很大的改变。例如,如果该装置的取向与重力相反,其性能要降低大约一半。因此,要依赖局部重力场来促进流体自冷凝器向蒸发器的流动,这是热虹吸管与热管有区别之处。
热虹吸管与微处理器结合使用的问题是热虹吸管相对于重力要求垂直取向。这使装置的外轮廓增高。结果,热虹吸管难于用在紧凑的电子设备中,例如掌中电脑、笔记本电脑、膝上电脑、桌面电脑和供电装置。
使用热虹吸管的另一个问题是它们对方向敏感。即,它们的取向必须是使重力能迫使冷凝流体流回蒸发器。微处理器的经销商并不知道计算机的使用者如何放置计算机。例如,某些计算机水平放置在桌面上,而另一些则垂直安装在地板上。热虹吸管只能以一种预定的相对于重力的物理取向操作。
尽管热管不象热虹吸管那样对方向敏感,但它仍存在需要有不连续虹吸结构的缺点。该不连续虹吸结构一般由网膜、烧结金属或一组轴向槽构成。不连续虹吸结构增加了制造方面的支出,而且使热管不能大量生产。另外,诸如网膜的不连续虹吸结构产生相对较高的流体阻力。因此,提供一种对方向不敏感和不需要流体阻力大的虹吸结构的热传递装置将是十分需要的。这种装置的垂直方向外轮廓较低,以保证它能容易地结合进各种紧凑式电子设备。
另一类常用来减弱与半导体元件相关联的热量问题的装置是翅片散热器。翅片散热器有一个与半导体元件发热表面相联结的水平表面和一组自该水平表面垂直延伸的翅片。该翅片由环境空气冷却。这样,水平表面的热量传导到翅片上。典型情况下,热只产生在翅片散热器的水平表面的几个区域内。因此,与这几个区域相对应的翅片完成的冷却最多。为了减轻这种热量局部化的问题,可以采用较厚的热块来改善热量分布。这个方法所带来的问题是它大大增加了装置垂直方向的外轮廓。另外,热块重量大且比较昂贵。结果,人们强烈需要提供一种装置,它能沿翅片散热器的水平表面均匀分布热量,而又不显著增大半导体元件外壳的垂直外轮廓。这种装置能使散热器的所有翅片均进行散热。因此,可以提高翅片散热器的效率。
风扇也已经用来减轻与诸如半导体元件的发热表面有关的热问题。在用风扇来排除热量的表面上,各表面上的热分布一般是不均匀的。风扇在这种条件下操作,其效率不如从热量均匀分布的表面上排除热量的风扇高。再者,当风扇用于发热表面时,热动力学研究表明,由风扇所产生的空气运动,大部分是作用在风扇的周边。这样,将热量传递到发热表面的周边就极其重要。根据上述观点,非常需要提供一种装置,能使热量在暴露于风扇的一个表面或多个表面上均匀分布。这种装置最好具有低的垂直外轮廓,以保证它与紧凑式电子设备的兼容性。
发明概要
一种散热设备,它包括一第一平面主体,用于联接到在第一平面主体上形成一个热区和一个冷区的发热表面上。一个与第一平面主体相连的第二平面主体,用来在第一平面主体和第二平面主体之间构成一个空隙。该空隙包括一平面毛细管通道和一无毛细管区。一种处于上述空隙中的流体借助该流体在热区的平面毛细管通道内蒸发、在冷区的无毛细管区内冷凝,自无毛细管区通过毛细管运动到热区的平面毛细管通道来分布热量。
该主体极薄,一般小于2.0毫米。但是,它的热分布特性要比垂直外轮廓尺寸大得多的现有金属热块好得多。因此,该装置非常适用于紧凑式电子设备和与诸如翅片散热器或风扇的其它冷却装置结合使用。
尽管该装置同热虹吸管或热管一样也是两相循环,但它并没有这些装置的某些关键特性。与热虹吸管不同,本发明的装置对取向不敏感。与热管不同,它有诸如网膜或轴向槽的不连续的虹吸器具,本发明依靠在装置的主体内形成的平面毛细管流体通道。该平面毛细管流体通道的几何形状避免了存在于热管中的流体动力学阻力较高的虹吸器具。另外,在具体实施例中,毛细管流体通道的结构消除了冷凝器中的流体流和蒸发器中的蒸气流之间的逆流粘滞剪切力,即一个与现有热管和热虹吸管相关联的问题。最后,该装置的结构便于低成本大量制造。
附图的简要说明
为了较好地理解本发明的本质和目的,应参考下面结合附图所做的详细说明,其中:
图1是根据本发明的一个实施例所构成的散热器的横截面图;
图2是图1所示散热器一部分的透视图;
图3是根据本发明的一个实施例的散热器的部分的顶视图;
图4是沿图3中4-4线所截取的横剖面图,表示散热器内的流体;
图4A是图4所示设备的零件分解图;
图5是根据本发明的一个实施例的散热器的一部分的另一种结构;
图6是是根据本发明的一个实施例,带扩展表面平面毛细管流体通道的散热器的顶视图;
图7是沿图6中7-7线所截取的横剖面图;
图8是根据本发明的另一个实施例的双热源散热器主体的顶视图;
图9是沿图8中9-9线所截取的横剖面图;
图10是根据本发明的另一个实施例的四热源散热器的顶视图;
图11是沿图10中11-11线所截取的横剖面图;
图12是根据本发明的另一种散热器主体结构的横剖面图;
图13表示当其相对于重力垂直取向时,图12所示散热器主体内的流体形式;
图14是根据本发明的另一种散热器主体结构的横剖面图;
图15是根据本发明的另一种双热源散热器主体的横剖面图;
图16表示当其相对于重力垂直取向时,图15散热器主体内的流体形式;
图17是根据本发明的一个实施例的“径向”散热器结构的主体底部的顶视图;
图18是沿图16中18-18线所截取的横剖面图;
图19是图18所示设备的一部分的放大图;
图20是图19所示散热器所用的主体顶部的侧视图;
图21是根据本发明的一个实施例的“圆圈排列”散热器结构的主体底部的顶视图;
图22是沿图21中22-22线所截取的横剖面图;
图23是图22所示设备的一部分的放大图;
图24是图21所示散热器所用主体顶部的侧视图;
图25是根据本发明的一个实施例的“方矩阵”散热器结构的主体底部的顶视图;
图26是沿图25中26-26线所截取的横剖面图;
图27图26所示设备的一部分的放大图;
图28是图24所示散热器所用主体顶部的侧视图;
图29是根据本发明的一个实施例的“变尺寸方矩阵”散热器结构的主体底部的顶视图;
图30是沿图29中30-30线所截取的横剖面图;
图31是图30所示设备的一部分的放大图;
图33是沿图29中32-32线所截取的横剖面图;
图33是图32所示设备的一部分的放大图;
图34是本发明的另一个实施例,它包括在其中构成有三角形冷凝器的蒸发平台;
图35是本发明的一个实施例的平面图,它在毛细管流体通道的所选区域中包括周边成核区表面;
图36是本发明的一个实施例的平面图,它包括贯穿毛细管流体通道的周边成核区表面;
图37是本发明的一个实施例的平面图,它包括在毛细管流体通道和无毛细管区上的周边成核区表面;
图38是本发明的一个实施例的透视图,带有支脚件,用于在形成于半导体元件外壳的顶面上的电容器上方提供间隙;
图39是本发明的一个实施例的透视图,带有孔,用于在形成于半导体元件外壳的顶面上的电容器上方提供间隙;
图40是本发明的一个实施例的透视图,其中该设备包括一扩展表面区和在该设备所确定的平面内整体构成的平面散热翅片;
图41是本发明的一个实施例的透视图,其中该设备包括一弯曲主体和在该设备所确定的平面内整体构成的平面散热翅片。
在附图中的各个图中,相同的零件参考标号相同。
发明的详细说明
图1是散热器主体20的横剖面图,其由呈半导体元件外壳形式的一第一平面主体22和呈上盖形式的一第二平面主体21构成。半导体外壳22是一个标准管脚网格排列的外壳,带有包括粘接架26的半导体元件空隙24。处于半导体元件空隙24的底部的是半导体元件28。粘接导线(未示出)将半导体元件28电联接到包括与一组外壳管脚30电联接的内轨道(未示出)的半导体元件外壳22上。
上盖21具有这样的物理形状,当联接到半导体外壳22上时,它构成一个带有无毛细管区32的空隙。该无毛细管区32包括绝热区44和冷凝器46。该空隙还包括一平面毛细管流体通道50,它包括蒸发器51。
由半导体元件28所产生的热量传递到半导体元件外壳22的顶部。所产生的热大量地施加到散热器主体20的蒸发器51上。大部分的热施加到蒸发器51的底表面55,一些热经传导通过传热柱53,加热蒸发器51的顶表面57,蒸发器51内的流体吸收热量并蒸发。所生成的蒸气通过绝热区44转移,在该处热量不损失也不增加。它继续运动到冷凝器区46,在此蒸气在该装置的内壁上冷却和凝聚。冷凝的流体随后通过流体的毛细管作用被抽入平面毛细管流体通道50。即,该装置的下面详细讨论的细小尺寸使得流体从无毛细管区32,特别是冷凝器46,借助毛细管作用抽入平面毛细管流体通道50。该平面毛细管流体通道50返回引导至蒸发器51。这样,两相蒸发-冷凝循环自动重复进行。这种循环使得由半导体元件28产生的热量分布在一较大的区域上,而不是集中在靠近半导体元件28的局部区域。
请注意,蒸发器51的规格与半导体元件28的大体一致。同样,上盖21的规格与半导体元件外壳22的大体一致。
本发明的操作最好参见图2,那是散热器上盖21的透视图。图中给出了传热柱53,它在蒸发器平台60的蒸发表面57上形成。该蒸发器平台60自无毛细管区的表面62升高。平面毛细管流体通道50也构成于无毛细管区的表面62之上。流体通道桥63将平面毛细管流体通道50与蒸发器平台60相连接。因此,平面毛细管流体通道50实际上也包括流体通道桥63和蒸发平台60的蒸发表面57。
本技术领域的专业人士可以看出,本发明有多项独特的贡献。如上所述,装置的尺寸导致自无毛细管区32至平面毛细管流体通道50的虹吸作用。这种虹吸作用与装置相对于重力的物理取向无关。因此,不象相对于重力只能在一个取向下使用的热虹吸管,本发明的装置不局限于这种方式。
平面毛细管流体通道50执行与热管相关联的虹吸操作。但是,与现有的热管不同,这种虹吸操作不依赖于诸如网膜的分立结构。而是将平面毛细管流体通道50构成于装置主体的外面。因此避免了与先有热管技术中的一些花费。另外,也避免了不连续虹吸结构的流体动力学阻力较高的问题。
所公开的设备的另一个优点是流体在流体通道50内的圆周运动决不会被蒸气在蒸发器51内的运动直接抵消。在大多数热管和热虹吸管中,蒸发向一个方向运动而流体向相反方向运动。结果,这些先有技术的装置中,在流体流和蒸气流之间存在逆流粘滞剪切力,图1所示的实施例避免了这样一个问题。
如图1所示,当散热器20联接到半导体外壳22上时,其规格与半导体外壳22的规格大致吻合。这个特点,再结合装置的垂直轮廓低的特点,使其适于应用在紧凑式电子设备中。垂直轮廓低还使该装置适于与其它冷却装置,例如风扇和翅片式散热器结合使用。如下所示,本发明的装置在散热方面效率比尺寸相当的固体金属块高得多。
散热器盖21最好用金属制成,例如铝。散热器盖21可以锡焊或铜焊在半导体元件22上。散热器的垂直总间距最好在2.0毫米左右,尽管该装置已经实现1.0毫米的垂直间距,且所实现的垂直间距可以大到10.0毫米,而后关于尺寸和重量的考虑对实际装置的制约减弱了。
构成冷凝器46及绝热区44的区域的垂直间距希望少于2.5mm,更好是在2.0和0.5mm之间,且最好在1.25mm左右。构成蒸发器和平面毛细管流体通道50的区域的垂直间距希望小于0.5mm,在0.325和0.025mm之间更佳,最好约0.125mm。
构成蒸发器和平面毛细管流体通道50的区域的垂直间距是相对固定的,而构成绝热区44和冷凝器46的区域的垂直间距变化很大。绝热区44的垂直间距是所需热性能(允许压降)的函数。
毛细管流体通道50的几何形状决定了向蒸发器区域供给流体的能力。任何特定几何形状的毛细管所能提供的流体量均存在一个限制,因此超过该限制将发生“干出”。一旦超过干出的界限,一般可以观察到直接和过度的热性能降低。另一方面,绝热区44的几何形状控制蒸气自蒸发器区向冷凝器区传输的效率。绝热区的几何形状不受什么“陡变函数”的限制,象在毛细管流体通道的情况下那样。小绝热区仍将允许蒸气流动,尽管阻力较大。由于热效率(假设流体供给充足)是蒸发器区和冷凝器区之间压力差的函数,且该压力差是速度平方的函数,而速度又直接与绝热区垂直间距成比例,所以可以通过调节垂直间距来提供所需的热效率。这样,垂直间距达9.0mm的绝热区的效率足够,但是这样的结构要求散热器的总垂直间距在10.0mm左右。如上所讨论的,等于或大于此数值的尺寸将不能实际应用。
本发明的装置可以通过机加工、冲压、化学蚀刻、化学沉积或其它任何本技术内众所周知的技术制成。为了保证在散热器20内充分润湿,主体内的表面应彻底清理。两部分最好是铜焊在一起。而后,采用标准的充填技术将流体注入主体内。典型情况下,使用真空泵从空隙中去除无法冷凝的气体。在此之后,存在于空隙中的只有流体。在这一点,空隙中的压力与流体在当前温度下流体的蒸气压力是成正比的。随后将主体密封,保持空隙中的状态。
图3是散热器主体部分21A的项视图。图3的装置与散热器底部相对应,构成根据本发明的散热器。在这种结构中,装置的两部分构成外形,这与图1中的实施例不同,它只是装置的一个主体部分构成外形。
图4给出了用图3所示散热器的主体部分21A构成的装置64。装置64包括一相应的散热器底部21B。因此,图4可以理解为沿图3的4-4线所截取的横剖面图。
图4还给出了处于蒸发器51和流体通道50内的流体66。该图进一步给出了流体66正在虹吸进入流体通道50。该图表明,在绝热区44的壁上几乎没有流体,而在冷凝器46的壁上有少量流体。
图4A是图4所示装置的零件分解图。该图给出了散热器顶部21A和散热器底部21B。该图还示出了流体66充满毛细管流体通道50。因此,流体66的形状与毛细管流体通道50的形状一样。图4A还给出一特殊区域67。该特殊区域67的形状与无毛细管区32的形状相符合。这样,该特殊区域67可以认为是蒸气存在的区域。如图4所示和下面所讨论的,除了蒸气之外,一些流体也确实存在于特殊区域67中。
图5是散热器盖68的顶视图。图5的散热器盖68包括蒸发器表面57,带有扩展的边缘表面元件72。由于典型情况下蒸气是在边缘离开蒸发器表面57的,所以图5的结构提供了伸入无毛细管区32的扩展表面,以便于蒸气进入。图5还给出了带有扩展边缘表面元件76的毛细管流体通道50。该扩展边缘表面元件76方便了流体自无毛细管区域32向流体通道50的虹吸运动。在扩展边缘表面元件76和冷凝器无毛细管区32之间最好有一倾斜表面,方便流体的虹吸运动。本发明的所有实施例最好都避免有突然的表面过度。
图6给出了根据本发明构成的另一种散热器主体80。主体80包括一蒸发器平台表面57,它与导引至毛细管流体通道50的流体通道桥63相联接。毛细管流体通道50包括呈半岛84形式的扩展表面元件。半岛84比图5的扩展表面元件76大,但是它们的目的是相同的,都是方便流体自无毛细管区32向毛细管流体通道50的运动。
图7是装置80沿图6中7-7线所截取的横剖面图。在图的各端均可看到毛细管50。在无毛细管区32之间还可看到半岛84。
与图1的散热器盖21不同,那是以半导体元件外壳构成一个主体,而图6和图7的装置是不连续的部件。图7所示装置的总垂直高度较好是小于3.0mm,最好约2.0mm。无毛细管区32的垂直高度与前述实施例一致。同样,与通道50相关联的垂直高度也与前述实施例一致。
图8是双热源散热器主体90的顶视图。装置90包括一第一蒸发器表面57A和一第二蒸发器表面57B。第一蒸发器表面57A位于一第一热源,例如半导体元件(未示出)之上,而第二蒸发器表面57B位于第二半导体元件(未示出)之上。一第一流体通道桥63A使第一蒸发器表面57A联接到平面毛细管流体通道50,而一第二流体通道桥63B使第一蒸发器表面57A联接到第二蒸发器表面57B。最好是一个单独的无毛细管区32为由蒸发器表面57A、57B构成的两个蒸发器区域服务。换言之,无毛细管区32在蒸发器表面57A、57B的两侧之间有一条开放的通道。
图9是沿图8中9-9线所截取的横剖面图。图9给出了处于主体90的各端的平面毛细管流体通道50。该图还给出了位于无毛细管区32之间的第一蒸发器表面57A和位于无毛细管区32之间的第二蒸发器表面57B。
图10给出了一四热源散热器主体100。该主体100与容纳四个半导体元件的半导体元件外壳结合使用。主体100包括一第一蒸发器表面57A、一第二蒸发器表面57B、一第三蒸发器表面57C和一第四蒸发器表面57D。第一、第二、第三和第四流体通道桥63A、63B、63C和63D用来联接蒸发器平台和平面毛细管流体通道50。无毛细管区32包括支撑柱102。支撑柱102起到传热柱的作用。要防止无毛细管区32在真空条件下崩塌,柱102的支撑作用是很重要的。
图11是沿图10中11-11线所截取的横剖面图。该图给出了平面毛细管通道50、蒸发器表面57C和57D、无毛细管区32和支撑柱102。
图12是根据本发明所构成另一实施例的散热器主体110。散热器主体110位于半导体元件111之上。翅片散热器114位于主体110之上。该翅片散热器114包括支撑垂直翅片118的水平表面116。
散热器主体110包括一自蒸发器51延伸到无毛细管区32的冷凝器46的倾斜平表面112。该倾斜平表面112呈截头圆锥的结构。冷凝器46中的流体通过倾斜平表面112的毛细管作用抽回到蒸发器51。即,毛细管作用将流体从垂直间距较大的冷凝器46抽入垂直间距较小的蒸发器51。这样,本发明的实施例没有周边平面毛细管流体通道。代替它的是,流体在无毛细管区32内冷凝,而后借助毛细管作用抽入蒸发器57,不使用流体毛细管通道桥。此实施例的优点是流体将通过在表面112上自然形成的多条流体毛细管通道抽入蒸发器51。
图13表示图12所示散热器主体110相对于重力处于垂直位置的情况。该图还给出了该主体内的流体的毛细管作用。毛细管作用使流体120环绕传热柱53。另外,毛细管作用使流体121沿主体110的壁向上延伸,造成中凹的流体形状122。图13表示出了本发明的装置的方向不敏感性,这个特性是本发明的一项重要有益之处。
图14是根据本发明的另一种散热器主体130的横剖面图。在此实施例中,倾斜平表面112导致靠近蒸发器51的无毛细管区32处的垂直间距较大。无毛细管区32的垂直间距大造成靠近蒸发器51处的蒸发压力较低,便于蒸发器51内流体的蒸发。倾斜平表面112延伸到主体130的周边处的平面毛细管流体通道50。平面毛细管流体通道50的形状示于图3。但是,与图3中的实施例不同,在图13的实施例中,在通道50和无毛细管区32之间有一平缓斜坡存在。
图15是整体采用散热翅片152的散热器主体150的横剖面图。散热器主体150与多芯片半导体元件外壳140结合使用,该外壳内容纳有一第一半导体元件28A和一第二半导体元件28B。主体150包括为蒸发器51和无毛细管区32所环绕的一第一传热柱53A。另外,该主体包括由蒸发器51和无毛细管区32所环绕的一第二传热柱53B。在蒸发器51和无毛细管区32之间再次采用了倾斜表面,因此也具有上述优点。
图15还示出了位于散热翅片152的顶部,包括扇叶156的风扇154。风扇154的位置处在散热翅片152之上或之内,这在本技术领域内是众所周知的。通过提供一种垂直轮廓低的机构,将热量从半导体元件外壳的中心分布到风扇能进行最有效冷却的边缘,本发明为这种实际操作提供了便利。
图16给出处于垂直位置的图15所示主体150。该图还给出了主体150中的流体。主体150的空隙中的毛细管作用使流体环绕两传热柱53A和53B。如上所述,当相对于重力水平取向时,朝向传热柱53A和53B的毛细管作用将构成多条自然形成的进入蒸发器51的毛细管通道。
图17给出了本发明的“径向”散热器实施例。“径向”一词指的是无毛细管区32的轮廓形状,该区处于装置的中心,并从中心以16个不同的方向径向延伸。流体毛细管通道50存在于装置的周边,并以16条不同的腿162延伸到装置的中心。此实施例的优点是流体毛细管通道50和无毛细管区32的边缘极多,以及实际上蒸气可以容易地转移到径向无毛细区32的任何稳定的区域。同样,有许多条流体毛细管通道腿返回装置的中心。
图18是沿图17中18-18线所截取的横剖面图。该图给出了处于结构中心的无毛细管区32。同样,该图给出了伸展于无毛细管区32内的两条流体毛细管通道50。流体在这些流体毛细管通道50的端头蒸发并进入无毛细管区32。然后在大多数情况下,蒸气转移到无毛细管区32的周边区域之外。图18还给出了传热柱53。如同前述实施例,这些柱子53也起到支撑结构的作用。
图19是图18所示中心区164的放大图。图19示出无毛细管区32、流体毛细管通道50的端头和位于流体毛细管通道50上的传热柱53。
图20是用于联接到图16所示主体底部的主体顶部的侧视图。图20示出了构成无毛细管区32的内凹区。另外,该图示出了流体毛细管通道50的顶层部分和传热柱53,后者与图18所示的传热柱53相匹配。
图21是根据本发明一个实施例的“圆圈排列”散热器设备170的主体底部的顶视图。在本发明的这种结构中,无毛细管区32呈大量不连续圆圈井164的形式。流体毛细管通道50环绕各个无毛细管区164。图21还形成有大量的传热柱53。本发明的这种实施例是有优点的,因为它能使流体容易地迁移到结构的几乎任何区域。另外,此实施例为流体自流体毛细管通道50内蒸发和返回流体毛细管通道50提供了大量的边缘表面。再进一步,此构造是一种“通用”结构,适用于单芯片外壳、双芯片外壳或其它任何型式的多芯片模块。
图22是沿图21中22-22线所截取的侧剖视图。该图给出了不同的为流体毛细管通道50的部段所环绕的无毛细管区164。该图还给出了位于流体毛细管通道50内的传热柱53。
图23是图22所示区域172的放大图。图23给出了由包括传热柱53的流体毛细管通道50所环绕的无毛细管区164。
图24是对应于图21所示主体底部170的主体顶部174。主体顶部174的结构是与主体底部170相配合的。因此,主体顶部174包括流体毛细管通道顶50,带有用于与主体底部上的相同元件对正的传热柱53。
图25是根据本发明一个实施例的“方矩阵”散热器装置180的主体底部的顶视图。在此实施例中,流体毛细管通道50的形状如格栅,且方形的不连续无毛细管区166穿插该格栅。此实施例也包括传热柱53。
图26是沿图25的26-26线所截取的设备180的侧视图。该图给出了环绕不同的无毛细管区166的流体毛细管通道50。图27是图26所示区域182的放大图。图27给出了环绕无毛细管区166的流体毛细管通道50。该图也示出了传热柱53。图中还表示出用于联接上盖的周边平台184。
图28给出与图25所示装置18相联接的上盖185。上盖185包括流体毛细管通道的上盖部分50,带有与图15所示传热柱53相配合的传热柱53。
本发明示于图25-28中的实施例的优点是流体能够沿直线路径横跨装置的整个表面区运动。另外,方型结构为蒸发后的流体逸出流体通道50和冷凝后的流体返回流体通道50提供了大量的边缘区。再进一步,如同图21-24的“圆周排列”结构的情况,图25-28的装置具有通用的结构,能够有效地与各种热源分布方案配合使用。
图29给出根据本发明的另一种散热器200。散热器200包括各种规格的无毛细管区。特别是,该图给出小图案的无毛细管区202、大图案无毛细管区204和更大的无毛细管区206。图29中各种图案的无毛细管区一般是方的,但也可采用其它型式,如圆形和三角形。
图30是沿图29中30-30线所截取的横剖面图。该图给出了各种规格的无毛细管区202-206。传热柱使不同的无毛细管区中断,所以不同的无毛细管区多少有些难于区别,这种效果参见图31可更完全地欣赏。
图31是图30所示区域208的放大图。图31给出了从主体的两侧相遇以构成一连续柱结构的相对应的传热柱53。另外为了给装置提供支撑和自装置的一侧向另一侧传导热,这些柱子可作为冷凝表面用。换言之,对于蒸发后流体它们可用来构成额外的冷凝区域。无毛细管区的外形表面也可用作为蒸发后流体提供额外的冷凝区域。
图32是沿图29中32-32线所截取的横剖面图。该图给出了各种规格的无毛细管区202-206,请注意,在此图中不同的无毛细管区未被传热柱53分隔开。
图33是图32所示区域210的放大图。图33给出了在无毛细管区202之间构成的蒸发器区51。再次看出,此图是沿一条不包括传热柱53的线截取的。
图34给出了根据本发明的另一个散热器220。散热器220包括由毛细管流体通道50所环绕的无毛细管区32。该毛细管流体通道50包括扩展表面元件222。毛细管流体通道50联接至终止于蒸发器平台224的毛细管流体通道桥223。蒸发器平台224有一组无毛细管区226。在此实施例中,各个无毛细管区226呈三角形。图34给出了所公开的本发明可以结合采用,为特定应用场合构成最佳装置的不同实施情况,
图35是本发明另一实施例的平面图。图35所示装置240总体上与图17所示装置相似。但是,在图35中,发热区242中的毛细管流体通道50的边缘244是处理后的表面。此处所用的处理后的表面是其特性经过改良的表面。例如,包括促进沸腾的成核区,包括强化流体润湿性的涂层,包括表面纯化涂层(使润湿表面时来自流体的氧化和化学作用纯化),或包括强化毛细管流动的微细表面裂纹。微细表面裂纹使毛细管流体通道和无毛细管区(绝热区和冷凝区)之间的不连续边界变小。在靠近蒸发器区的绝热表面上的微细裂纹将使流体借助前述毛细管物理现象自流体毛细管通道转移到该微细裂纹。这些流体将蒸发,从而扩大了蒸发(冷却)区。在靠近冷凝区的绝热表面上的微细裂纹有助于冷凝流体返回到毛细管流体通道。这使得绝热表面上的流体层较薄,减少了通过该流体层的热阻力。
成核表面一般是一粗化表面。该表面可通过喷丸、激光蚀刻或其它能在其上留下粗糙表面或带小凹坑表面的技术形成。
图36给出了沿全部毛细管流体通道表面50带有处理后表面的装置250。图37的装置260给出了可用处理后的表面262制成的无毛细管区32和整个流体毛细管通道50。
图38是本发明另一实施例的透视图。图38所示装置270有支脚272,所以散热器270的剩余部分不与靠近发热表面的任何物体接触。例如,半导体外壳274包括一组安装在板上的电容器276。这样,支脚272用于脱离开该板上电容器276。支脚272最好在装置270的剩余部分上整体构成。该支脚272可以是实心金属。
图39是本发明另一个实施例的透视图。在此实施例中,散热器280上穿有孔282。孔282使凸起的装置,例如半导体外壳274的板上电容器276延伸穿过散热器280。
图40是根据本发明另一实施例构成的散热器290的透视图。散热器290位于包括板上电容器294的半导体元件外壳292之上。散热器290自半导体元件外壳292的表面延伸进入冷却区。例如,如果半导体外壳292位于膝上电脑内,然而散热器290可延伸超出半导体元件外壳292,处于膝上电脑的键盘之下。散热器290的内部包括如上所述的毛细管流体通道和无毛细管区。散热器290还包括散热翅片296。散热翅片最好不是散热器290的内部的一部分;即,在其中没有流体循环。请注意,散热翅片同散热器290构成在同一平面上。这种结构与先有技术的装置不同,它们的散热翅片是与热传播表面正交的。
图42是根据本发明另一实施例构成的散热器300的透视图。与前述实施例相同,散热器300位于包括板上电容器294的半导体元件外壳292之上。散热器300包括一终止于正交表面304的弧形或弯曲区域302。流体在装置300的毛细管流体通道和无毛细管区内循环。具体地讲,流体自装置300的水平区通过弯曲区302,并通过正交表面304连续循环。装置300还包括散热翅片306。所选择的散热翅片306包括孔308,它可用来将风扇(未示出)联接到正交表面304。
可以看出,在本发明的各实施例中,平面毛细管流体通道是连续的表面。即,认为它是连续的是指流体可以流过整个表面。换言之,流体可以从表面的任何区域移动到表面的任何其它区域。
本发明另一个值得注意的方面是大多数实施例构成一大致方形的设备。此处所用的大体方形一词指的是长宽比约为20∶1,更好的是约2∶1,最好为约1∶1。大多数先有技术的热管和热虹吸管的结构是管状的。
本发明的独特之处在于毛细管流体运动是由两个相邻水平平面构成的平面毛细管所建立的。在先有技术的热管中,毛细管运动一般是通过在表面上形成的槽建立的。换言之,在水平表面上形成有垂直壁以建立毛细管流体运动。在本发明中不采用垂直壁来建立毛细管流体运动。代替它的是,毛细管流体运动由平面毛细管通道的顶(天花板)和底(地板)表面建立的。
下表比较了图17所示本发明实施例所用多种固体材料的散热能力。
表1
材料性能 重量 热导率 热阻 参数
(克) (W/m/K) (℃/W)铜/钨(13/87)合金 81.0 210 0.882 1.0
钼(99.9%) 50.5 146 1.268 0.70
铝6061 13.4 180 1.028 0.86
金(99.9%) 95.2 317 0.584 1.51
铜(OFHC) 44.1 391 0.473 1.86
银(99.9%) 51.8 429 0.432 2.04
钻石(I.a.) 17.4 1850 0.100 8.82
本发明 39.8 4512 0.041 21.51
性能参数以铜/钨合金为标准。所有散热器的尺寸均为71.0mm×71.0mm×1.0mm。所有散热器均有一个19.0mm×19.0mm的方形热源集中于其一侧,并绕另一侧的周边有翅片散热器。本发明的实施采用钼,并包括深1.0mm的无毛细管区和深0.125mm的毛细管通道。装置内充注0.329cc的水。一般而言,本发明设备的充注应达到约20%的过充满状态。即,当充注流体毛细管通道时与流体毛细管通道不相符合的流体应为装置内流体总量的约20%。一般而言,实施本发明是每平方厘米装置的表面积用0.007cc流体。
本发明设备突出的热传导特性使本发明可以用多种材料实现。换言之,由于热传导性能的百分比大是由热的蒸发引起的,所以从热传导的观点看,用来实施本发明的具体材料不是关键。而代之以的是,材料可以根据成本、热膨胀系数或其它参数进行选择。本发明的一种低成本实施例是塑料的,前提是提供真空密封。
在稳定态操作过程中,平面毛细管流体通道内流体的运动非常快。流体的运动速度一般在25-200mm/s之间。此速度明显快于任何使用虹吸器具的装置。本发明的这个特点部分是由于其突出的热分布性能。
以上提供的对本发明特点实施例的说明,其目的在于图示和说明。并未打算使其完美无缺或将本发明精确限制在所公开的形式中。很明显,根据以上说明,进行多种改进和变化是可能的。所选择和说明的实施例是为了最好地解释本发明的原理及其实际应用,从而使本技术领域的其它专业人士最好地利用本发明和利用为适合于具体应用场合而做了各种改进的多种实施例。本发明的范围旨在由下述权利要求及其等效条款所限定。