缠结的织物 背景技术
家用和工业拭线器(wiper)经常用于快速吸收极性液体(例如,水和酒精)和非极性液体(例如,油)。拭线器必须具有足够的吸收能力以在拭线器结构内保持液体直到希望将该液体用压力除去,例如挤出。此外,拭线器还必须具有良好的物理强度和抗磨蚀性,以经受在使用中受到的撕裂、拉伸和磨蚀力。还有,拭线器也应当手感柔软。
过去,无纺织物,例如熔喷法无纺织物,被广泛地用作拭线器。熔喷法无纺织物具有适合吸收及保持液体的纤维间的毛细管结构。但是,熔喷法无纺织物有时缺乏用作重型拭线器所需要的物理性质,例如,撕裂强度和抗磨蚀性。因此,熔喷法无纺织物通常层压于一支撑层,例如不希望用于有磨蚀作用或粗糙表面的纺粘型无纺织物。
包含比熔喷法无纺织物粗和强纤维的纺粘型和人造纤维(staplefier)无纺织物通常通过加热和加压点粘接,能够提供良好的物理性质,包括撕裂强度和抗磨蚀性。但是,纺粘型和人造纤维无纺织物有时缺乏能够增强拭线器的吸收能力的纤维间毛细管结构。还有,纺粘型和人造纤维无纺织物经常包含粘接点,这种粘接点能够阻止无纺织物内的液体的流动或传输。
因此,需要保持纤维坚固、柔软,并且也具有良好的吸收性质,以用于各种拭线器应用中。
【发明内容】
根据本发明地一个方面,公开一种用于形成织物的方法。该方法包括形成具有第一表面和第二表面的无纺织物。该无纺织物包括可分离的多组分纤维,其具有暴露在其外周边的单个的片段。该分离的多组分纤维通常能够具有各种不同的结构,允许各片段从其分开。例如,在一些实施例中,多组分纤维具有选自下面一组中的结构:圆形、方形、多叶形、条形及其组合。
此外,可分离的多组分纤维还可以由各种材料并用任何已知的工艺制成。例如,在一些实施例中,在可分离的多组分纤维中的各片段包括聚乙烯、聚丙烯、聚酯、尼龙及其组合。而且,在一个实施例中,无纺织物的可分离多组分纤维是纺粘的热塑性纤维。
一旦无纺织物形成,该织物的第一表面粘接于该织物然后从其起绉的第一起绉表面。例如,在一个实施例中,起绉粘接剂以间隔开的图形施加于无纺织物的第一表面,使该无纺织物的第一表面按照这种间隔开的图形粘接于第一起绉表面。而且,在一些实施例中,该织物的第二表面也可以粘接于该织物然后从其起绉的第二起绉表面。虽然没有要求,但是起绉织物的两个表面有时能增强最终织物的某些特性。
在一些实施例中,在开始起绉之前,可以沿某个方向拉伸该织物。例如,在一个实施例中,沿纵向机械拉伸无纺织物。结果,该织物能够成为“颈缩的”,从而增加该织物沿横向的拉伸强度。无纺织物一般能够拉伸到任何缩希望的程度。例如,在一些实施例中,无纺织物可以拉伸到其初始长度的约10%到约100%,而在一些实施例中,拉伸到其初始长度的25%到75%。
该起绉的并且可选拉伸的无纺织物然后缠结(例如,液力、气体、机械等),使至少一部分单个的片段从该多组分纤维上分离。如果希望的话,起绉的无纺织物可以与包含纤维素纤维的纤维质材料缠结。除了纤维素纤维之外,纤维质材料还可以包含其他类型的纤维。在一些实施例中,当使用时,合成人造纤维按重量可以包含纤维质材料的约10%到约20%之间,并且其平均纤维直径在约1/4英寸到3/8英寸之间。
根据本方面的另一方面,公开一种复合织物(composite fabric),其包括与纤维质材料缠结的(例如,液力、气体、机械等)起绉的无纺织物,该纤维质材料包括纤维素纤维。该起绉的无纺织物可以由可分离的多组分热塑性纤维制成,该热塑性纤维具有暴露在其外周边上的单个的片段。在一个实施例中,可分离的多组分纤维是连续粘纺的热塑性纤维。而且,在某些实施例中,无纺织物也是被拉伸的。
下面更详细地讨论本发明的其他特征和方面。
【附图说明】
在下面的参考附图的说明书中将更加具体地说明本发明,其说明包括对本领域的普通技术人员而言是本发明的最佳实施方式,其中:
图1-图5是适合用于本发明的示例性的多组分纤维的剖视图;
图6是多组分纤维的剖视图,具有不好地形成的未暴露在该多组分纤维的外表面的单个的片段;
图7是根据本发明的一个实施例用于起绉无纺基底的方法的示意图;和
图8是根据本发明的一个实施例用于形成液力缠结复合织物的方法的示意图。
重复使用本说明书和附图的参考特征在于表示本发明的同样的或类似的特征或元件。
【具体实施方式】
现在详细参考本发明的各种实施例。在下面陈述实施例的一个或多个例子。每个例子以说明本发明的方式,而不是限制本发明的方式提供。事实上,本领域的普通技术人员应当理解,在不脱离本发明的精神实质和范围的情况下能够对本发明进行各种修改和变化。例如,作为一个实施例的部分被示出和描述的特征可以用在另一个实施例中以得到又一个实施例。因此,本发明覆盖属于权利要求及其等同物范围内的各种修改和变化。
定义
这里所用的术语“无纺织物”是指具有相互放置的单个纤维或细丝结构的织物,但其放置方式不像针织物那样以一致的方式。无纺织物由许多方法形成,例如,熔喷法,纺粘法,粘合梳理织物法等。无纺织物的基本重量通常用每平方码材料多少盎司(osy)或者每平方米多少克(gsm)表示。纤维直径通常用微米表示。(注意,从osy转换到gsm,用osy乘33.91)。
这里所用的术语“微纤维”是指平均直径不大于75微米的小直径纤维,例如,平均直径从约0.5到约50微米,或更具体地说,微纤维的平均直径可以从约2微米到约40微米。
这里所用的术语“熔喷纤维”是指由将熔融的热塑性材料通过多个精细的,通常是圆形的模具毛细管模压喷出形成的纤维,由于进入会聚的高速气体(例如空气)流的熔融的纤维,高速气体流使熔融热塑性材料的纤维的直径减小,成为微纤维的直径。此后,熔喷纤维被高速气体流输送并沉积在收集表面以形成随机分配的熔喷纤维的织物。这种方法公开在,例如,Butin等人的美国专利第3849241号中,为了所有的目的,其内容通过参考整个结合在这里。一般地说,熔喷纤维可以是连续的或不连续的微纤维,并且其直径通常小于10微米,并且当沉积在收集表面上时通常是发粘的。
这里所用的术语“纺粘纤维”是指基本上连续的小直径纤维,它是将熔融的热塑性材料从多个精细的,通常是圆形的直径为挤压纤维大小的喷丝头毛细管挤压,然后用,例如,抽拉和/或其他已知的纺粘机器快速减小挤压成单纤维。这种纺粘的无纺织物的产品被描述并示出在,例如,下述的美国专利中:Apple等人的4340563号,Dorschner等人的3692618号,Matsuki等人的3802817号,Kinney的3338992号和3341394号,Hartman的3502763号,Levy的3502538号,DObo等人的3542615号以及Pike等人的5382400号,为了所有的目的,这些专利的全部内容通过参考结合在此。当纺粘纤维沉积在收集表面上时它通常是不粘的。纺粘纤维的直径有时能够小于约40微米,并经常在5至20微米之间。
这里所用的术语“浆粕(pulp)”是指天然纤维,例如,木质和非木质植物。木质植物包括,例如,落叶和针叶树。非木质植物包括,例如,棉花、亚麻、茅草、马利筋属植物、麦秸、黄麻和蔗渣。
这里所用的术语“平均纤维长度”是指浆粕纤维的加权平均长度,用可从Kajaani Oy Electronic,Kajaani Finland得到的Kajaani纤维分析模式No.FS-100来确定。根据试验程序,浆粕样品用浸渍液体处理,以确保没有纤维束或纤维杂质出现。每种浆粕样品在热水中分解并稀释成大约0.001%的溶液。当使用标准的Kajaani纤维分析试验程序时,从稀释的溶液中抽取大约50至100ml单个的试验样品。加权平均纤维长度可以用下述方程表示:
Σxik(xi*ni)/n]]>
其中
k=最大纤维长度,xI=纤维长度
ni=其长度为xI的纤维数,以及
n=被测量的纤维总数。
这里所用的术语“低平均纤维长度浆粕”是指含有相当数量的短纤维但不是纤维颗粒的浆粕。许多再生木材纤维浆粕可以认为是低平均纤维长度浆粕;但是再生木材纤维浆粕的质量取决于回收纤维的质量以及在先处理的类型和数量。当由光纤分析器,例如No.FS-100型Kajaani纤维分析器(Kajaani Oy Electronic,Kajaani Finland)确定时,低平均纤维长度浆粕的平均纤维长度可以小于约1.2mm。例如,低平均纤维长度浆粕的平均纤维长度可以在0.7至1.2mm的范围内。示例性的低平均纤维长度浆粕包括首次用的硬木浆粕和来源于办公废物、白报纸和纸板碎片的再生纤维浆粕。
这里所用的术语“高平均纤维长度浆粕”是指含有较少量的短纤维但不是纤维颗粒的浆粕。高平均纤维长度浆粕通常由某些非再生的(即,首次用的)纤维构成的。被筛选过的再生纤维浆粕叶可以具有高平均纤维长度。当由光纤分析器,例如No.FS-100型Kajaani纤维分析器(Kajaani Oy Electronic,Kajaani Finland)确定时,高平均纤维长度浆粕的平均纤维长度可以大于约1.5mm。例如,高平均纤维长度浆粕的平均纤维长度可以在1.5至6mm的范围内。示例性的高平均纤维长度浆粕是木材纤维浆粕,包括,例如,漂白的或未经漂白的首次用的软木纤维浆粕。
这里所用的术语“多组分纤维”或“复合纤维”是指由至少两种聚合物组分形成的纤维。这种纤维通常由单独的挤压机挤压而成的不是纺成在一起形成一根纤维的。虽然多组分纤维可以包括类似的或同样的聚合物材料的单独的组分,但相应组分的聚合物通常是相互不同的。该单独的组分通常设置在在该纤维截面的基本固定的定位的不同区域并沿纤维的整个长度延伸。这种纤维结构可以是,例如,并排设置,馅饼式(pie)设置,或任何其他设置。双组分纤维及其织造方法公开在下述美国专利中:Kaneko等人的第5108820号,Kruege等人的4795668号,Pike等人的5382400号,Strack等人的5336552号以及Marmon等人的6200669号,其整个内容通过参考结合于此。纤维和包含该纤维的单个的组分可以具有各种不规则的形状,例如在下述美国专利中缩描述的:Hogle等人的5277976号,Hills的5162074号和5466410号,Largman等人的5069970号和5057368号,为了所有的目的其整个内容通过参考结合于此。
这里所用的术语“纤维”是指将聚合物通过例如模具的小孔形成的细长挤压物,除非另有说明,术语“纤维”包括具有一定长度不连续的单纤维和连续的单纤维材料,例如单丝。
详细说明
一般地说,本发明涉及由缠结的无纺织物形成的织物,其包含可分离的多组分纤维。该无纺织物被起绉并可选地拉伸以改善最终得到的织物的各种性质。在一些实施例中,例如,该无纺织物是用包括纤维素纤维和可选的合成人造纤维的纤维质材料液力缠结的。通过用可分离的多组分纤维形成无纺织物,多组分纤维的各种片段在其缠结过程中可以从其分开,从而,改善结果织物的松密度、柔软性和毛细管的张力。
用于本发明织物中的该无纺织物可以由各种不同的工艺和各种不同的材料制成。例如,在一些实施例中,该无纺织物包括可分离的多组分纤维。在织造也是可分离的多组分纤维中,集体形成一致的(unitary)多组分纤维的单个的片段是沿着该多组分纤维的纵向连续的,其方式是一个或多个片段形成一致的多组分纤维的外表面的一部分。换句话说,一个或多个片段暴露在该多组分纤维的外周边上。例如,参考图1,图1示出一致的多组分纤维110,其具有并列结构,第一片段112A形成该多组分纤维110的外表面的一部分,而第二片段112B形成该多组分纤维110的外表面的其余部分。
如图2所示的一种特别有用的结构是多个径向延伸的楔形,参考该片段的剖面图,该多组分纤维110的外表面比该多组分纤维110的内部厚。在一方面,该多组分纤维110可以具有可选的一系列不同聚合物材料的单个楔形片段112A和112B。
除圆形纤维结构之外,多组分纤维可以具有其他形状,如方形、多叶形、条形和/或其他形状。此外,如图3所示,可以采用具有围绕中空的中心116的可选片段114A和114B多组分纤维。在又一方面,如图4所示,适合用于本发明的多组分纤维110可以包括片段118A和118B,其中,第一片段118A包括具有径向延伸臂119的单个纤维,其将多个另外的片段118B分开。虽然分离应当发生在组分118A和118B之间,但是由于中间芯部120与单个臂119连接,分离也可以不经常地发生在凸起(lobe)或臂119之间。因此,为了实现更均匀的纤维,经常希望单个的片段不具有粘结中间芯。例如,如图5所示,形成多组分纤维的可选片段112A和112B可以延伸过该纤维的整个截面。正如下面所讨论的,应当理解,单个的片段可以包含同样的或类似的材料以及两种或更多种不同的材料。
单个的片段,尽管形状各异,但通常在纤维的截面具有不同的边界和区域。例如,形成中空纤维型多组分纤维可能希望具有某些材料,以便阻止同样材料的片段在该多组分纤维内部的接触点粘接或熔化。而且,正如上面所提到的,也希望形状很好地形成或“不同”,沿该纤维的外表面它们不重叠相邻的片段。例如,如图6所示,图中示出可选片段122A和122B,其中片段122B“包绕”着邻近片段122A的外部。这种重叠经常阻止和/或防止单个片段的分离,特别是在片段122A完全被邻近片段122B所淹没的情况下。因此,“包绕”应当避免,并高度地希望形成良好的或不同的形状。
在一些例子中,选配各热塑性材料的粘度也能有助于防止上述的“包绕”。这可以用各种不同的方式达到。例如,各种材料的温度可以控制在其熔化范围或处理限度的相对端,例如,当用尼龙和聚乙烯形成馅饼形多组分纤维时,聚乙烯可以被加热到接近其熔化范围下限的温度(约390℃),而尼龙可以加热到接近其熔化范围上限的温度(约500℃)。关于这一点,组分之一可以在低于纺丝头组合件(sipn pack)温度的温度送到该纺丝头组合件中,使它在接近其处理限度下限的温度下被处理,而另一种材料的引入温度确保在处理限度上限进行处理。此外,采用某些添加剂在本领域是已知的,要么减少要么增加聚合物材料所希望的黏性。
用于形成无纺织物的多组分纤维也可以形成使得单个片段的尺寸和其各自的聚合物材料相互不成比例。虽然其比例为80∶20或75∶25更容易织造,但单个片段的体积可以变化到95∶5。例如在一个实施例中,如图3所示,单个片段114A和114B具有相互不成比例的尺寸。例如,如果形成该片段的聚合物之一比形成其余片段的聚合物昂贵得多,那末该昂贵的聚合物材料的量可以通过减少其相应片段的尺寸来减少。
用于本发明的适合用来制造可分离的多组分纤维的各种聚合物材料是已知的。例如,包括但不限于,聚烯烃、聚酯、聚酰胺,以及其他可熔纺的和/或形成纤维的聚合物。可以用于本发明实践的聚酰胺可以是本领域普通技术人员所知道的任何聚酰胺,包括其共聚物和混合物。聚酰胺及其合成方法可以在Don E.Floyd的“聚合物树脂(PolymerResins)”(国会图书馆分类号66-20811,Reinhold Publishing,NK,1966)一文中找到。商业上使用的聚酰胺是尼龙6、尼龙66、尼龙11和尼龙12。这些聚酰胺可以从多个渠道得到,特别是,例如,Emser Industrialof Sumter,S.C(Grilon@ & Grilamidnylons)和Atochem,Inc.PolymerDivision,of Glen Rock,N.J.(Rilsannylons)。许多聚烯烃可以用来制造纤维产品,例如,聚乙烯,诸如Dow Chemical′s ASPUN6811ALLCPE(线性低密度聚乙烯),2553LLDPE和25355以及12350高密度聚乙烯就是这种可适合的聚合物。形成纤维的聚丙烯包括ExxonChemical Companys EscorenePD3445聚丙烯和Himont Chemical Co.sPF-304。除了上面提到的之外,许多其他适合形成纤维的聚丙烯也可以从市场上买到。
虽然许多材料适合用于熔纺或其他多组分纤维工艺,由于多组分纤维可以包含两者或更多种不同的材料,本领域的技术人员应当理解,特定的材料可能不适合与所有其他的材料一起使用。因此,一方面,考虑到材料与邻近片段材料的兼容性,形成多组分纤维的材料的组分通常是选定的。关于这一点,形成单个片段的材料与形成相邻片段的材料一般是不可熔混的,并且希望具有与其较差的亲合力。选定的在处理条件下明显倾向于相互粘合的聚合物材料可能会增加使该片段分离的碰撞能量并减少在单一多组分纤维的单个片段之间实现的分离程度。因此,经常希望相邻的片段是由不相似的材料形成的。例如,相邻的片段一般可以包含聚烯烃和非聚烯烃,例如,包括下列材料的不同组分:尼龙6和聚乙烯,尼龙6和聚丙烯,聚酯和HDPE(高密度聚乙烯)。相信也适合用于本发明的其他组分包括但不限于尼龙6和聚酯,以及聚丙烯和HDPE。
虽然不是必须,但是可以连接用于构成无纺织物的可分离的多组分纤维以改善织物的耐用性、强度、手感、美观和/或其他性质。例如,该织物可以热结合、超声结合、粘接结合和/或机械结合。作为一个例子,无纺织物可以点连接使它具有许多各小的不连续的结合点。示例性的点结合方法是热点结合,其一般涉及通过加热辊之间的一层或多层,例如,照像制版形成图形的辊和第二粘接辊。照像制版的辊以某种方式形成图形,使得该织物不被粘接在其整个表面,并且,第二辊可以是光滑的或有图形的。结果,照像制版的辊形成各种图形既具有功能性又具有美观性。示例性的连接图形包括但不限于,下述美国专利所公开的:Hansen等人的3855046号,Levy等人的5620779号,Haynes等人的5962112号,Sayovitz等人6093665号,Romano等人的美国实用新型专利428267号,Brown的实用新型专利390708号,为了所有的目的,通过参考其整个内容结合于此。例如,在一些实施例中,无纺织物可以选择地结合成总的粘接面积小于约30%(用常规的光学显微镜方法所确定的)和/或均匀结合密度大于每平方英寸100结合点。例如,无纺织物可以具有总结合面积从约2%到约30%和/或结合密度为每平方英寸约250到500针状结合点(pin bonds)这种总结合面积和/或结合密度的组合在一些实施例中可以通过结合具有针状点结合点图形的无纺织物实现,该针状结合点图形具有每平方英寸多于约100针状结合点,当充分接触光滑的砧辊时提供的总结合面积小于30%。在一些实施例中,结合图形可以具有针状结合点密度每平方英寸从约250针状结合点到约350针状结合点和/或当充分接触光滑的砧辊时总结合面积从约10%到约25%。
还有,无纺织物可以用连续接缝或图形结合。作为一个附加的例子,无纺织物可以沿该织物的周边或直接穿过其宽度或邻近其边缘的横向结合。其他结合技术,可以使用诸如热结合和乳胶浸渍剂的组合技术。可选地和/或,另外,树脂、乳胶或粘接剂可以应用于无纺织物,例如,通过喷淋或印花(print)并烘干提供所希望的结合。再一种结合技术描述在Everhart等人的5284703号,Anderson等人的6103061号,和Varona的6197404号美国专利中,为了所有的目的其通过参考整个地结合在此。
无论无纺织物是否结合,它通常均起绉。起绉能够使织物形成微小的折叠以使其产生各种不同的特征。例如,起绉打开无纺织物的细孔结构,从而增加渗透性。而且,起绉还能够增强织物沿纵向或横向的拉伸性,同时增加其柔软性和松密度。
起绉无纺织物的各种技术公开在Varona的美国专利第6197404号中。例如,图7示出了起绉方法的一个实施例,该方法能够起绉无纺织物20的一边或两边。例如,无纺织物20可以通过第一起绉台60、第二起绉台或通过两者。如果只希望起绉无纺织物20的一边,它可以或者通过第一起绉台60,或者第二起绉台70,而使一个起绉台或另一个起绉台被绕过。如果希望起绉无纺织物的两边,它可以通过两个起绉台60和70。
织物20的第一边83可以用第一起绉台60起绉。该起绉台60包括第一印花台,其具有形成图形的或平滑的下印花辊62,平滑的上砧辊64和印花池65,并且还包括烘干辊66以及相关的起绉刀片68。
辊62和64压轧织物20并引导其向前。由于辊62和64转动,形成图形的或平滑的印花辊62浸入包含粘结剂材料的池65中,并将粘结剂材料以部分地覆盖或全部覆盖的方式施加于织物20的第一边83。在粘结剂涂覆的表面83粘结于该烘干辊66的情况下,粘结剂涂覆的织物20然后绕烘干辊66通过。然后用医生刀68起绉织物20的第一边83(即,顶离该滚筒并弯曲)。
无论第一起绉台60是否被绕过,织物20的第二边85可以用第二起绉台70起绉。第二起绉台70包括第二印花台,其包括形成图形的或平滑的下印花辊72,平滑的上砧辊74和印花池75,并且还包括烘干辊76以及相关的起绉刀片78。辊72和74压轧织物20并引导其向前。由于辊72和74转动,印花辊72浸入包含粘结剂材料的池75中,并将粘结剂材料在多个间隔开的位置以部分地覆盖的方式或以全部覆盖的方式施加于织物20的第二边85。在粘结剂涂覆的表面85粘结于该烘干辊76的情况下,粘结剂涂覆的织物20然后绕烘干辊76通过。然后用医生刀78起绉织物20的第二边85。起绉之后,无纺织物20可以通过冷却台80并在缠结之前缠绕在储存辊82上。
在第一和/或第二印花台施加给织物的粘结剂材料可以增强基底与起绉滚筒的粘合,并加强该织物20的纤维。例如,在一些实施例中,粘结剂材料可以将织物粘接到这样的程度,这种程度是上述任选粘合技术没有用过的。
各种粘接剂材料通常用于在应用该粘接剂的部位加强该织物20的纤维,并暂时将织物20粘接于滚筒66和/或76的表面。弹性体粘结剂(即,能够至少延伸75%而不断裂的材料)特别适合。适合的材料包括但不限于水基苯乙烯丁二烯、氯丁橡胶、聚氯乙烯、乙烯系共聚物、聚酰胺、乙烯乙烯基三元共聚物机器组合。例如,一种能够使用的粘结剂材料是B.F.Goodrich Company出售的丙稀酸类共聚物乳胶,其商标名为HYCAR。该粘结剂可以用上面所述的印花技术被应用,或者,可选地通过熔喷、熔喷洒、滴熔、溅射或任何其他能够形成部分或全部粘接剂覆盖无纺织物20的技术被应用。
可以选择织物20的粘结剂覆盖百分比以获得不同的起绉程度。例如,粘结剂可以覆盖织物表面的约5%到100%,在一些实施例中,为织物表面的约10%到约70%之间,在另一些实施例中为20%到50%之间。粘结剂在其使用部位也可以渗透该无纺织物20。特别是,粘结剂通常渗透过无纺织物20厚度的约10%到约50%,虽然在某些部位粘结剂的渗透可以大于或小于上述值。
可选择地,在起绉之前,也可以沿纵向或横向拉伸无纺织物20。织物20的拉伸可以用来优化和增强纤维的物理性质,包括但不限于,柔软性、松密度、拉伸性和恢复性、渗透性、基本重量、密度以及液体保存能力。例如,在一些实施例中,可以沿纵向机械地拉伸织物20以使织物20在横向收缩或颈缩。结果得到的颈缩的织物20在横向变得更可拉伸。织物20的机械拉伸可以用本领域已知的各种方法实现。例如,可以沿纵向预先拉伸织物20其初始长度的约0到约100%,以获得沿横向能够拉伸(例如,约0到约100%)的颈缩的织物。通常,沿其纵向拉伸织物20其初始长度的约10%到约100%,更普遍地为其初始长度的约25%到约75%。
一旦被拉伸,织物20然后能够在尺寸上较稳定,首先是由于粘结剂应用于织物20,其次是由于在起绉期间的加热。这种稳定性能够调整织物20的横向拉伸性质。纵向拉伸通过在无纺织物20的粘合区域的平面外变形进一步稳定,这种变形发生在起绉期间。其他的拉伸方法也可以用于本发明,以沿纵向或横向施加拉伸张力。例如,合适的拉伸方法的一个例子拉幅框架法,其利用夹持装置,例如夹子,夹持无纺织物的边缘并施加拉伸力。相信适合用于本发明的拉伸技术的另一个例子是公开在Filling的美国专利第5573719号中,为了所有的目的其整个内容通过参考结合于此。
根据本发明,无纺织物然后用本领域已知的任何缠结技术进行缠结(例如,液力的、气体的、机械的等)。无纺织物可以单独缠结,或与其他材料一起缠结。例如,在一些实施例中,无纺织物与纤维素纤维一起用液力缠结技术整体地缠结。纤维素纤维组分通常包括所得到的纤维的任何希望的量。例如,在一些实施例中,纤维素纤维可以包括大于织物重量的约50%的量,并且在一些实施例中,为织物重量的约60%到约90%。
使用时,该纤维素纤维组分可以包括纤维素纤维(例如,浆粕,热化学浆粕,合成纤维素纤维,改性纤维素纤维等)以及其他类型的纤维。合适的纤维素纤维的来源包括首次使用的木材纤维,例如热化学的漂白过的或未漂白过的软木和硬木浆粕。也可以用,例如,从办公废品、白报纸、棕色报纸原料(brown paper stock)、纸板碎屑等得到的再生的或回收的纤维。还有,可以用织物纤维,例如,马尼拉麻、亚麻、马利筋属植物、棉花。改性棉、棉短绒。此外,还可以用合成纤维素纤维,例如,人造丝和胶粘人造丝。也可以用改性的素纤维纤维。例如,纤维质材料可以包括由通过适当的官能团(例如,羧基、烷基、乙酸基。硝酸根等)沿着碳链取代烃基集团所形成的纤维素的衍化物。
使用时,浆粕纤维可以具有任何高平均纤维长度浆粕、低平均纤维长度浆粕,和它们的混合物。高平均纤维长度浆粕的平均纤维长度通常为1.5mm到6mm。这种纤维的例子可以包括但不限于,北方软木材、南方软木材、红木、红松、铁杉、松木(例如,南方松木)、云杉(例如,黑云杉)、及其组合等。示例性的高平均纤维长度的木材浆粕包括从Kimberly-Clark Corporation得到的浆粕,其商标名称为“Longlac 19”。
低平均纤维长度浆粕可以是,例如,某些首次使用的硬木材浆粕和从,例如,白报纸、再生纸板和办公废品再生的(即回收的)纤维浆粕。可以用硬木材浆粕,例如桉树、枫树、桦树、杨树等。低平均纤维长度浆粕的平均纤维长度小于1.2mm,例如从0.7mm到1.2mm。高平均纤维长度浆粕和低平均纤维长度浆粕的混合物可以包含低平均纤维长度浆粕的较大百分比。例如,混合物可以包括多于50%重量的低平均纤维长度浆粕和少于50%重量的高平均纤维长度浆粕。示例性的混合物包含75%重量的低平均纤维长度浆粕和25%重量的高平均纤维长度浆粕。
如上所述,在纤维素纤维组分中也可以利用非纤维素纤维。可以利用的合适的非纤维素纤维的某些例子包括但不限于聚烯烃纤维、聚酯纤维、尼龙纤维、聚乙酸乙烯酯纤维及其混合物。在一些实施例中,非纤维素纤维可以是人造纤维,其平均纤维长度,例如在约0.25英寸到0.375英寸之间。当利用非纤维素纤维时,纤维素纤维组分一般包含约80%到约90%之间重量的纤维素纤维,诸如软木材浆粕纤维,和约10%到约20%重量的非纤维素纤维,诸如聚酯或聚烯烃人造纤维。
少量的湿强力树脂和/或树脂粘合剂可以加入到纤维素纤维组分中,以改善强度和抗磨蚀性。交联剂和/或水合剂可以加入到浆粕混合物中。不粘合剂(Dedonding agent)如果希望非常开放或松散的无纺的浆粕纤维织物,可以加入浆粕混合物中以减少氢键键合。一定量的不粘合剂的加入。例如约1%得到约4%的织物重量百分比也明显减少测量的织物的静摩擦和动摩擦系数,并改善复合织物的连续单丝富边的抗磨性。不粘合剂据信用作润滑剂或减摩剂。
参考图8,图8示出了用液力将纤维素纤维与包含可分离多组分纤维的无纺织物缠结的实施例。如图所示,含有纤维质纤维的纤维浆液被输送到常规的造纸调浆箱12,其中浆液经斜水槽14沉积在常规形成的织物或表面16上。纤维材料的悬浮物可以具有常规造纸法所用的任何稠度。例如,该悬浮物按重量可以含有从约百分之0.01到约百分之1.5的悬浮在水中的纤维材料。然后将水从纤维材料悬浮物中除去,以形成均匀的纤维材料层18。
当供给滚筒22沿相关箭头所指的方向旋转时,无纺织物20从供给滚筒22松散开并沿相关箭头所指的方向行进。该无纺织物20通过由堆列辊(stack roller)28和30形成的S辊装置26的辊隙24。无纺织物20然后放置在常规液力缠结机的有小孔的缠结表面32,其中,纤维素纤维层18被铺设在织物20上。虽然不要求,但是通常也希望纤维素纤维层18在无纺织物20和液力缠结集流腔34中间。纤维素纤维层18和无纺织物20通过一个或多个液力缠结集流腔34并且用流体射流处理以使纤维素纤维材料与无纺织物20的纤维缠结以形成复合织物36。
可选地,液力缠结可以在纤维素纤维层18和无纺织物处于同一有小孔的帘(网状织物)上时进行。本发明也设想将干燥的纤维素纤维薄片放置在无纺织物上面,将该干燥的薄片再水化成特定的稠度,然后将再水化的薄片进行液力缠结。液力缠结可以在纤维素纤维层18与水充分饱和时进行。例如,纤维素纤维层18在立即缠结之前可以含有90%的水。可选地,纤维纤维层18可以是气流法或干法成形层。
液力缠结可以用常规的缠结设备进行,例如,公开在Evns的美国专利第3485706号的缠结设备,为了所有的目的,其内容通过参考结合于此。液力缠结可以用任何合适的的工作液体进行,例如水。工作液体流过集流腔,集流腔将流体均匀地分布在一系列单个孔或单个小孔。这些孔或小孔的直径为从约0.003到约0.015英寸,并且可以设置成具有任何数目的小孔的一行或多行,例如每行中每英寸30-100。例如缅因州,Biddeford的Honeycomb System Incorporation生产的集流腔包含窄条,其具有直径为0.007英寸的小孔,每英寸30个,并且可以用一行小孔。但是,也应当理解,也可以应用任何其他的集流腔结构。例如,可以用单个集流腔或多个集流腔可以以连续方式设置。
流体可以撞击纤维素纤维层18和无纺织物20,其由具有小孔的表面支撑,例如,单个平面网状织物,其网眼尺寸为从约40×40到约100×100。该具有小孔的表面也可以是多层网状织物,其网眼尺寸为从约50×50到约200×200。在许多水射流处理法中,通常真空吸嘴38可以直接设置在液力针刺(needling)集流腔的下面或在缠结集流腔下游的具有小孔的缠结表面32的下面,以便来自液力缠结组分材料36的过剩水被抽吸。
虽然没有包含任何操作理论,据信,撞击位于无纺织物20上的纤维素纤维层18的工作流体的柱状射流将这些纤维驱动进入并部分地通过该织物20的纤维基质或网络中。当流体射流和纤维素纤维18与无纺织物20相互作用时,纤维素纤维18也与无纺织物的纤维相互缠结。
具有压力的水流的撞击也使暴露在该无纺织物的可分离的多组分纤维外周边的片段从该多组分纤维分离。例如,具有较小直径(例如,相当于直径小于15微米的纤维)的可分离的多组分纤维和具有暴露在其外周边的多个单个片段的纤维可以产生具有许多精细纤维的,即微纤维的织物。这些精细的纤维或微纤维能够增强所得到的织物的各种性质。例如,将多组分纤维分离成各种片段可以增强所得到的织物的柔软性、松密度和横向强度。
为了实现多组分纤维所希望的分离,通常希望液力缠结用从约100到约3000psig的水压力进行,在一些实施例中,从约120到500psig,在一些实施例中在约150到约180psig之间。当在上述压力的上部范围进行处理时,合成织物36可以以高至每分钟1000英尺(fpm)的速度进行处理。
在缠结处理中的上述射流压力通常是至少100psig,因为较低的压力通常不能产生所希望的分离。但是,也应当理解,充分的分离也可以在相当低的水压下实现。特别是,当利用较高质量的截面形状片段和/或在相邻片段用不容易相互粘结的合成材料时。此外,通过将多组分纤维进行两次或多次缠结时,部分地可实现较多的分离。因此,希望织物在缠结设备中进行至少一个来回,在这个来回中,水射流引向织物的第一面,在另一个来回中,水射流引向该织物相反的一面。
在流体射流处理之后,结果得到的复合织物36然后可以传送到非压缩干燥处理。不同速度的拾起滚筒40可以用来从液力针刺带到非压缩干燥处理传送材料。可选地,可以用常规的真空式拾起装置和传送结构。如果希望的话,复合织物36在传送到干燥处理之前可以进行湿法起绉。织物36的非压缩干燥可以用通空气常规的旋转滚筒干燥装置42进行。通空气干燥器42可以是具有孔46的外旋转圆筒44,其与一个用于接收吹进孔46中的热空气的帽盖48组合。通干燥带50输送外旋转圆筒44上部的复合织物36。被迫通过通空气干燥器42的外旋转圆筒44上的孔46的加热空气将水从复合织物36中除去。被通气干燥器42强迫通过复合织物的空气的温度在从约200°F到约500°F的范围。另一种通气干燥方法和设备可以在Nike的美国专利第2666369号和Shaw的美国专利第3821068号中找到,为了所有的目的其内容通过参考结合于此。
也希望使用精整步骤和/或后处理工艺以使复合织物36具有选定的性质。例如,复合织物36可以用轧光辊轻压,起绉、拉绒或其他处理,以增强拉伸和/或提供均匀的外观和/或某种触觉性质。作为一种选择或附加地,可以将织物36进行各种化学后处理,例如,粘结或染色。可以使用的附加后处理公开在Levy等人的美国专利第5853859号中,为了所有的目的,其内容通过参考结合于此。
本发明的织物的基本重量一般在每平方米从约20克到约200克(gsm),特别是从约35gsm到约100gsm。低基本重量产品通常适合用于轻型拭线器,而高基本重量产品比较适合用作工业拭线器。参考下面的例子能够更好地理解本发明。
实例1
下面将根据本发明说明形成缠结的织物的能力。起初,形成0.5osy点结合的纺粘织物。该纺粘织物含有由尼龙(Custom Resin的Nylene401)外皮(sheath)和聚乙烯芯子(Dow 6811)形成的潜在的可分离纤维。该可分离纤维的纤度为每单丝3.0。该纺粘织物的起绉度为15%。该纺粘织物然后在每平方英寸1500磅的缠结压力下与浆粕纤维组分液力缠结在粗金属丝上。结果得到的织物的基本重量为每平方米122克,并且按照重量包含20%的纺粘织物,和80%的浆粕纤维组分。
一旦形成,该织物“粘性油吸收”和“织物渗透性”由下述方法确定。
粘性油吸收效果法
粘性油吸收是一种用于确定织物擦去粘性油的能力。首先将织物的样品安装在一个滑板(10cm×6.3cm)的衬垫的表面。该滑板安装在垂直于该滑板的一个臂上,该滑板穿过一旋转盘。该滑板然后被秤重以便使该滑板和样品的组合重量为约768克。此后,该滑板和横向臂被定位在水平旋转盘上,而样品由秤重的滑板压在该盘的表面。特别是,该滑板和横向臂由滑板的前边(6.3cm边)定位在正好偏离盘的中心并且该滑板的10cm中心线沿该盘的径向线定位,以便6.3cm尾边定位在靠近该盘的周边。
然后一(1)克油在该滑板前边的前面被放置在该盘的中心。直径为约60cm的盘每分钟转动约65圈,同时横向臂以每秒钟约2cm的速度移动滑板越过该盘,直到滑板的尾边离开盘的外边。测试在这点结束。擦拭效果通过测量擦拭器在擦拭前和擦拭后的重量来评估。摩擦擦拭效果通过用一克油(总油重)除增加的重量来确定。上述测试在恒定温度和相对湿度条件(温度70°F±2°,相对湿度65%)的情况下进行。
织物渗透性测量法
织物渗透性从测量材料对液体流动的阻力而得到。已知粘度的液体以恒定的速度被迫通过给定厚度的材料,当监测到压力降时测量流动阻力。利用下面的达西(Darcy)定律确定渗透性:
渗透性=(流率×厚度×粘性/压力降)
其中单位如下:
渗透性:cm2或达西(darcy)(1达西+9.87×10-9cm2)
流率:cm/秒
粘性:帕-秒
压力降:帕
设备包括一个装置,其中即筒中的活塞推动液体通过待测量的样品。样品被夹在两个铝质的圆筒之间,取向与圆筒垂直。两个圆筒的外径为3.5″,长度为约6″,内径为2.5″。3″直径的样品用其外边缘保持在位并因此完全保持在设备内。底部圆筒具有活塞,该活塞能够在该圆筒内以恒速垂直移动并连接于压力测量转换器,其通过由该活塞支撑的液柱能够监控遇到的压力。该测量转换器设置成随活塞而移动,以便没有附加的被测压力,直到液柱接触样品并被推过该样品。在这点,由于材料对液体的流过它的阻力产生被测的附加压力。活塞由于步进电机驱动的滑动装置而移动。
测试开始时以恒速移动活塞直到液体被推动通过样品。该活塞然后停止并且测到初始压力。这对样品的浮力作用进行校正。然后重新开始移动一段足够的时间以便测量新的压力。两个压力之间的差时由于材料对液体流动的阻力所造成的结果,并且压力降用于上面提出的方程中。该活塞的速度为流率。虽然能够浸湿该材料的液体由于能够实现饱和流动为优选液体,但其粘度为已知的任何流体均可以使用。用活塞的速度为20cm/分钟、粘度为6厘泊的矿物油(由加利福尼亚州,洛杉矶市的Penreco制造的Peneteck Technical矿物油)进行测量。这种方法也公开在Varona等人的美国专利第6197404号中。
在完成上述测试之后,确定粘性油吸收为78%,织物的渗透性为112达西。如此高的油吸收性和织物的渗透性反映出本发明的织物应用于拭线器吸收油和其他物质的能力。
实例2
下面将根据本发明说明形成缠结的织物的能力。起初,形成0.5osy点粘结的纺粘织物。该纺粘织物含有由尼龙(Custom Resin的Nylene401)外皮(sheath)和聚乙烯芯子(Dow 6811)形成的潜在的可分离纤维。该可分离纤维的纤度为每单丝3.0。该纺粘织物的起绉度为15%。该纺粘织物然后在每平方英寸1500磅的缠结压力下与浆粕纤维组分液力缠结在粗金属丝上。结果得到的织物的基本重量为每平方米85克,并且按照重量包含30%的纺粘织物,和70%的浆粕纤维组分。
结果得到的织物的粘性油吸收为82%,织物的渗透性为128达西。在完成上述测试之后,确定粘性油吸收为78%,织物的渗透性为112达西。如此高的油吸收性和织物的渗透性反映出本发明的织物应用于拭线器吸收油和其他物质的能力。
虽然本发明关于其具体实施例进行了详细描述,本领域的技术人员应当明白,在懂得了上述内容之后,很容易对各种变化构思出变换,对这些实施例构思出等同物。因此,本发明的范围应当确定为权利要求及其等同物。