连续铸造熔融金属的装置 【技术领域】
本发明涉及连续铸造熔融金属,尤其是钢水的装置,从而形成铸造带。
技术背景
当在一个双辊铸造机器内铸造钢铁时,在所有情况下,该机器具有两个在铸造过程中以相对方向旋转的内部冷却铸辊,轴向平行地设置,并且限定了形成于它们之间的铸造间隙的纵向侧边。铸造间隙被侧板侧向密封,侧板抵靠着铸辊端面放置。在所有情况下,足量熔融流体在铸造间隙上方汇成熔池,且被浇铸入铸造间隙。从熔池流出的熔融流体流到铸辊上而在铸辊上凝固,且由铸辊输送至铸造间隙。从以此方式形成于铸辊上的带状壳及仍为液态的熔融金属形成的铸造间隙内形成钢带,然后在铸造间隙底部抽离钢带以进一步予以加工。
因为离开铸造间隙时,铸造带处于高温状态,在其与氧气所接触的表面上形成氧化皮,这将对钢带的后续加工带来困难。特别的,氧化皮对于钢带铸造成型后所进行的管内热轧加工结果具有不利影响。
已经提出了各种解决方法,以减少氧化皮的形成程度。例如,由US-A 5,584,337、EP-A 776 984、EP-A 780 177和EP-B 830 223知,在铸造过程中,可在该类型装置的铸造间隙下方设置一箱体,用于形成一个缺氧的惰性气体环境。特别的,由EP-A 780 177亦知,可将箱体直接移动于箱体之上,且通过接触密封产生气密性接触。
除了形成氧化皮的问题,在该双辊铸造机器运行时亦有进一步困难存在,即,由铸造带所产生的热辐射使得处于辐射范围内的双辊铸造机器部件强烈受热。一方面,该受热导致铸辊承载架发生变形。该变形使得确保铸造带的尺寸精度变得困难,特别是当相应的承载架设计为活动框架以便允许铸辊改变时。另一方面,双辊铸造机器区域内的高温对铸造地面上控制铸造操作的工作人员的身体健康极其不利。
此外,来自铸造间隙的高温钢带的直接热辐射减少了铸辊表面的快速冷却的程度,且铸辊表面可被可能存在于两个铸辊下方的向上流动的热气团所夹杂的污垢颗粒物所污染。
特别的,当由于铸造带形态发生变化而需要改变铸辊时,尤其是当其带宽发生改变所引起铸辊的尺寸(直径、表面长度)发生改变时,直接安置于下游箱体的铸造带入口的几何形态也将改变。这也导致需要调换该箱体的相应部件,因而极大增加了此形态调整所需要的时间。
【发明内容】
本发明建立在避免以上所述缺陷的基础上,并且提供一个介绍所述类型的装置。采用该装置,铸辊调换安装操作最为简便且费用最低,且可减轻铸造带产生的热辐射对铸辊及其周边支撑结构的影响。
以介绍所述现有技术为基础,通过采用一个用于铸造熔融金属,尤其是钢水,以形成铸造带的装置而获得该目的,该装置带有两个铸辊,轴向平行设置,在铸造操作过程中以相对的方向旋转,限定形成于它们之间的铸造间隙的纵向边,并且以可旋转方式支撑于框架内,该框架容纳铸辊轴承,提供一个输送来自于铸造间隙的铸造带的路径,并且带有一个铸辊罩,铸辊罩设置于两个铸辊和铸辊间隙下方,该装置具有铸造带入口,被包容铸辊轴承的框架所支撑,该装置可在工作位置和等待位置之间进行移位切换。
本发明所提供的铸辊罩以这样的方式对铸辊、需要对其进行支撑及操作的部件、以及所有设置于铸辊附近的其它单元提供了特别有效的保护,以避免受到已被铸造带所加热的上升气体所产生的热辐射的影响。
在这种情况,铸辊罩可以直接或间接地连接于承受铸辊轴承的框架。
按照第一实施例,承受铸辊2、3的轴承2a、3a安置在框架25上,并且铸辊罩10邻接支撑框架25。以这种方式,形成一个紧凑装配,其本身易于在工作位置和等待位置之间进行操作。
根据另一实施例,承受铸辊2、3的铸辊轴承2a、3a悬挂式啮合于框架25之上,并且铸辊罩10固定于铸辊轴承2a、3a。该设计改动同样提供紧凑装配所带来的便利。
将铸辊罩固定于支撑框架的一个有利结果是,当对辊进行调换时,带有铸辊的框架和铸辊罩可作为一体组件进行相应调换。因此,当输送框架离开工作位置进入等待位置后,可能不仅对辊自身,而且也便于对铸辊罩和设置在铸辊罩的其它单元进行维护工作,例如,对铸辊罩壁的冷却以及吹入冷却气体。当铸辊尺寸被改变时,易于同时将铸辊罩与铸辊的尺寸予以匹配。
本发明的一种结构对于热屏蔽的保护作用和减少铸辊污染是有效的,其特征在于,铸辊罩以脊顶的类型在铸辊限定的空间内延伸,并且存在于铸造间隙下方。在该结构中,用于从铸造间隙产生的铸造带通过的入口优选地设置在罩脊区域内。按脊顶方式构造铸辊罩,使其与处于出口区域的铸造带形状相匹配,使得显著的保护铸辊及其邻近单元和部件,使之避免来自铸造带的影响成为可能。一种有利结构是,使得入口横截面与铸造带横截面相匹配。如果受该处局部状况所限,辊、铸辊罩和铸造带无法这样紧密安置,可以选用另一方式,即,设置铸辊罩的入口边缘,使其关于铸辊形成一个间隙,该边缘轴向平行于铸辊延伸。在这种情况,在铸辊区域内的铸辊罩仅仅形成冷却区域的侧边界,而它们的上边界由铸辊本身形成。铸辊罩有在铸辊端面区域内平行于侧面延伸的壁,以至至少设置的这些壁的边缘相对于铸辊的端面形成一个间隙。如果在铸辊罩的边缘和铸辊之间安置一个密封,热气体从铸辊罩到欲保护的双辊铸造机器部件的泄漏几乎完全消除,密封最好选用柔性低磨损带或刷,其与铸辊表面接触或者在距离少于4mm处。
如果在所知方式本身中,有一个箱体至少在若干区域内围绕铸造带的输送路径,把铸辊罩安置在该类型箱体上方或成为其某一部分将是有利的。
在这种情况,与铸辊罩一起,箱体最好围绕着铸造带的输送路径至少直至第一对辊,该辊安置在输送路径上用于输出或热轧钢带。为了抑制形成氧化皮,如果在箱体内保持惰性气体环境,这种结构证明特别有利。
如果箱体邻接铸辊罩,把铸辊罩可拆卸的连接于箱体,将有利于便捷的日常维护,特别的,当铸辊罩连接于活动框架时。此时,用于抵抗产生于双辊铸造机器区域热载荷的密封应置于铸辊罩和箱体之间。这可通过将密封设计为砂充填通道形式而加以实现,当铸辊罩已降至箱体上部后,其下边缘将浸入通道内。
为使得操作人员非常快捷的调换铸辊,支撑铸辊轴承的框架配备有传送装置,优选为支撑在行进轨道上的行进机构,用于在工作位置或操作位置和等待位置之间移动框架,并且反之亦然。
为使这一系列的移动得以有效实施,铸辊罩通过以下方式与安置在箱体上的密封分开,即,支撑铸辊轴承的框架高度相对于行进轨道或行进机构可被调节,尤其是通过提升或枢轴机构调节。
如果这样设计可以由升降或枢轴机构升高或降低的框架,其在工作位置位于中间板的中央位置,在等待位置被移动到相对于中间板升高的位置,可提供便于实现且具有较高安置精度的调换装置的配置。此时,为了在相互精确的位置对齐两部件,当框架降到中间板上时,使用可靠地确保在侧向和横向对中的对中装置。优选的对中装置在两个方向之每一个上互相独立地起作用以获得这种对中作用。
如果铸辊罩10限定了一个冷却区域,该罩对于上升的热气特别有效地起作用,在冷却区域铸造操作过程的温度比被铸造带加热的气体的温度低。因此,一个温度被特意降低的区域形成于铸造间隙出口区域附近。该冷却中断了正常的热量引起的流动(堆积效果),其中,铸造带沿输送路径输送时所加热的气体,沿输送方向的相反方向上升。因此,在根据本发明设计的一个装置中,冷却区域形成了一个屏障,其阻隔被钢带加热的热气体到达用于支撑铸辊的部件。这有效地抵消了由于气体热辐射在传统的带钢铸造装置中不可避免存在的堆积效果。在这种方式,铸辊罩构成一个物理屏障,阻断到达铸辊或可能存在于铸辊区域的工作平台的热气流。同时,该罩可用于存在于其围绕的空间内的气体的预期冷却。以同样的方式,与冷却区域气体冷却作用相结合,该铸辊罩大大减少了部署在铸辊区域的工作人员的危险。
作为一个例子,通过至少将铸辊罩的壁之一连接于冷却供给装置,可在铸辊罩限定的区域形成一个冷却区域。此外,至少将铸辊罩的某一壁用流体冷却方式,可实现冷却区域的形成。为此,铸辊壁至少有一个冷却通道,在铸造操作过程冷却流体流过该通道。这种类型的流体冷却方式确保了作用在铸辊罩上的热量被快速且有效的驱散。同时,铸辊罩的冷却导致加强了撞击在铸辊罩上的气体的冷却,该气体和流入罩限定区域的热气体混合,以至热气体也被冷却并且建立了一个低温区域。
此外,通过提供至少一个用于将冷却气体吹入冷却区域的装置,可特别有效的促使冷却区域的形成。就此而论,如能有效使得吹入冷却区域的冷却气体的流动方向基本上与被铸造带加热的气体流动方向相反,冷却气体的作用能被额外加强。冷却气体的定向流动极大增强了热气体和冷却气体的混合,以至在短时间内,形成一个特别有效的冷却区域,并且特别可靠地阻止热气体向铸辊罩上方上升。另外,通过扫过铸造带表面的流动,冷却气体流的效力被增强。这不仅可冷却已经被铸造带加热的上升气体,而且也冷却钢带本身,减少其发出的热辐射,以至沿着进一步的传送路径与钢带接触的气体受热较轻。同时,除了热屏障以外,直接到达钢带表面上的气流也形成一个流动屏障,其同样抑制热气体在钢带表面上直接上升的程度。
钢带在冷却区域所获得的冷却效果本身减少了在传送过程形成在钢带表面上的氧化皮数量。若将惰性冷却气体吹入冷却区域,可进一步抑制了氧化皮的形成。惰性气体的吹入不仅冷却了钢带表面,而且也有效地阻止了铸造带表面和周围氧气的接触,作为必然结果,也阻止了钢带表面上形成大量的氧化皮层。通过吹入冷却区域的具有减少氧化作用的冷却气体,可减轻许多应用所不期望发生的钢带氧化现象,该冷却气体为可选择的气体或者作为所吹入惰性气体的补充气体。
不考虑铸辊罩形状因素,如果在铸造操作过程,在入口区域,在各种情况下均存在若干喷嘴,其喷射气流可阻止气体从入口泄漏,这种情况将是有利的。如果入口边缘紧紧围绕着离开铸造间隙的铸造带,这种情况能够通过例如以气体喷射切割的方式直接作用在钢带上的一股气流而得以实现。另一方面,如果开口相对于铸辊被密封,气体能以相应的方式喷射到铸辊上。为此,根据该处的情况,可以使用圆柱射流喷嘴或涡流喷嘴,该喷嘴分布在钢带或铸辊的宽度上,来自其的喷射以下面的方式分配,气体,特别是空气,不被从围绕着装置的区域吸入与铸辊罩分隔的冷却区域。
另一个有利的铸辊罩构造为,为了增加绝热作用,该铸辊罩配置于铸造带的表面上覆盖耐火材料。
此外,通过一个用于抽吸被铸造带加热的气体的抽吸装置,双辊铸造装置的单元和部件的所承受的热载荷能被进一步减少。若箱体外封铸造带传送路径,则其可具有一个与抽吸装置相连接的抽吸口。
【附图说明】
本发明的其它有利的构造在从属权利要求中给出,并且根据图解示范性实施例的附图在下面予以详细解释。图中:
图1概略地描述了用于将钢水铸造为钢带的装置的第一纵向剖面;
图2概略地描述了铸造钢水装置的第二纵向剖面;
图3a和3b概略地描述了在工作位置和等待位置的根据本发明用于铸造钢水的装置的第一实施例;
图4概略地描述了脊顶形式的铸辊罩的构造,作为对图3a和3b的详细描述;
图5概略地描述了根据本发明用于铸造钢水的装置的第二实施例。
【具体实施方式】
装置1设计成双辊铸造装置用于铸造钢水形成铸造带B,如图1和2概略地所示,其有两个互相轴向平行设置的铸辊2、3,以互相相对的方向旋转,限定了形成于其间的铸造间隙4的纵向侧边,在铸造间隙上方设置有熔池5,从一个中间包或钢包(未示)向其内供给钢水。铸造间隙4的两个横向侧边没有铸辊2、3及熔池5,其在各种情况下均由侧密封6密封,侧密封能压在铸辊的端面,图中仅概略地示出其一。在铸造过程中,铸辊2、3被流动的冷却水连续冷却。
抽离铸造间隙4的铸造带B通过输送路径7被传输至热轧架8或驱动辊架,在此处被连续的热轧形成具有限定最终厚度的热轧带W。输送路径7有第一区域,其基本垂直于铸造间隙4运行,然后跨过一个弯曲合并入第二区域,该区域通向热轧架8并且基本水平地运行。
直到热轧架8,传送路径7基本完全被箱体9所围绕,箱体将周边环境屏蔽,使得仅热轧带W直接接触箱体周边空气。配给铸辊2、3的铸辊罩10可拆卸地安置在箱体9的上边缘,其远远大于铸辊罩10。为此,一个砂充填通道12集成于箱体9的上边缘,铸辊罩的下边缘放置于其中。通道12和它包容的沙子一起形成密封13,在此,包容在通道12内的沙子可确保没有周围的空气进入在通道12区域内的箱体所围绕的内部空间14。
铸辊罩10和箱体9在配给传送路径7的内侧面上衬上耐火材料层15。层15减少了由钢构成的外壁上的热载荷,例如箱体9的外壁。此外,耐火层15也形成一个绝热层,其减少了作用在箱体周围的热辐射。
铸辊罩10设计成脊顶形式,将配给相应铸辊2、3的壁10a、10b设计为如下形式,其沿铸造间隙4的方向相对缩小至一点,直至延伸至铸辊2、3下方。在配给箱体9的边缘区域,铸辊罩10有一个低高度的框架部分,通过该框架部分它座入通道12内。在这种情况下,箱体9和铸辊罩10侧向延伸至超过铸造带B的宽度,且箱体9被封闭在突出于铸辊2、3宽度的部分内。
在突出于铸辊2、3宽度的部分内,在铸造操作中,冷却水流连续流过的冷却通道16集成于铸辊罩10的壁10a和10b内。通过这种方式,壁10a和10b至少可以得到同铸辊2、3一样的冷却效果(图2)。
一个入口17形成在铸辊2、3区域内的铸辊罩10内,通过入口17铸造带B随后进入箱体9。在所有情况下,形成于框架部分上的上边缘18、19设置扇形喷嘴20、21,从那里,惰性气体以气割的方式吹至各个铸辊2和3。这产生了间隙的无接触密封,在上边缘18、19和铸辊2、3之间存在间隙或者需要有短的距离,而同时并不限制铸辊2、3的移动,因而阻止周围空气渗入箱体9(图1)。
存在于上边缘18、19和铸辊2、3之间且平行于其轴向的间隙,通过密封42,可有选择地与泄漏的热气体隔离,密封42通过一个柔性带或者毛刷接触铸辊表面(图4)。
如图3a和3b所示,在铸辊2、3的两端面,铸辊罩10的壁向上突出至距这些端面某个较短距离处,在平行于铸造带的窄边的底部限定铸造间隙4的出口区域。这些壁的边缘带有密封42,该密封覆盖关于铸辊端侧的短距离或间隙,这些密封42也可以设置在关于侧密封6的边缘区域,其能压在突出的壁和侧密封6之间或侧密封6上。
此外,铸辊罩10在配给箱体9的内部空间14壁10a、10b的侧面具有相应的喷嘴22、23,在铸造操作中,气流G从各个喷嘴22、23吹入箱体9的内部空间14,气体G由一种惰性气体或者惰性气体与还原气体混合物构成。在这种情况,喷嘴22、23以这种方式定向,以至至少一些来自它们的气体G扫过铸造带B的表面。
在通道12下方的一定距离处有一个开口,该开口成一体地形成在箱体9的侧壁内,一个通向抽出装置(未示)的抽吸管24与该开口连接。
铸辊罩10固定于框架25,框架支撑着被支撑在铸辊轴承2a、3a上的铸辊2、3,和其它单元,这些单元在图中未表示出,并且要求供给和驱动铸辊2、3。框架25,连同其所支撑的铸辊2、3、铸辊罩10和其它单元能被传送到图示的其工作位置以外,进入一个实施维护工作的等待位置(未示)。
图3a示意示出在其工作位置的支撑在框架25上的铸辊2、3和可拆卸地连接于框架25的铸辊罩10,在此位置实施铸造操作,图3b所示为等待位置,在此位置实施维护工作,尤其是改变铸辊和铸辊罩。
为了在工作位置和等待位置之间共同地移动铸辊2、3和铸辊罩10,框架25装备一个带有轨枕轮26a的行进机构26,轮26a支撑在一个固定的行进轨道28上,其优选是支撑轨道。一个用于行进机构26的行走驱动29被固定于中间板27。行走驱动29包括一个驱动轮30,其作为一个链轮被配置并且连接到驱动电机31,一个换向轮32作为链轮形成,并且通过旋转驱动链33连接到驱动轮30。框架25、铸辊2、3和铸辊罩10通过驱动心轴34往返于工作位置与等待位置,驱动心轴34可移动地啮合在驱动链33上并且锚固于框架25。可移动地啮合于驱动链33的驱动心轴34允许框架25相对于中间板27提升而不干涉行走驱动29。为了将铸辊罩10的较低边缘提升使之脱离密封13的沙子充填通道12,配给行进机构26一个提升或枢轴机构35,其相对于行进机构26和/或中间板27提升框架25,并且允许工作位置和等待位置之间的初始位移。提升或枢轴机构可被提升气缸所启动,该气缸设置在行进机构和框架之间,并且沿着导向装置(未示)垂直地提升框架,或者行进机构26的的车轮组件被可枢轴转动地支撑于枢轴杠杆37,其一端铰接于框架25,而另一端被活塞-气缸单元36启动,以至框架25和铸辊罩10被同样地提升。
为了固定框架25使其在工作位置不窜动,当框架25降至中间板27上时,在中间板27上的中央螺栓38向上突出并且啮合在框架25内的侧向中央凹槽39内。此外,当框架25被降低时,一个对中轮40固定于中间板并且啮合于框架25上的带有倾斜的侧面的横向中央凹槽41。这些中央装置精确地将框架25置于中间板上互相垂直的两个方向的中心位置。为了将框架从工作位置传送到等待位置,静止在中间板27上的框架25在垂直方向被提升,其位移高度为h,直到在框架和中间板之间起作用的中央装置脱离啮合。在等待位置,框架25保持在提升位置或者优选地可以放在一个工作板上,在图3b中其是中间板的一部分。
图5概略地描述了另一组件的实施例,包括铸辊2、3,铸辊轴承2a、3a,框架25和铸辊罩10。该组件能从发生铸造操作的工作位置与例如实施维护工作的等待位置之间往返移动。
形成铸造间隙4的铸辊2、3被铸辊轴承2a、3a所支撑,支撑部件悬挂于框架25,且其固定可调节。为了侧向密封铸造间隙4,侧密封6压在其上。从铸造间隙4拉出的钢带B在它的整个传送路径上被一个箱体9所围绕,箱体上,一个以与图1至3a和3b表示的实施例类似的方式详细设计的铸辊罩10置于来自铸辊的钢带的出口区域。铸辊罩10基本固定于铸辊轴承2a、3a,该固定允许两个铸辊之一的位置发生变化,以实现铸辊之间水平距离的变化。与3a和3b表示的实施例类似的方式,组件可被带有固定于框架的提升装置的行走结构所移位,或者通过如图5所示的设计为起重机的提升机构。
在铸造操作过程,铸造带B,如图1和2所示被连续地从铸造间隙4中拉出,并且同样地通过输送路径7被连续输送至热轧架8。箱体9内基本为惰性气体环境,其阻止了在铸造带B的表面上形成氧化皮。存在于箱体9内且和热轧铸造带接触的气体被加热,并且由于它的温度的增加,与铸辊箱体9内输送方向F相反的方向,形成为上升热气流T。
期间,还有低温惰性气体通过喷嘴22、23不断地吹入形成在罩下方的冷却区k,如在铸造带B的输送方向F中看到的,并且被罩从侧向限定。在铸造带B离开铸造间隙4之后吹出的气流G马上扫过其表面,从而实现钢带表面的预期冷却。
吹入冷却气流的结果是,铸造带B表面被冷却和铸辊罩10的壁10a、10b连续地被冷却,一个比热气流T的温度低的温度持续保持在冷却区域K。因此,进入冷却区域K且和冷却气流G混合的热气流T被冷却,以至它的上升运动被中断。堆积在冷却区域K前部且由气流G和T形成的的气体通过抽吸管24被抽出。
因此,由罩10限定的直接邻近铸辊2、3形成的冷却区域K阻止了热气流T加热框架25和固定于其上的装置和单元,且避免了对于工作在装置1处的人员的健康危害。
同时,尽管铸造带B有热辐射,铸辊罩10的壁10a、10b的永久冷却,确保了后者上的热载荷是如此的低以至即使在铸造操作中能保持它们的形状。这样就确保了在铸辊2、3和入口17的边缘18、19之间的永久紧密封。
最终,吹入箱体9的惰性冷却气体抑制了在铸造带B表面形成大量氧化皮。
因此,在满足快速操纵铸辊、使生产装置上的负荷及对装置附近工作人员健康危害最小化的情况下,以这种方式所生产的铸造带B,具有使其特别适于后续加工的表面状况。