用于热填充应用的聚酯组合物、由它制备的容器、和方法.pdf

上传人:a*** 文档编号:895772 上传时间:2018-03-16 格式:PDF 页数:29 大小:1.53MB
返回 下载 相关 举报
摘要
申请专利号:

CN200480016835.0

申请日:

2004.06.10

公开号:

CN1805991A

公开日:

2006.07.19

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

C08G63/183(2006.01); C08G63/189(2006.01); C08G63/672(2006.01); B65D1/02(2006.01); B67C3/00(2006.01); B29C49/00(2006.01)

主分类号:

C08G63/183

申请人:

可口可乐公司;

发明人:

石昱

地址:

美国佐治亚州

优先权:

2003.06.18 US 60/479,314

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

刘明海

PDF下载: PDF下载
内容摘要

再加热拉伸吹塑方法制备的容器,包括聚对苯二甲酸乙二醇酯共聚物,该共聚物包括比常规树脂制备方法作为副产物生成的含量更低的二甘醇和少量萘二甲酸,使得容器提高了机械性能。还公开了制备容器的方法和热填充容器的方法。

权利要求书

1.  通过热定形拉伸吹塑方法制成的容器,其包括特性粘度为约0.6至约1.2dL/g的聚对苯二甲酸乙二醇酯共聚物(PET共聚物),该共聚物基本上由二酸组分和二醇组分组成,所述二酸组分具有约95至约99.75%摩尔对苯二甲酸和约5至约0.25%摩尔萘二甲酸的重复单元,所述二醇组分具有高于约98.2%摩尔乙二醇和低于约1.8%摩尔二甘醇的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

2.
  权利要求1的容器,其中二酸组分具有约97.5至约99.75%摩尔对苯二甲酸和约2.5至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

3.
  权利要求1的容器,其中二酸组分具有约99.0至约99.75%摩尔对苯二甲酸和约1.0至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

4.
  权利要求1的容器,其中二酸组分具有约99.25至约99.75%摩尔对苯二甲酸和约0.75至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

5.
  权利要求1的容器,其中二醇组分具有高于约98.4%摩尔乙二醇和低于约1.6%摩尔二甘醇的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

6.
  权利要求1的容器,其中二醇组分具有高于约98.6%摩尔乙二醇和低于约1.4%摩尔二甘醇的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

7.
  权利要求1的容器,其中萘二甲酸是2,6-萘二甲酸。

8.
  权利要求1的容器,其中PET共聚物的特性粘度为约0.7至约0.9dL/g。

9.
  权利要求1的容器,其中PET共聚物的特性粘度为约0.76至约0.87dL/g。

10.
  权利要求1的容器,其中容器是型坯。

11.
  权利要求1的容器,其中容器是型坯,其包括封闭的形成底部的部分、开口端的形成瓶嘴的部分、以及从底部向开口端的形成瓶嘴的部分延伸的形成瓶体部分。

12.
  权利要求1的容器,其中容器包括封闭的底部、开口端的瓶嘴、以及从底部向开口端的瓶嘴延伸的瓶体。

13.
  权利要求1的容器,其中容器是包装的饮料。

14.
  生产容器的热定形拉伸吹塑方法,包括下述步骤:
(1)将包括聚对苯二甲酸乙二醇酯共聚物(PET共聚物)的型坯加热至高于PET共聚物的玻璃化转变温度至约140℃之间的温度,其中PET共聚物基本上由二酸组分和二醇组分组成,基于100%摩尔二酸组分和100%摩尔二醇组分,所述二酸组分具有约95至约99.75%摩尔对苯二甲酸和约5至约0.25%摩尔萘二甲酸的重复单元,所述二醇组分具有高于约98.2%摩尔乙二醇和低于约1.8%摩尔二甘醇的重复单元;
(2)将型坯放入加热至约60℃至200℃的模具中;
(3)将加热的型坯拉伸并膨胀至加热的模具中,形成容器;以及
(4)冷却容器。

15.
  权利要求14的方法,其中加热型坯的步骤包括将型坯加热到约90℃至约140℃的温度。

16.
  权利要求14的方法,其中将型坯放入模具的步骤包括将型坯放入加热到约90℃至约160℃的模具中。

17.
  权利要求14的方法,其中将型坯放入模具的步骤包括将型坯放入加热到约100℃至约140℃的模具中。

18.
  权利要求14的方法,其中拉伸并膨胀的步骤包括通过开口端向加热的型坯中注入压缩气体,以拉伸并膨胀加热的型坯进入加热的模具中。

19.
  权利要求14的方法,其中二酸组分具有约97.5至约99.75%摩尔对苯二甲酸和约2.5至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

20.
  权利要求14的方法,其中二酸组分具有约99.0至约99.75%摩尔对苯二甲酸和约1.0至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

21.
  权利要求14的方法,其中二酸组分具有约99.25至约99.75%摩尔对苯二甲酸和约0.75至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

22.
  权利要求14的方法,其中二醇组分具有高于约98.4%摩尔乙二醇和低于约1.6%摩尔二甘醇的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

23.
  权利要求14的方法,其中二醇组分具有高于约98.6%摩尔乙二醇和低于约1.4%摩尔二甘醇的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

24.
  权利要求14的方法,其中萘二甲酸是2,6-萘二甲酸。

25.
  权利要求14的方法,其中PET共聚物的特性粘度为约0.6至约1.2dL/g。

26.
  权利要求14的方法,其中PET共聚物的特性粘度为约0.7至约0.9dL/g。

27.
  权利要求14的方法,其中PET共聚物的特性粘度为约0.76至约0.87dL/g。

28.
  权利要求14的方法,其中型坯包括封闭的形成底部的部分、开口端的形成瓶嘴的部分、以及从底部向开口端的形成瓶嘴的部分延伸的形成瓶体的部分。

29.
  权利要求14的方法,其中容器包括封闭的底部、开口端的瓶嘴、以及从底部向开口端的瓶嘴延伸的瓶体。

30.
  热填充热定形容器的方法,包括下述步骤:
(1)将包括PET共聚物的型坯加热至高于PET共聚物的玻璃化转变温度至约140℃之间的温度,其中PET共聚物基本上由二酸组分和二醇组分组成,基于100%摩尔二酸组分和100%摩尔二醇组分,所述二酸组分具有约95至约99.75%摩尔对苯二甲酸和约5至约0.25%摩尔萘二甲酸的重复单元,所述二醇组分具有高于约98.2%摩尔乙二醇和低于约1.8%摩尔二甘醇的重复单元;
(2)将型坯放入加热至约60℃至约200℃的模具中;
(3)将加热的型坯拉伸并膨胀至加热模具中,形成容器;
(4)冷却容器;以及
(5)用加热至75℃以上的液体填充容器。

31.
  权利要求30的方法,其中填充容器的步骤包括用加热到85℃以上的液体填充容器。

32.
  权利要求30的方法,其中填充容器的步骤包括用加热到90℃以上的液体填充容器。

33.
  权利要求30的方法,其中填充容器的步骤包括用加热到93℃以上的液体填充容器。

34.
  权利要求30的方法,其中加热型坯的步骤包括将型坯加热到约90℃至约140℃的温度。

35.
  权利要求30的方法,其中将型坯放入模具的步骤包括将型坯放入加热到约90℃至约160℃的模具中。

36.
  权利要求30的方法,其中将型坯放入模具的步骤包括将型坯放入加热到约100℃至约140℃的模具中。

37.
  权利要求30的方法,其中拉伸并膨胀的步骤包括通过开口端向加热的型坯中注入压缩气体,以拉伸并膨胀加热的型坯进入加热的模具中。

38.
  权利要求30的方法,其中二酸组分具有约97.5至约99.75%摩尔对苯二甲酸和约2.5至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

39.
  权利要求30的方法,其中二酸组分具有约99.0至约99.75%摩尔对苯二甲酸和约1.0至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

40.
  权利要求30的方法,其中二酸组分具有约99.25至约99.75%摩尔对苯二甲酸和约0.75至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

41.
  权利要求30的方法,其中二醇组分具有高于约98.4%摩尔乙二醇和低于约1.6%摩尔二甘醇的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

42.
  权利要求30的方法,其中二醇组分具有高于约98.6%摩尔乙二醇和低于约1.4%摩尔二甘醇的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

43.
  权利要求30的方法,其中萘二甲酸是2,6-萘二甲酸。

44.
  权利要求30的方法,其中PET共聚物的特性粘度为约0.6至约1.2dL/g。

45.
  权利要求30的方法,其中PET共聚物的特性粘度为约0.7至约0.9dL/g。

46.
  权利要求30的方法,其中PET共聚物的特性粘度为约0.76至约0.87dL/g。

47.
  权利要求30的容器,其中型坯包括封闭的形成底部的部分、开口端的形成瓶嘴的部分、以及从底部向开口端的形成瓶嘴的部分延伸的形成瓶体的部分。

48.
  权利要求30的方法,其中容器包括封闭的底部、开口端的瓶嘴、以及从底部向开口端的瓶嘴延伸的瓶体。

49.
  在高于87℃下热填充热定形拉伸吹塑容器的方法,包括下述步骤:
(1)进行一步拉伸吹塑法由型坯形成容器,包括下述步骤:
(a)将包括聚酯的型坯加热至高于聚酯的玻璃化转变温度的温度,
(b)将容器模具加热至约60℃至约200℃的温度,
(c)将加热的型坯放入加热的模具中,
(d)拉伸并膨胀加热的型坯进入加热的模具中,形成容器,和
(e)冷却容器,以及
(2)用87℃以上的液体填充容器。

50.
  权利要求49的方法,其中填充容器的步骤包括用加热到90℃以上的液体填充容器。

51.
  权利要求49的方法,其中填充容器的步骤包括用加热到93℃以上的液体填充容器。

52.
  权利要求49的方法,其中加热型坯的步骤包括将型坯加热到约95℃至约140℃。

53.
  权利要求49的方法,其中将型坯放入模具的步骤包括将型坯放入加热到约90℃至约160℃的模具中。

54.
  权利要求49的方法,其中将型坯放入模具的步骤包括将型坯放入加热到约100℃至约140℃的模具中。

55.
  权利要求49的方法,其中拉伸并膨胀的步骤包括通过开口端向加热的型坯中注入压缩气体,以拉伸并膨胀加热的型坯进入加热的模具中。

56.
  权利要求49的方法,其中二酸组分具有约97.5至约99.75%摩尔对苯二甲酸和约2.5至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

57.
  权利要求49的方法,其中二酸组分具有约99.0至约99.75%摩尔对苯二甲酸和约1.0至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

58.
  权利要求49的方法,其中二酸组分具有约99.25至约99.75%摩尔对苯二甲酸和约0.75至约0.25%摩尔萘二甲酸的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

59.
  权利要求49的方法,其中二醇组分具有高于约98.4%摩尔乙二醇和低于约1.6%摩尔二甘醇的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

60.
  权利要求49的方法,其中二醇组分具有高于约98.6%摩尔乙二醇和低于约1.4%摩尔二甘醇的重复单元,其中摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。

61.
  权利要求49的方法,其中萘二甲酸是2,6-萘二甲酸。

62.
  权利要求49的方法,其中PET共聚物的特性粘度为约0.6至约1.2dL/g。

63.
  权利要求49的方法,其中PET共聚物的特性粘度为约0.7至约0.9dL/g。

64.
  权利要求49的方法,其中PET共聚物的特性粘度为约0.76至约0.87dL/g。

65.
  权利要求49的方法,其中型坯包括封闭的形成底部的部分、开口端的形成瓶嘴的部分、以及从底部向开口端的形成瓶嘴的部分延伸的形成瓶体的部分。

66.
  权利要求49的方法,其中容器包括封闭的底部、开口端的瓶嘴、以及从底部向开口端的瓶嘴延伸的瓶体。

说明书

用于热填充应用的聚酯组合物、 由它制备的容器、和方法
相关申请的交叉参考
该申请根据35U.S.C.119要求在2003年6月18日提交的美国临时专利申请60/479,314的优先权。
技术领域
本发明涉及聚酯组合物,它尤其适合用于制造热定形制成的制品,如在热填充应用中使用的饮料容器。更准确地说,本发明涉及聚对苯二甲酸乙二醇酯基树脂组合物,它含有比常规树脂制备方法中作为副产物产生的含量更低的二甘醇以及少量萘二甲酸,由此提高了容器的机械性能。
背景技术
聚对苯二甲酸乙二醇酯基树脂,即使它们可以并且往往含有少量其它组分,但是工业上通常简单地称作“PET”,由于它们质轻并且出色地组合了机械性能和气体阻隔性能,因此被广泛地用于制备碳酸软饮料和水的容器。这些传统应用中,容器内容物通常是在室温或冷却条件下被装入容器(“冷填充方法”)。近年来,PET容器的用途远远不只这些,它们被用于饮料如果汁、风味运动饮料和茶,这些内容物是在高温下转入容器的(“热填充方法”)。
热填充方法在将饮料装入容器时对容器进行高温处理。这种高温处理引起由用于制备冷填充容器的常规型坯注塑和容器拉伸吹塑方法制备的PET容器出现不可接受的收缩或变形。对于用于热填充方法的PET容器来说,已经开发了几种方案来消除收缩和变形。所述方案包括:利用热定形拉伸吹塑(SBM)方法将型坯转变成容器,设计具有特殊真空板的瓶子,使用特级PET树脂或它们的组合。型坯是利用本领域众所周知的技术,通过注塑PET制成的试验管形制品。
在热定形SBM方法中,将型坯加热到约90℃至约140℃,该温度高于聚合物的玻璃化转变温度,然后放入加热到约60℃至约200℃的模具中。向加热的型坯中吹入压缩气体,使型坯膨胀并拉伸至模具表面上(“拉伸吹塑步骤”)。热定形和非热定形SBM方法的区别在于,热定形方法中,使用加热模具而不是环境温度或约10℃的冷模具,型坯被加热足够时间使之在拉伸前基本上达到均匀温度,并且拉伸吹塑步骤的速度比通常用于制造非热定形SBM容器的速度低。速度降低至使吹塑和形成容器之间具有充足的接触时间。热定形SBM方法比非热定形SBM方法使用更多能量且需要更多时间,因此增加了热定形容器的制造成本。常规热定形SBM方法制备的容器能够在约85℃的温度下热填充,而没有出现严重收缩。
然而,热填充所需要的温度不断增加,有时,超过正常的PET玻璃化转变温度。由于热填充温度既与容器侧壁的结晶度有关又与聚酯的玻璃化转变温度有关,因此已经采用了几种方法来实现甚至更高的热填充温度。方法之一是使用特殊热定形SBM方法。例如,双吹热定形SBM方法能够达到超过35%的高结晶度(基于密度测试法),使侧壁能够忍受高于90℃的热填充。然而,该方法中,由于两次拉伸吹塑步骤因此大大降低了制造速度,由此增加了制造更高温度热填充容器的费用。
另一种方法使用了特殊设计的树脂,它进行了性能改性或共聚单体改性。这些特殊PET树脂具有更高的玻璃化转变温度,在热定形SBM方法中能够达到更高的结晶度,或者上述两种情况的组合。在一个实例中,增加PET树脂的分子量,以同时降低型坯重力变形和PET树脂的自然拉伸比。然而,增加分子量的同时增加了PET树脂的制造成本,并且由于更粘稠材料需要更高的注射温度,因此往往增加了型坯注塑的循环时间。
已经采用了几种共聚单体来改性PET树脂以获得更高的玻璃化转变温度,包括二酸如萘二甲酸(NDA),二醇如1,4-环己烷二甲醇(CHDM)或它们的组合。对于NDA,通常总改性量大于5%摩尔以达到所需效果。然而,这样高的改性量改变了聚酯的拉伸行为以及结晶行为,因此不得不设计侧壁非常厚的型坯,和/或不得不放慢制造工艺来获得所需要的高结晶度。在另一种特殊设计的树脂中,降低了PET树脂的共聚单体含量,因此除了含有约2.8%摩尔的自然存在的二甘醇外,该聚合物基本上是均聚物。尽管结晶速率显著提高并且能够实现高结晶度,但是结晶太快,以致于型坯易于浑浊,由此使容器浑浊。由于吹塑结晶型坯的困难,容器也不能达到所需的最佳材料分布,造成容器不理想。在又一个特殊设计的树脂中,仅仅PET树脂中的二醇组分用1-4%摩尔CHDM和1-4%摩尔二甘醇(DEG)改性,并且PET树脂含有再加热添加剂如炭黑、氧化铁、锑金属等。再加热是指拉伸吹塑步骤前对型坯进行加热。工业上使用术语“再加热”是因为在该阶段聚合物在形成型坯的过程中已经进行了加热,现在为形成容器又进行加热。
为了达到战胜高温以及随后的热填充工艺的真空条件所需要的机械性能,PET容器被设计成具有非常厚的侧壁。这种厚壁瓶子是由厚壁型坯吹成的。由于注塑冷却时间与型坯侧壁厚度的平方成正比,因此与注塑过程中非热定形容器相比,该热定形容器需要更长的循环时间,即更低的生产率。同时还增加了吹塑方法中再加热厚壁型坯的时间。此外,厚壁瓶子还意味着必须使用更多材料制造瓶子。这在材料和能源减少的情况下,能够引起环境问题。
因此,本领域存在对PET树脂的需求,该树脂能够用于制备在85℃或更高填充温度下进行填充的热填充容器,对其进行的改性低至不增加PET的拉伸比和结晶速率,相应地型坯透明,该树脂能够用于常规的高速热定形SBM方法中,并且能够用于制备重量减轻了的热填充容器,因此通过降低循环时间降低了能量使用。因此,本发明涉及提供这样的树脂。
发明概述
本发明通过提供PET树脂满足了上述要求,该PET树脂能够用于制备经受85℃以上温度的热填充容器,和/或能够用于由侧壁比热定形SBM方法所用的常规型坯更薄的型坯制成轻质容器。本发明的实施方案提供了热填充容器,它具有提高的劲度和降低的85℃以上的填充温度下的收缩。对于要求较低填充温度的应用来说,根据本发明实施方案制备的容器,其壁厚比用常规PET树脂制成的容器的薄5-20%。
因此,本发明包括通过热定形SBM方法制成的容器,它包括聚对苯二甲酸乙二醇酯共聚物(PET共聚物),其基本上由二酸组分和二醇组分组成,所述二酸组分具有约95至约99.75%摩尔对苯二甲酸和约5至约0.25%摩尔萘二甲酸的重复单元,所述二醇组分具有高于约98.2%摩尔乙二醇和低于约1.8%摩尔二甘醇的重复单元。摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。该定义适用于整个说明书中的摩尔百分比。该PET共聚物的特性粘度为约0.6至约1.2dL/g。
本发明另一实施方案中,用于制备容器的热定形SBM方法包括下述步骤:
(1)将包括聚对苯二甲酸乙二醇酯共聚物(PET共聚物)的型坯加热至高于PET共聚物的玻璃化转变温度至约140℃之间的温度,其中PET共聚物基本上由二酸组分和二醇组分组成,基于100%摩尔二酸组分和100%摩尔二醇组分,所述二酸组分具有约95至约99.75%摩尔对苯二甲酸和约5至约0.25%摩尔萘二甲酸的重复单元,所述二醇组分具有高于约98.2%摩尔乙二醇和低于约1.8%摩尔二甘醇的重复单元;
(2)将型坯放入加热至约60℃至200℃的模具中;
(3)将加热的型坯拉伸并膨胀至加热的模具中,形成容器;以及
(4)冷却容器。
本发明又一个实施方案中,用于热填充热定形容器的方法包括下述步骤:
(1)将包括PET共聚物的型坯加热至高于PET共聚物的玻璃化转变温度至约140℃之间的温度,其中PET共聚物基本上由二酸组分和二醇组分组成,分别基于100%摩尔二酸组分和100%摩尔二醇组分,所述二酸组分具有约95至约99.75%摩尔对苯二甲酸和约5至约0.25%摩尔萘二甲酸的重复单元,所述二醇组分具有高于约98.2%摩尔乙二醇和低于约1.8%摩尔二甘醇的重复单元;
(2)将型坯放入加热至约60℃至约200℃,优选约90℃至约160℃的模具中;
(3)将加热的型坯拉伸并膨胀至加热的模具中,形成容器;
(4)冷却容器;以及
(5)用加热至75℃以上的液体填充容器。
本发明再一个实施方案中,在高于87℃下,用于热填充热定形SBM容器的方法包括下述步骤:
(1)进行一步拉伸吹塑法由型坯形成容器,包括下述步骤:
(a)将包括聚酯的型坯加热至高于聚酯的玻璃化转变温度的温度,
(b)将容器模具加热至约60℃至约200℃,优选约90℃至约160℃,
(c)将加热的型坯放入加热的模具中,
(d)拉伸并膨胀进入加热的模具,形成容器,和
(e)冷却容器,以及
(2)用87℃以上的液体填充容器。
本发明其它目的、特征和优点将从下面的详细描述、附图和权利要求而变得清楚。
附图的简要说明
图1是根据本发明实施方案制成的模塑容器型坯的断面图。
图2是根据本发明实施方案,由图1的型坯制成的吹塑容器的断面图。
图3是根据本发明实施方案制成的包装饮料的透视图。
图4是根据本发明另一个实施方案制成的吹塑容器的断面图,该容器尤其适合测试热填充时容器的收缩率。
发明详述
本发明包括通过再加热拉伸吹塑PET共聚物制成的容器,所述PET共聚物包括比在常规树脂制造方法中作为副产物生成的含量少的二甘醇和少量萘二甲酸,因此提高了容器的机械性能。本发明还包括制备该容器的方法以及热填充该容器的方法。因此,本发明的优选实施方案特别用于热填充用途,但它们可以制得更轻用于冷填充方法。本发明的实施方案能够采取多种容器类型,包括但不限于瓶子、鼓桶、卡拉夫瓶、冷却器等。
根据本发明的实施方案,将聚对苯二甲酸乙二醇酯共聚物(PET共聚物)制成注塑型坯,然后利用热定形SBM方法拉伸吹塑成热填充容器。在一个实施方案中,本发明是通过热定形SBM方法制成的容器,它包括聚对苯二甲酸乙二醇酯共聚物(PET共聚物),该共聚物基本上由二酸组分和二醇组分组成,所述二酸组分具有约95至约99.75%摩尔对苯二甲酸和约5至约0.25%摩尔萘二甲酸(NDA)的重复单元,所述二醇组分具有高于约98.2%摩尔乙二醇和低于约1.8%摩尔二甘醇(DEG)的重复单元。摩尔百分比是基于100%摩尔二酸组分和100%摩尔二醇组分。热定形SBM方法在本领域是众所周知的,通常包括下述步骤:将型坯加热到高于PET共聚物的玻璃化转变温度至约140℃,优选约90℃至约140℃的温度,通过向型坯中吹入空气将型坯吹入加热至约60℃至约200℃,优选约90℃至约160℃的模具中,形成结晶度高且松弛无定形取向的容器,使之在随后的热填充方法中收缩率更低。
优选实施方案中所用的PET共聚物中,来自萘二甲酸的重复单元含量大于约0.25至约2.5%摩尔,更优选大于约0.25至约1.0%摩尔,甚至更优选大于约0.25至约0.75%摩尔。根据PET共聚物的制备方法,萘二甲酸的重复单元可以来自二酸或它的二酯。优选地,使用2,6-萘二甲酸。同样在优选的实施方案中,PET共聚物中二甘醇的重复单元的含量低于约1.6%摩尔,更优选低于约1.4%摩尔。因为二甘醇是PET聚酯制备方法中的副产物,因此想实现PET树脂中二甘醇的含量为0是不可能的。因此,本发明预期PET共聚物中二甘醇含量低于某一值,而不是低至0%摩尔。
本发明优选实施方案中的PET共聚物的特性粘度(IV)优选为约0.6至约1.2dL/g,更优选约0.7至约0.9dL/g,甚至更优选约0.76至约0.87dL/g。IV是根据ASTM D4603-96测试的,其中将型坯样品研磨并溶解在60/40苯酚/四氯乙烷溶液中,浓度为0.50%,并在30℃下测试。
本发明优选实施方案中的PET共聚物具有较高含量的应变诱导的结晶度,增加了机械性能,但同时保持了型坯的透明度。当将这些PET共聚物的树脂组合物模塑成型坯时,即使该型坯比用常规PET制成的那些型坯具有更低的拉伸比,但是所得的热填充容器具有提高的收缩行为,并且保持或提高了结晶度。
PET制造领域的那些技术人员通常将二甘醇(DEG)看作是聚合物制造中的无害副产物;因此几乎没有采取措施降低打算用在热填充容器中的PET中的DEG含量,尤其是当采用较高含量的共聚单体改性PET来提供热填充级PET时。常规方法中生成的DEG的量在2.5-4.0%摩尔之间。已经采取了一些措施来控制DEG含量,据信,这提高了具有较高玻璃化转变温度的PET的热稳定性。必须采用更高含量的另一种改性剂(通常是IPA),由此控制热结晶速率,以在注塑方法中得到透明的厚型坯。事实上,有些措施是针对提高PET中的DEG含量,因为在2.5-4.0%摩尔的含量下,增加DEG含量被认为将引起结晶速率提高,从聚合物生产的观点看,这有时候是希望的。对这种现象的解释在于,更高DEG含量引起聚合物链的柔韧性增加,使得聚合物链能够更快速地有序化并堆积形成聚合物晶体。
与以上的期望相反,本发明发现,与含有2.1-2.9%摩尔DEG的PET相比,将PET共聚物中DEG含量降低至低于约1.8%摩尔导致结晶速率提高。此外发现,加入少量DNA提高了PET链的劲度,意外地增加了由该PET共聚物制成的容器的侧壁刚性,而对聚合物熔体的粘度没有产生负面影响。少量DNA足以妨碍热结晶速率,因此在注塑方法中能够制造出透明的厚型坯。
如上所述,常规PET制备方法生成的DEG含量高于2.2%摩尔。因此,在本发明优选实施方案中的PET共聚物中,对PET制备方法的改性必须实现更低的DEG含量。能够采用适合降低聚酯中DEG含量的任何方法。合适的方法包括:在酯化或酯交换反应中,降低二酸或二酯相对于乙二醇的摩尔比;降低酯化或酯交换反应的温度,加入DEG抑制添加剂,包括四烷基铵盐等;以及降低循环返回酯化或酯交换反应的乙二醇的DEG含量。
在常规制备容器的方法中,将由常规聚酯酯化/缩聚方法制成的PET颗粒加热,随后通过注塑方法制成型坯。通过烘箱将型坯加热至玻璃化转变温度和结晶温度之间的温度下,然后通过拉伸吹塑方法制成容器。在拉伸吹塑之前加热型坯通常在工业上称作“再加热”或“调整”型坯。制备透明容器时重要的考虑因素是使PET型坯的热结晶最小化。热诱导的结晶易于在PET中形成大的微晶,伴随着产生浑浊。相反,吹塑过程中出现的应变诱导的结晶形成非常小的晶体,因此容器仍然透明。传统的热定形PET容器或者含有太少的改性剂,这将产生更高的热结晶速率并由此形成浑浊的型坯,或者含有太多的改性剂,这将比本发明具有更低的结晶速率和更高的拉伸比。
热定形容器可以由本发明实施方案中的PET共聚物组合物,采用已知的吹塑和拉伸吹塑方法制成。这些已知的方法包括下述步骤:1)将聚酯组合物注塑形成型坯,和2)对着加热的吹制模具将加热的型坯拉伸吹塑成容器。吹塑前,典型的型坯温度为约90℃-130℃,典型的吹制模具温度为约60℃-200℃,优选90℃-160℃。与吹制模具接触过程中,容器侧壁的结晶度增加,吹塑诱导的无定形取向降低。所用方法的具体类型是根据具体应用所需要的生产体积或生产速率以及机器设计和生产能力来决定的。
因此,本发明另一实施方案中,用于生产容器的热定形SBM方法包括下述步骤:
(1)将包括聚对苯二甲酸乙二醇酯共聚物(PET共聚物)的型坯加热至高于PET共聚物的玻璃化转变温度至约140℃之间的温度,其中PET共聚物基本上由二酸组分和二醇组分组成,基于100%摩尔二酸组分和100%摩尔二醇组分,所述二酸组分具有约95至约99.75%摩尔对苯二甲酸和约5至约0.25%摩尔萘二甲酸的重复单元,所述二醇组分具有高于约98.2%摩尔乙二醇和低于约1.8%摩尔二甘醇的重复单元;
(2)将型坯放入加热至约60℃-200℃下,优选约90℃至约160℃,更优选约100℃-140℃的模具中;
(3)将加热的型坯拉伸并膨胀,通过开口端进入加热的模具中形成容器;以及
(4)冷却容器。
本发明又一个实施方案中,用于热填充热定形容器的方法包括下述步骤:
(1)将包括PET共聚物的型坯加热至高于PET共聚物的玻璃化转变温度至约140℃之间的温度,其中PET共聚物基本上由二酸组分和二醇组分组成,基于100%摩尔二酸组分和100%摩尔二醇组分,所述二酸组分具有约95至约99.75%摩尔对苯二甲酸和约5至约0.25%摩尔萘二甲酸的重复单元,所述二醇组分具有高于约98.2%摩尔乙二醇和低于约1.8%摩尔二甘醇的重复单元;
(2)将型坯放入加热至约60℃至约200℃,优选约90℃至约160℃,更优选约100℃至约140℃下的模具中;
(3)将压缩气体通过开口端注入加热的型坯中,使加热的型坯拉伸并膨胀至加热的模具中,形成容器;
(4)冷却容器;以及
(5)用加热至75℃以上的液体填充容器。
优选在上面两个方法中,在将型坯放入模具以拉伸和注入压缩气体来径向和纵向拉伸型坯之前,沿着型坯的长度和横向宽度上,将型坯加热至基本上均匀的温度。纵向拉伸可以用拉伸杆辅助。术语“基本上均匀的温度”意味着包括型坯侧壁上温度梯度的存在。理想地,将型坯加热约20秒至约2分钟,优选地加热少于1分钟。该加热时间包括实际施加热的时间和热量“传遍”整个型坯的时间。此外,PET共聚物组合物中,NDA和DEG的重复单元的优选含量如上所述。
另一实施方案中,优选地,容器用被加热到高于85℃,优选高于90℃,甚至更优选高于93℃的液体热填充。为了最充分地利用本发明的特殊实施方案,本领域技术人员可以从下述两种方案中进行选择:一种是用高于90℃的较高温度的液体填充根据本发明实施方案制备的热定形容器,该容器采用了常规壁厚的型坯和容器,另一种是采用了比本领域以前已知的壁更薄的型坯和容器的轻质热定形容器,并用约75℃-85℃的较低温度的液体填充。轻质还等价于更快的吹塑过程,不需要再加热试剂来达到常规速度。容器壁厚能够比常规热填充容器降低约5至约20%。
对于PET共聚物中共聚单体的含量,本文中的实施例将本发明的PET共聚物与其它树脂组合物进行了比较。具体地,DEG含量低于1.8%摩尔且没有NDA的PET树脂结晶太快,型坯浑浊,没有制成瓶子。当自然存在的DEG含量高于2.2%摩尔且没有NDA时,PET树脂的聚合物链太柔软。当PET树脂含有自然存在的DEG残基且NDA残基低于5%摩尔时,所制成的型坯性能与常规DEG类似,仅仅因为常规含量的DEG使得聚合物链柔软,而该含量下的NDA改性不起作用。现有技术的自然存在的DEG含量且NDA残基高于5%摩尔时,能够在高温下热填充,但是如上所述,这是昂贵的,因为NDA除了具有较慢的结晶速率和更高的拉伸比之外,它是价格较高的共聚单体。
在与本发明PET共聚物的另一对比中,现有技术中的PRT树脂含有约1.6%摩尔的DEG并用高于2%摩尔的间苯二甲酸(IPA)改性,具有可接受的性能,然而,这种树脂不能达到可与本发明PET共聚物相比拟的高结晶度,并且仅仅能在约78℃下进行热填充。对于高于90℃的热填充,现有技术中的PET树脂需要进行双吹塑,需要含有高于8%摩尔NDA或者需要包括再加热试剂。
本发明又一实施方案中,在高于87℃下,用于热填充热定形SBM容器的方法包括下述步骤:
(1)进行一步拉伸吹塑法由型坯形成容器,包括下述步骤:
(a)将包括聚酯的型坯加热至高于聚酯的玻璃化转变温度的温度,
(b)将容器模具加热至约60℃至约200℃,优选约90℃至约160℃,更优选约100℃至约140℃的温度,
(c)将加热的型坯放入加热的模具中,
(d)在一步中,通过开口端向加热的型坯中注入压缩气体,使加热的型坯拉伸并膨胀进入加热的模具,形成容器,和
(e)冷却容器,以及
(2)用87℃以上的液体填充容器。
优选地,步骤(2)中,液体在高于约90℃,更优选高于约93℃下填充。优选地,向型坯的组合物中加入本领域技术人员可以得到的再加热添加剂,如氧化铁、改性碳或其它再加热添加剂。该实施方案中,拉伸吹塑过程仅仅进行了一次(一步),而现有技术是双吹塑方法。
本发明的另一个优点是能够比常规更高的吹塑速度进行拉伸吹塑方法。现有技术中,拉伸吹塑方法的速度为约600-1000个瓶子/小时/模具(BPHM)。本发明,利用再加热试剂如氧化铁时,速度可以达到1200BPHM。
因此,通过由降低壁厚而降低了PET型坯和容器的重量,降低了高填充温度下的收缩,保持或提高了PET热填充容器侧壁的结晶度而不增加用于制造容器的型坯的拉伸比,以及制成的容器具有合适的侧壁厚度、热稳定性和侧壁挠曲特性,因此本发明优选实施方案提供改进的PET热填充容器的性能。
根据本发明实施方案制成的容器能够通过吹塑如上所述的合适型坯而制成。合适的型坯和容器结构的实例描述在美国专利5,888,598中,其公开内容全部明确地被引入本文以供参考。
转向图1,其说明了聚酯容器型坯10。该型坯10是经注塑PET基树脂制成的,包括有螺纹的颈部螺口12,它下端终止于加盖凸缘14。在加盖凸缘14的下面,通常是一圆柱形部分16,它终止于逐渐增加外径以逐渐增加壁厚的部分18。部分18下面是伸长体部分20。
可将图1所示的型坯10吹塑形成图2和3所示的容器22。容器22包括壳体24,该壳体24包括限定了瓶口28的有螺纹颈部螺口26,在有螺纹颈部螺口下面的加盖凸缘30,从加盖凸缘延伸下来的圆锥体部分32,从圆锥体部分延伸下来的瓶体部分34,以及容器底部的瓶底36。如图3所示,该容器22适合用于制备包装饮料38。包装饮料38包括装在容器22中的饮料如热填充的茶、果汁或运动饮料,和密封容器瓶口28的盖子40。
型坯10、容器22和包装饮料38仅仅是本发明的应用实例。应当理解,本发明的方法可以用于制备具有各种构型的型坯和容器。
一种可供选择的容器50如图4所示。该容器50也可以由没有示例说明但是为本领域技术人员所知的型坯吹塑而成。容器50包括壳体52,该壳体52包括限定了瓶口56的有螺纹颈部螺口54,有螺纹颈部螺口下面的加盖凸缘58,从加盖凸缘延伸下来的上钟形部60,从上钟形部延伸下来的下钟形部62,从下钟形部延伸下来的上缓冲部,从上缓冲部延伸下来的有平面的瓶体部分66,以及从有平面的瓶体部分延伸到底部70的下缓冲部68。该实施方案特别适合于在容器热填充后测试容器的收缩率。
上面描述了本发明,下面将通过实施例进一步进行描述,这些实施例决不能被解释为对本发明范围强加的限制。相反,应当清楚地知道,在阅读了本发明说明书后,在不偏离本发明精神和/或后面权利要求的范围的前提下,本领域技术人员可以提出多种其它实施方案、改变方法和其等价方案。
实施例1和对比实施例1
根据已知的PET共聚物合成方法,制成了PET共聚物树脂E1和对比树脂C1,其中E1是本发明实施方案中的配方,对比树脂C1是DEG含量降低了的常规配方。E1和C1的配方如下:
E1组成
二酸重复单元:
99.5mole%纯化的对苯二甲酸(PTA)
0.5mole%2,6-萘二甲酸(NDA)
二醇重复单元
98.62mole%乙二醇(EG)
1.38mole%二甘醇(DEG)
树脂的IV为0.85dL/g。
C1组成
二酸重复单元:
100mole%PTA
二醇重复单元
98.6mole%EG
1.4mole%DEG
树脂的IV为0.81dL/g。
将E1和C1树脂在149℃下干燥4小时,至水含量低于50ppm。将干燥的E1和C1树脂分别在49g常规热定形SBM型坯机床上用Arburg注塑机注塑,制成树脂E1的瓶子型坯和树脂C1的瓶子型坯。将这些型坯在Sidel SBO 2/3吹塑机上,用1L通用热定形SBM吹塑机床,吹塑制成图4所示构型的瓶子。吹塑前将这些型坯加热到107℃。在1200BPH(瓶子/小时)下,吹塑模具表面温度设定为121℃。
将分别由树脂E1和C1制成的5个瓶子在85℃、88℃、91℃和93℃下填充,填充前后分别测试它们的临界尺寸,来确定由于热填充引起的瓶子尺寸的变化。利用下述关系式计算每个瓶子的体积收缩率:体积收缩率%=(Vi-Vf)/Vi*100%,其中Vi和Vf分别是热填充前后瓶子的体积。计算5个瓶子的平均体积收缩率,示于下表1中。收缩值越高,则收缩率越高,瓶子性能越差。收缩率越高,瓶子越不合格。
表1:在不同填充温度下本发明树脂和对比树脂的体积收缩率%的比较

  填充温度(℃)  85  88  91  93  E1体积收缩率  1.32%  1.93%  2.07%  3.36%  C1体积收缩率  1.32%  2.32%  3.07%  3.62%

利用下述等式计算由E1和C1树脂分别制成的5个瓶子的直径收缩率:直径收缩率%=(Di-Df)/Di*100%,其中Di和Df分别是热填充前后临界尺寸的瓶子直径。计算5个瓶子的平均直径收缩率,示于下表2中。在瓶子的上钟形部、下钟形部和上缓冲部测试直径收缩率。收缩值越高,则收缩率越高,瓶子性能越差。收缩率越高,瓶子越不合格。
表2:在不同填充温度下对于本发明树脂和对比树脂的上钟形部、下钟形部和上缓冲部直径收缩率%的比较  填充温度(℃)  85  88  91  93  E1上钟形部直径收缩率  1.01%  1.50%  1.93%  3.11%  C1上钟形部直径收缩率  1.01%  2.79%  3.74%  6.12%  E1下钟形部直径收缩率  1.01%  1.45%  1.76%  2.90%  C1下钟形部直径收缩率  1.01%  1.93%  2.51%  4.24%  E1上缓冲部直径收缩率  1.35%  1.90%  2.32%  3.65%  C1上缓冲部直径收缩率  1.35%  1.61%  2.25%  3.67%

根据ASTM D 1505-85,将由树脂E1和C1分别制成的5个瓶子用于测试瓶子侧壁的结晶度。树脂的结晶度越高,表明拉伸吹塑过程中结晶速率越快,热填充稳定性越高。结果示于下表3中。
表3:结晶度数据  样品  平均结晶度  E1  28.9%  C1  27.0%

利用Hunter Labs Colorquest颜色计,通过测试6个瓶子侧壁来测试由E1和C1树脂制成的瓶子的颜色和浊度性能。结果示于下表4中。C1树脂轻微小的浑浊是由于,E1树脂是分批制成的树脂,其起始树脂本身更不透亮。结果表明,E1树脂能够制成非常透亮的容器,几乎没有浑浊,其瓶子可以与C1对比树脂制成的瓶子相当。
表4:颜色和浊度性能  树脂  L  A  b  浊度  E1  94  -0.15  2.1  7  C1  95  -0.09  1.3  6

实施例2和对比实施例2
根据已知的PET共聚物合成方法,制成了PET共聚物树脂E2和对比PET共聚物树脂C2,其中E2是本发明实施方案中的配方,与上面E1的相同,对比PET共聚物树脂C2是DEG含量降低了的常规配方。E2和C2的配方如下:
E2组成
二酸重复单元:
99.5mole%纯化的对苯二甲酸(PTA)
0.5mole%2,6-萘二甲酸(NDA)
二醇重复单元
98.62mole%乙二醇(EG)
1.38mole%二甘醇(DEG)
树脂的IV为0.85dL/g。
C2组成
二酸重复单元:
100mole%PTA
二醇重复单元
98.6mole%EG
1.4mole%DEG
树脂的IV为0.83dL/g。
将E2和C2树脂在149℃下干燥4小时,至水含量低于50ppm。将干燥的E2和C2树脂首先分别在49g常规热定形SBM型坯机床上用Arburg注塑机注塑,制成树脂E2的瓶子型坯和树脂C2的瓶子型坯。C2树脂不能模塑成具有合格透明度或浊度的型坯。其型坯太厚,并且C2树脂的结晶速率太快,以致型坯结晶和形成浑浊。不得不采用41g的较轻型坯。E1和C2树脂都模塑成具有合格透明度的41g型坯。
将这些41g型坯在Sidel SBO 2/3吹塑机上用1L通用热定形SBM吹塑机床,吹塑制成图4所示构型的瓶子。吹塑前将这些型坯加热到107℃。在1200BPH下,吹塑模具表面温度设定为121。由C2树脂制成的型坯不能吹塑成合格性能的瓶子,而由树脂E2制成的型坯能。不得不采用950BPHM的更低速度,由C2树脂制成的型坯吹塑瓶子。为了比较,对两种树脂都采用950BPHM的速度。
将由树脂E2和C2分别制成的5个瓶子在85℃、88℃和91℃下填充,填充前后分别测试它们的临界尺寸,来确定由于热填充引起的瓶子尺寸的变化。
利用下述关系式计算每个瓶子的体积收缩率:体积收缩率%=(Vi-Vf)/Vi*100%,其中Vi和Vf分别是热填充前后瓶子的体积。计算5个瓶子的平均体积收缩率,示于下表5中。数值越大,则收缩率越高,瓶子越不合格。
表5:在不同填充温度下E2树脂和C2树脂的体积收缩率%的比较  填充温度(℃)  85  88  91  E2体积收缩率  0.80%  1.26%  1.97%  C2体积收缩率  1.30%  1.98%  3.63%

利用下述等式计算每个瓶子的直径收缩率:直径收缩率%=(Di-Df)/Di*100%,其中Di和Df分别是热填充前后临界尺寸的瓶子直径。计算5个瓶子的平均直径收缩率,示于下表6中。收缩值越高,则收缩率越高,瓶子性能越差。收缩率越高,瓶子越不合格。
表6:在不同填充温度下对于E2树脂和C2树脂的上钟形部、下钟形部和上缓冲部直径收缩率%的比较  填充温度(℃)  85  88  91  E2上钟形部直径收缩率  1.29%  1.67%  1.29%  C2上钟形部直径收缩率  1.29%  1.47%  1.94%  E2下钟形部直径收缩率  1.78%  2.49%  2.49%  C2下钟形部直径收缩率  2.10%  2.80%  3.98%  E2上缓冲部直径收缩率  1.73%  2.37%  2.86%  C2上缓冲部直径收缩率  3.18%  4.17%  5.67%

实施例3和对比实施例3
根据已知的PET共聚物合成方法,制成了PET共聚物树脂E3和对比PET共聚物树脂C3,其中E3是本发明实施方案中的配方,与上面E1的相同,对比PET共聚物树脂C3是DEG含量降低了的常规配方。E3和C3的配方如下:
E3组成
二酸重复单元:
99.5mole%纯化的对苯二甲酸(PTA)
0.5mole%2,6-萘二甲酸(NDA)
二醇重复单元
98.62mole%乙二醇(EG)
1.38mole%二甘醇(DEG)
树脂的IV为0.85dL/g。
C3组成
二酸重复单元:
97.2mole%PTA
2.8mole%间苯二甲酸(IPA)
二醇重复单元
98.4mole%EG
1.6mole%DEG
树脂的IV为0.81dL/g。
这些实施例表明,与由常规市售树脂对比树脂C3制成的45g 1L热定形瓶子相比,由E3树脂制成的41g 1L热定形瓶子的性能相同或更好。
将E3和C3树脂在149℃下干燥4小时,至水含量低于50ppm。将干燥的C3树脂在45g常规热定形SBM型坯机床上用Arburg注塑机注塑。将干燥的E3树脂在41g常规热定形SBM型坯机床上用Arburg注塑机注塑。树脂E3和C3都注射成具有合格的透明度。将E3和C3型坯在Sidel SBO 2/3吹塑机上用1L通用热定形SBM吹塑机床,吹塑制成图4所示构型的瓶子。吹塑前将这些型坯加热到107℃。吹塑模具表面温度设定为121。
将由树脂E3和C3分别制成的5个瓶子在85℃、88℃、和91℃下填充,填充前后分别测试它们的临界尺寸,来确定由于热填充引起的瓶子尺寸的变化。
利用下述关系式计算每个瓶子的体积收缩率:体积收缩率%=(Vi-Vf)/Vi*100%,其中Vi和Vf分别是热填充前后瓶子的体积。计算5个瓶子的平均体积收缩率,示于下表7中。数值越大,则收缩率越高,瓶子越不合格。
表7:在不同填充温度下E3树脂和C3树脂的体积收缩率%的比较  填充温度(℃)  85  88  91  E3体积收缩率  0.80%  1.26%  1.97%  C3体积收缩率  1.31%  1.96%  2.95%

利用下述等式计算每个瓶子的直径收缩率:直径收缩率%=(Di-Df)/Di*100%,其中Di和Df分别是热填充前后临界尺寸下的瓶子直径。计算5个瓶子的平均直径收缩率,示于下表8中。在瓶子的上钟形部、下钟形部和上缓冲部测试直径收缩率。收缩值越高,则收缩率越高,瓶子性能越差。收缩率越高,瓶子越不合格。
表8:在不同填充温度下对于E3树脂和C3树脂的上钟形部、下钟形部和上缓冲部直径收缩率%的比较  填充温度(℃)  85  88  91  E3上钟形部直径收缩率  1.29%  1.67%  1.29%  C3上钟形部直径收缩率  0.97%  1.21%  1.60%  E3下钟形部直径收缩率  1.78%  2.49%  2.49%  C3下钟形部直径收缩率  1.47%  2.14%  3.18%  E3上缓冲部直径收缩率  1.73%  2.37%  2.86%  C3上缓冲部直径收缩率  2.23%  3.28%  4.80%

应当理解,上面涉及本发明的特殊实施方案,在不偏离本发明后面权利要求限定的范围下,可以对其作出多种改变。

用于热填充应用的聚酯组合物、由它制备的容器、和方法.pdf_第1页
第1页 / 共29页
用于热填充应用的聚酯组合物、由它制备的容器、和方法.pdf_第2页
第2页 / 共29页
用于热填充应用的聚酯组合物、由它制备的容器、和方法.pdf_第3页
第3页 / 共29页
点击查看更多>>
资源描述

《用于热填充应用的聚酯组合物、由它制备的容器、和方法.pdf》由会员分享,可在线阅读,更多相关《用于热填充应用的聚酯组合物、由它制备的容器、和方法.pdf(29页珍藏版)》请在专利查询网上搜索。

再加热拉伸吹塑方法制备的容器,包括聚对苯二甲酸乙二醇酯共聚物,该共聚物包括比常规树脂制备方法作为副产物生成的含量更低的二甘醇和少量萘二甲酸,使得容器提高了机械性能。还公开了制备容器的方法和热填充容器的方法。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 有机高分子化合物;其制备或化学加工;以其为基料的组合物


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1