用于可单轴热收缩的双轴 取向聚丙烯薄膜的改性组合物 本发明涉及聚合物薄膜领域,更具体地说,本发明涉及可单轴热收缩的双轴取向的聚丙烯薄膜。
如美国专利4,194,039所述,聚烯烃可用于制备用于包裹用途的收缩薄膜。其它合适的合成树脂包括各种离聚物、聚氯乙烯、聚酯、聚苯乙烯和聚偏二氯乙烯。
收缩薄膜的区别特征在于受到一定的热量作用后它会收缩,或者,如果其受到束缚,则会在薄膜内产生收缩张力。当包裹的物品通过包装机的热空气或热水收缩通道时,就会产生这种效果。薄膜的收缩形成美学上赏心悦目的透明包裹,它贴合产品的外形,同时提供包装材料所需的有用功能,如防止由于操作和运输的原因造成的产品部件的散失,失窃或损坏。包裹在聚烯烃收缩薄膜中地常见物品有玩具、游戏器械、运动物品、文具、贺卡、硬件和家用物品、办公用具、食品、唱片和工业零件。
在某些情况下,要求沿一个轴向进行收缩,而在与该轴垂直方向基本不发生收缩。例如,在通过收缩由热收缩材料制作的管或搭接密封的套子对瓶或罐进行贴标签加工时,如果薄膜平行于容器轴收缩,则标签将难以放置在正确的位置上,收缩后其位置高于或低于所需的位置。
为了获得可单轴收缩的材料,可以使用单轴取向的材料,即仅在一个方向取向的材料。但是,单轴取向的薄膜会缺乏这种用途所需的强度和韧性。由于双轴取向的薄膜在两个取向方向均具有所需的强度和抗撕裂性,因此需要制备一种可单轴热收缩的薄膜,它是双轴取向的,但是在横向基本是稳定的。在标签用途中,收缩方向通常相应于薄膜制造工艺中的纵向(MD)。
热收缩薄膜的详细描述可参见前面所述的美国专利4,194,039以及美国专利3,808,304、4,188,350、4,377,616、4,390,385、4,448,792、4,582,752和4,963,418。
美国专利5,292,561(相当于EPA0498249)公开了一种聚烯烃收缩薄膜的制造方法,这种薄膜在包括MD再取向机械的MD/TD拉伸比为1.01-7.5的条件下,具有高的单向收缩率(在100℃至少10%的纵向收缩率和小于2%的横向收缩率)。这种薄膜的基层含有丙烯聚合物和任选的氢化烃树脂。
EPA 0204843描述了一种包括线型低密度聚乙烯树脂的可低温收缩的薄膜,在90℃该薄膜在纵向收缩30%或更多,在横向收缩5%或更少,它是通过以高的拉伸比(3-6倍)纵向拉伸薄膜制得的。
EPA 0321964公开了一种由乙烯和至少一种具有3-6个碳原子的线型低密度共聚物挤出收缩薄膜的方法,其制得的材料在135℃在纵向至少收缩30%,在横向至少收缩10%。
EPA 0477742公开了一种透明的聚丙烯收缩薄膜,在100℃它在纵向至少收缩10%,在横向收缩小于2%。所述聚丙烯包括15%或更少,较好2-6%正己烷可溶的组分。
EPA 0299750公开了一种单轴向或双轴向拉伸的薄膜,沿纵向或横向中的一个方向其热收缩20%或更多,沿另一个方向它热收缩60%或更多。该薄膜主要包括线型聚乙烯和任选有支链的低密度聚乙烯。
EPA 0595270公开了一种具有高的单向收缩率的可热密封的层压物,它由双轴取向的聚合物薄膜(如双轴取向的聚丙烯或聚丙烯与丙烯和少量的乙烯或α-烯烃的共聚物的混合物)制得。单轴收缩性是通过综合纵向再取向加工因素(如温度、拉伸比、线速度和取向的聚合物薄膜性能)而获得的。热密封性是由于存在热密封层而形成的。
一般来说,在标签应用温度(高于130℃)下所需的高MD收缩率常在储存温度下相应地伴随有高的MD收缩率,在储存温度高的MD收缩率会导致卷材紧绷,使薄膜变形和粘连。在薄膜印刷后储存的情况下在储存温度的高MD收缩率的另一个后果是MD标签重复距离的准确性下降。
本发明的目的是提供一种包括聚丙烯芯层(core)的双轴取向的多层薄膜,所述芯层可单轴向热收缩并在储存温度下很少收缩。
本发明涉及一种可单轴向热收缩、双轴向取向的多层薄膜,它包括含聚丙烯的芯层和任选的至少一层与该芯层相邻的含聚烯烃的表层。所述芯层含有全同立构的聚丙烯和足够量的间同立构的聚丙烯,以抑制低温下的单轴收缩。
业已发现提高芯层中间同立构的聚丙烯的浓度可形成良好的高温(例如在标签用途的高于130℃的温度)瞬时收缩率,同时降低低温(最高达50℃的热环境)长期收缩性。本发明还涉及可单轴向热收缩的多层双轴取向的薄膜组合物,在低于50℃的温度下,所述薄膜在一星期后的纵向收缩小于3%,较好小于2%,在高于130℃的温度下,在7分钟后所述薄膜的纵向收缩至少为15%,较好大于18%。
图1是由75°F(24℃)的参考线开始的直线垂直位移ΔT时的温度效应,表示在T温度时MD收缩与时间(分)的对数关系;
图2显示各次实验中与温度无关的MD收缩斜率与log(时间)线的关系;
图3显示各种薄膜组合物的垂直位移因子ΔT与温度的函数关系;
图4显示在275°F(135℃)7分钟后TD收缩率与芯层中间同立构聚丙烯的含量的关系。
芯层
业已发现将高于约10重量%,尤其是30重量%的间同立构聚丙烯加入芯层混合物中,能获得高温收缩性,同时减少低温长期收缩性。适用于本发明的市售全同立构丙烯包括Fina Oil and Chemical Co.的Fina 3371。
在芯层中,间同立构聚丙烯的含量可为10-60重量%,较好为10-45重量%。适用于本发明的市售间同立构聚丙烯包括购自Fina的EOD 9306和EOD 9502。
适用于本发明的间同立构聚丙烯可具有小于15%,最好小于6%的全同立构规整度。
间同立构和全同立构聚丙烯的重均分子量均宜为60,000-250,000,最好为90,000-160,000。可用常规方法测定其平均摩尔质量;其中,已证实凝胶渗透色谱法特别合适。
本发明芯层还可包括许多由固体气蚀剂形成的孔隙。如美国专利5,288,548、5,267,277和4,632,869所述,占芯层2-16重量%、很好地分散成细球粒(如粒径0.2-2微米)的聚对苯二甲酸丁二醇酯是合适的气蚀剂。取向后该球粒形成微孔,形成白色不透明的产物。这种薄膜还可包括在芯层一侧或两侧上的聚丙烯承载层,承载层中的至少一层含有4-15重量%的TiO2。使用这种含TiO2层的进一步描述可参见美国专利5,091,236。在承载层上施加表层用于包封磨料TiO2并形成高度不透明的五层结构。这种多层薄膜具有改进的印刷、喷涂金属、粘附、涂覆和热密封性能。或者,可在芯层两侧使用透明的聚丙烯承载层制备五层结构,这种透明层不含非透明材料。
可向芯层中加入1-10重量%的不透明化合物来增强薄膜的不透明度和降低透光性,这种不透明化合物是挤出前加入芯层的熔融混合物中的。适用的不透明化合物包括氧化铁、炭黑、石墨、铝粉、TiO2和滑石粉。
可使用任何合适的方法(如干混、溶液混合、或在熔融状态混合两种聚合物,或者组合使用上述方法)混合上面提到的全同立构聚丙烯、间同立构聚丙烯和上述其它组分,形成均匀的掺混料。
表层
本发明任选的表层可以是本领域已知的任何可共挤出的、可双轴取向的、可热收缩的成膜树脂。这种材料包括全同立构的聚丙烯、无规聚丙烯、掺混有聚丁烯的聚丙烯、丙烯-丁烯共聚物、乙烯-丙烯共聚物、聚乙烯和乙烯-丙烯-丁烯三元共聚物。
适合于作为本发明表层的乙烯-丙烯-丁烯三元无规共聚物包括那些含有1-5重量%无规乙烯、10-25重量%无规丁烯的共聚物。在这些共聚物中无规乙烯和无规丁烯的含量通常总共(乙烯加丁烯)为10-25%。典型的这种类型的三元共聚物包括那些含有1-5%乙烯和10-25%丁烯的共聚物。这种共聚物的熔体流动速率通常为5-10,密度为0.9,熔点为115-130℃。
在本发明的一个实例中,表层由线型低密度聚乙烯(LLDPE)制成。这些聚合物的熔体流动指数通常为1-10。线型低密度聚乙烯的密度可高达0.94,通常为0.90-0.91,如0.92或0.91,熔体流动指数为1-10。该线型低密度聚乙烯可由乙烯和其它更高级共聚用单体,如1-丁烯、1-己烯或1-辛烯制得。
与芯层相邻的各层表层的厚度可为0.5-3微米(0.02-0.12mil),较好为0.5-1.0微米(0.02-0.04mil)。
在结合薄膜前,例如在挤出前,表层中的至少一层可化合有抗粘连有效量的抗粘连剂,如氧化硅、粘土、滑石粉、玻璃等,这种试剂的形状最好近似球粒。大部分这些颗粒(如多于一半至多达90重量%或更多)具有这样的粒径,即其大部分表面积(如表面积的10-70%)露出表层外露的表面。在一个较好的实例中,抗粘连剂包括不可熔融的硅氧烷树脂,如颗粒状交联的聚硅氧烷。最好是不可熔融的聚硅氧烷小球,它的平均粒径为0.5-20.0微米,并具有三维的硅氧烷键合结构。在世界范围内,这种材料可购自Toshiba Silicone Co.,Ltd,在美国这种材料可购自General Electric Co.,商品名为Tospearl。已知类似的合适材料还有其它工业来源。在美国专利4,769,418中将这种材料进一步描述为不可熔融的交联有机硅氧烷树脂粉。按制备表层所用的树脂计,颗粒状交联的聚硅氧烷抗粘连剂的有效量为100-5000ppm,较好为1000-3000ppm。
根据美国专利5,264,277公开的在多层薄膜中使用迁移性增滑剂和抗静电剂,可降低一层或两层表层的摩擦系数(COF)并增加抗静电性。用2000-15000ppm硅油处理一层或两层表层也可降低COF。
如有必要,可用已知的和常规的方法(如电晕放电)处理一层或两层表层的露出表面来改进其对印刷油墨、涂料、粘合剂粘结的接受能力和/或适合于其随后加工(如层压)的性能。
本发明多层薄膜结构的所有各层最好能共挤出,接着可对薄膜进行双轴取向(初级取向),随后在所需的收缩方向进行二次取向。可以多层熔体的形式通过扁平模头进行共挤出。
初级取向
可对多层共挤出薄膜进行双轴向初级取向。双轴向取向的薄膜可在第一方向(通常是纵向(MD))拉伸3-6倍,,通常拉伸4-5倍,在与所述第一方向基本垂直的第二方向(最好是横向(TD))拉伸5-10倍,通常拉伸7-8倍。一般来说,两个轴向取向的温度是不同的,MD取向的温度可为115-130℃,如120℃,TD取向的温度可为130-160℃,如150℃。在该阶段薄膜的厚度可为15-75微米(0.6-3mil),较好为25-50微米(1-2mil)。在二次取向前将薄膜的温度降至低于100℃。
二次取向
随后常使用热辊将初级取向的薄膜再加热至100-125℃,比如说110-115℃,并仅在第一取向方向(即纵向(MD))再拉伸10-40%,通常为25-30%。为了减少会不利地影响第二方向热稳定性(如横向热稳定性)的TD收缩,要求在二次取向的拉伸辊之间保持最小的间距。这种距离可小于30cm,如5-10cm。
二次取向后形成的可单轴向收缩的薄膜的厚度可为10-60微米(0.4-2.4mil),较好为20-50微米(0.8-2.0mil)。
同时取向
还可以在线(line)取向来制备本发明薄膜,该生产线使用线性马达同步地直接驱动对置的数对拉伸架(tenter)夹。可沿一渐宽的路径同步加速,使直接对置的数对拉伸架夹夹持薄膜,来初级取向薄膜,如此进行同时双轴取向。可沿紧接在所述渐宽的路径后的一平行的路径,通过沿部分平行的路径同时加速直接对置的数对拉伸架夹而在同一拉伸架上进行二次纵向取向。
使用线性马达直接驱动拉伸架夹来进行同时双轴向拉伸进一步描述在Hommes等的美国专利4,853,602中。
尺寸稳定性
在高于130℃的温度下放置7分钟后,形成的可单轴向收缩的薄膜在二次取向的方向(如纵向)的收缩率大于15%,较好大于18%,甚至大于25%。但是,在低于50℃的温度下,7天后在同样方向上的收缩率小于3%,较好小于2%。在与二次取向方向垂直的方向上,本发明薄膜的稳定性为±5%,较好为-2~+1%。-2~+1%的稳定性是指与室温下薄膜的原始尺寸相比,加热至高于130℃的温度后,薄膜在与二次取向垂直的方向上的尺寸收缩不超过2%或膨胀不超过1%。
上面描述的较高的温度范围常用于将标签施加至容器上。较低的温度范围常用于在施加标签前薄膜卷材的储存。因此,所述的收缩性能使标签很好地贴合容器,但减少了薄膜卷材过分收缩产生的缺陷。
下面将通过非限制性实例说明本发明,除非另有说明,否则所有的份均为重量份。
实施例
实施例1
一系列17次实验(标号为1-5、5.1、6-16)描述如下。
将购自Fina的Fina 3371全同立构的聚丙烯(m.p.=163℃(325°F),熔体流动指数=3)用作芯层的全同立构丙烯均聚物组分。向该芯层中加入下表1所示量的间同立构聚丙烯(Fina EOD-9502,购自Fina,m.p.=120℃(248°F),熔体流动指数=4)。
在螺杆的L/D为2/1的挤出机中熔融芯层组分,以便形成芯层。向与第一挤出机相连的第二和第三挤出机中加入乙烯-丙烯-丁烯三元共聚物(Chisso 7701)(含3.3%乙烯、3.8%丁烯,MFI=5)以形成两层表层,两层表层中的一层含有2000ppm的Tospearl 145(一种交联的有机硅氧烷小球,标称平均粒径为4.5微米)。在将芯层聚合物材料挤出机的料筒保持在足以熔融聚合物混合物的温度(即232-288℃(450-550°F))时,进行熔融共挤出。在第二和第三挤出机中要挤出成表层的三元共聚物的温度保持在与制备芯层的组分的温度大致相同。第二和第三挤出机两股E-P-B三元共聚物物料能在芯层的两个表面上形成两层表层。
共挤出的三层薄膜中,芯层的厚度占挤出物总厚度的92%,各表层的厚度占薄膜厚度的4%。使用市售的依次双轴向取向设备将形成的薄膜片依次在纵向拉伸4.5倍,在横向拉伸8倍,形成多层薄膜结构。所述纵向取向是在127℃(260°F)进行的,所述横向取向是在149-160℃(300-320°F)进行的。随后在直接与TD取向器相连的一系列5根加热至110-121℃(220-250°F)的辊上通过拉伸在纵向进行二次取向。收集以纵向拉伸进行二次取向的试样。测定二次纵向伸长率,即二次取向后薄膜长度的增加百分数,它近似于旋转速度的增加百分数。
二次MD拉伸后,通过适当加热使薄膜退火。这可用红外(IR)加热器和/或一对加热辊来完成。另外,也可将大多数二次MD拉伸的薄膜再置于上述五根夹辊的上方并升高其中至少一根夹辊的温度来实施退火。在本实施例中使用的退火条件列于表1和表2中。
对薄膜一侧的三元共聚物表层进行电晕放电处理,而另一侧的三元共聚物表层含有2000ppm Tospearl 145(一种平均粒径为4.5微米的交联的有机硅氧烷小球,它在共挤出前加入)。最终的薄膜厚度为20微米(0.8mil)。
表1:实验次数 序号 %SYNDIO IR 退火辊°F MOD2 1 4 关 100 A 2 4 开 100 B 3 4 关 150 B 4 4 开 150 A 5和5.1 60 关 100 A 6 60 开 100 B 7 60 关 150 B 8 60 开 150 A 9 30 关 100 A 10 30 开 100 B 11 30 关 150 B 12 30 开 150 A 13 4 关 100 A 14 4 开 100 B 15 4 关 150 B 16 4 开 150 A
注:%syndio=芯层中Fina EOD-9502的百分数,余量为Fina 3371;
IR=在电晕放电器和退热辊之间的红外加热器;打开时靠近薄膜的温度为180°F(82℃);
退火辊=退火辊的水温,°F;
MOD2=代表两种配置的字符,参见下表2。
表2:MDO2配置 辊1 辊2 辊3 辊4 辊5 sp 温度 sp 温度 sp 温度 sp 温度 sp 温度A 1.01 200°F (93℃) 1.01 250°F (121℃)1.01 250°F (121℃)1.20 250°F (121 ℃) 1.06 70°F (21℃)B 1.01 250°F (121℃) 1.01 250°F (121℃)1.26 250°F (121℃)1.01 200°F (93℃) 1.01 180°F (82℃)
注:sp=与前驱动的速度比
温度=水温
对于17次实验中的每一次,根据表3所列的温度和放置时间测定MD收缩率,每次测量重复两次。图1是第一次实验数据的示意图。
表3:MD收缩率测量 7m 20m 1h 3h 8h 24h 3d 9d 27d 275°F (135℃) × × × 225°F (107℃) × × × × × 175°F (79℃) × × × × × × × 125°F (57℃) × × × × × × × × 75°F (24℃) × × × × × ×
注:m=分
h=小时
d=天
实施例1的结果取决于未束缚的MD薄膜的收缩率(s)和以分钟为单位的时间(t)以及温度(T)之间经实验验证的特殊关系。发现:
1.当T恒定时,s是t的对数(log t)的线性增加函数;
2.在给定的薄膜类型和设定的加工温度下,该函数的斜率(即T恒定时s水log(t)的变化速率)几乎与T无关。
温度的影响可图示为T由室温75°F(24℃)参考线的直线垂直位移ΔT。这可参见图1的第一次实验。
影响薄膜在线退火或应力松弛的加工条件对斜率或位移因子很少具有影响。相反,改变芯层组合物中间同立构聚丙烯的量会产生显著影响。
图2显示第一次至第十六次实验中具有±2标准偏差条的s-log(t)线与温度无关的斜率。每个条均是由与图1相似的单独的曲线中换算而得到的。每组4个相邻的条代表4种不同的加工条件和一种芯层组合物。(图2左起第二组具有5个条,因为第5.0和5.1次实验除了在不同的两天内进行的以外,其余是相同的。)对于每种组合物以相同的次序重复相同的加工条件。加工条件的影响在统计上是不明显的。在同一组中4个条的不同反映了实验的随机误差。
另外,在连续的2天中用4%间同立构聚丙烯组合物进行实验,记为Day 1和Day 2。这可进一步估计s-log(t)斜率的随机误差。同时考虑随机误差的上述来源,在统计上和实际上芯层组分的影响是明显的。结果表明将芯层中间同立构聚丙烯的含量由4重量%增至30重量%,几乎可使单位log(t)的s增加率减半。另一次近似减半发生在增至60重量%间同立构聚丙烯时。
将图2中的4次实验一组的垂直位移因子ΔT与温度的关系示于图3。同样,相对于随机误差,在统计上组成的影响是明显的,而加工条件无影响。将各组中的4次加工条件取平均以简化附图。将室温(75°F(24℃))的ΔT定义为0。
图3显示在中间温度,芯层含30重量%间同立构聚丙烯和60重量%间同立构聚丙烯时的收缩率位移低于含4重量%间同立构聚丙烯时的收缩率位移。但是,在275°F(135℃)的贴标签温度,所有组成表现出性能均相同。对于斜率,就低温(低于200°F(93℃))尺寸稳定性来说,60重量%的间同立构聚丙烯比30重量%间同立构聚丙烯更有利。图4表示间同立构聚丙烯的重量百分数对TD尺寸稳定性的影响。与4重量%间同立构的聚丙烯和60重量%间同立构的聚丙烯相比,在芯层中60重量%的间同立构聚丙烯增加了TD收缩率。但是,应该知道改变拉伸架中的某些加工条件可使图4中的曲线整体下移至少2%收缩率。事实上,在4%间同立构聚丙烯加入量时,会产生负的TD收缩(即TD膨胀),尽管在贴标签时这是很不希望的。尽管对于100-200°F(38-93℃)MD长期收缩率,60重量%的间同立构聚丙烯要优于30重量%间同立构聚丙烯,但是由于下列原因而使芯层中30重量%间同立构聚丙烯具有更好的总体多层结构:
1)与全同立构聚丙烯相比间同立构聚丙烯的成本较高;
2)在275°F,60重量%的间同立构聚丙烯产生更高的TD收缩;
3)由于在拉伸架上卷材频繁破裂,因此用60重量%间同立构聚丙烯时的取向生产线的(line)操作较为困难。
实施例2
本实施例说明降低斜率和温度位移对实施例1的第一、五和九次实验制得的收缩薄膜卷在进行收缩前的储存稳定性的综合影响。
步骤1:在仓库中放置9个月(9月至五月),平均温度75°F;
步骤2:在仓库中放置3个约(6月至7月),平均温度88°F;
步骤3:在有蓬货车中在热气候下放置3天,平均温度100°F。
使用实验测得的斜率和垂直位移,算得下列收缩量:
表4:算得的储存收缩率
实验 芯层中的间同立构体% MD总收缩率%
1 4 9.8
5 30 4.3
9 60 1.6
该计算假定薄膜片是未受束缚的。在实践中,卷材本身的几何形状确实产生束缚。因此,实际的尺寸变化要小于表中所列的数据。张力和卷材硬度是逐渐增加的,表中所列的收缩%为这种增加提供良好的指标,这种收缩损害了产品的质量。
将芯层中间同立构聚丙烯的含量由4重量%增至30重量%使储存温度下长期MD收缩明显下降,这与超过125°F(52℃)时的情况不同。在贴标签温度(通常275°F(135℃))收缩率的下降是微小的。在芯层中使用60重量%的间同立构聚丙烯对纵向收缩率有很大的好处,但在贴标签温度下的成本和TD收缩率变得太高。还发现在取向生产线中通过改进薄膜的退火不能获得本申请所述的储存稳定性。
本领域的普通技术人员可以理解,上面所讨论的具体实例能成功地得以重复,只要使用与前面一般或特殊描述的成分相当的成分,并可改变加工条件。由前面的描述,本领域的普通技术人员可容易地确定本发明的主要特征,在不偏离本发明精神和范围的情况下,可将其用于各种用途。