制备锂蓄电池用的正极活性物质的方法.pdf

上传人:Y948****062 文档编号:882648 上传时间:2018-03-16 格式:PDF 页数:10 大小:327.37KB
返回 下载 相关 举报
摘要
申请专利号:

CN01121235.7

申请日:

2001.06.14

公开号:

CN1330417A

公开日:

2002.01.09

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止 IPC(主分类):H01M 4/02申请日:20010614授权公告日:20050706终止日期:20160614|||授权|||实质审查的生效|||公开

IPC分类号:

H01M4/02; H01M4/04; H01M4/36; H01B1/12; C09D5/24

主分类号:

H01M4/02; H01M4/04; H01M4/36; H01B1/12; C09D5/24

申请人:

三星SDI株式会社;

发明人:

丁元一

地址:

韩国京畿道

优先权:

2000.06.16 KR 33297/2000

专利代理机构:

柳沈知识产权律师事务所

代理人:

范明娥

PDF下载: PDF下载
内容摘要

本发明涉及一种制备锂蓄电池用的正极活性物质的方法,该法包括通过溶解导电聚合物于溶剂中以制备涂料溶液并使锂络合金属氧化物涂上涂料溶液。由此,本发明提供一种把导电聚合物涂覆在用作正极活性物质的锂络合金属氧化物表面上的方法。使用这种方法,易于涂覆和均匀涂覆导电聚合物。所制备的正极活性物质具有优良的电化学特性,尤其是在提高的温度下。

权利要求书

1: 一种制备锂蓄电池用的正极活性物质的方法,该法包括的步骤有: 通过溶解导电聚合物于溶剂中而制备涂料溶液;和 使锂络合金属氧化物涂上涂料溶液。
2: 按权利要求1所述的方法,其中,所述涂覆步骤是通过使用附聚器或 喷雾干燥器而实施的。
3: 按权利要求1所述的方法,其中,所述导电聚合物选自聚吡咯、聚苯 胺、聚噻吩、聚乙炔,其衍生物或其混合物。
4: 按权利要求3所述的方法,其中,所述导电聚合物是翠绿亚胺基或掺 杂状态的聚合物。
5: 按权利要求1所述的方法,其中,所述涂料溶液进一步含有导电剂。
6: 按权利要求1所述的方法,其中,所述涂料溶液进一步含有导电剂和 离子导电聚合物。
7: 按权利要求6所述的方法,其中,所述离子导电聚合物选自聚环氧乙 烷、聚环氧丙烷、聚乙二醇及其衍生物、其盐或其混合物。

说明书


制备锂蓄电池用的正极活性物质的方法 相关申请的交叉参考文献

    本申请是基于2000年6月16日在韩国工业产权局提出的2000-33297号申请,其内容在此引入作为参考。

                           发明背景(a)发明领域

    本发明涉及制备锂蓄电池用正极活性物质的方法,更准确地说,涉及制备具有优良电化学特性的锂蓄电池用的正极活性物质的方法。(b)相关技术的描述

    制备锂蓄电池是通过使用能作为正极和负极活性物质的可逆地插入或脱出的物质,并且通过置于正极和负极之间的有机电解质或聚合物电解质的充电。锂蓄电池借助于锂离子在正极和负极中插入和脱出时的氧化-还原反应而产生电能。

    锂蓄电池的负极活性物质是碳基物质,正极活性物质是硫属化物,例如,络合金属氧化物如LiCoO2、LiMn2O4、LiNiO2、LiNi1-xCoxO2(0<x<1)以及LiMnO2。

    近年来,一直对作为新的正极活性物质的导电聚合物进行研究。然而,当仅使用一种导电聚合物作为正极活性物质时,在正极的表面上会出现沉积和剥离的现象,而不是在锂蓄电池充电和放电过程中出现插入/脱出反应。这样,就会出现使用导电聚合物时电池的比容量达不到理论容量地问题。

    为了解决仅使用一种导电聚合物作为正极活性物质的问题,在一些新的方法中,对导电聚合物与锂络合金属氧化物一起使用进行试验。这些方法中的一个实例是制备芯-壳型正极活性物质,它包含在锂络合金属氧化物的表面上聚合有导电聚合物。然而,这种方法具有这样的一种缺点,即,在聚合过程中,由改性的的络合金属氧化物,尤其是锰活性物质氧化形成γ-MnO2,致使出现包括初容量差和循环特性不稳定的不良性能。

                         发明概述

    本发明是为了解决这些问题提出的,由此,本发明的目的在于提供一种制备具有优良电化学特性的锂蓄电池用的正极活性物质的方法。

    本发明的另一个目的在于提供一种制备在高温下具有优良循环寿命特性且其活性物质的体积不减少的锂蓄电池用的正极活性物质的方法。

    为了能达到上述的目的,本发明提供一种制备锂蓄电池用的正极活性物质的方法,该法包括通过溶解导电聚合物于溶剂中而制备涂料溶液,且使涂料溶液涂层锂络合金属氧化物。

                            附图简述

    图1是说明含有本发明实施例和对比例的正极活性物质的锂蓄电池在室温下的循环寿命图。

    图2是说明含有本发明实施例和对比例的正极活性物质的锂蓄电池在提高的温度下的循环寿命图。

                        详细说明与优选实施方案

    本发明提供一种在作为锂蓄电池用正极活性物质使用的锂络合金属氧化物表面上涂覆液态导电聚合物的方法。该方法的第一步是通过溶解导电聚合物于合适的溶剂中而制备涂料溶液。上述导电聚合物优选的是聚吡咯、聚苯胺、聚噻吩、聚乙炔,其衍生物或其混合物。聚噻吩的实例包括聚(3-丁基噻吩-2,5-二基)、聚(3-己基噻吩-2,5-二基)、聚(3-辛基噻吩-2,5-二基)、聚(3-癸基噻吩-2,5-二基)、聚(3-十二烷基噻吩-2,5-二基)等。

    当按照电学状态对可用的导电聚合物进行分类时,可分成翠绿亚胺基聚合物或掺杂状态的聚合物。翠绿亚胺基指的是电中性状态的聚合物。翠绿亚胺基聚合物可以通过仅聚合单体,或脱去掺杂聚合物的掺杂物而进行制备。脱掺杂是通过添加一种能与掺杂聚合物的掺杂物质起反应的物质而易于实施,然后洗涤产物以获得翠绿亚胺基聚合物。上述掺杂状态的聚合物是通过在用掺杂物质稀释的溶液环境下使单体聚合而制备的。另外,其制备还可以通过使掺杂聚合物脱去掺杂而形成翠绿亚胺基状态的聚合物,然后,使其再次用掺杂物质进行掺杂。经过掺杂、脱掺杂和再次掺杂的聚合物可改进聚合物的导电性和溶解性。掺杂状态的聚合物,当它与掺杂物质结合时失去其电子时而呈电中性,致使它带有正电荷(+),并与带有负电荷(“-”)的掺杂物质结合。掺杂物质可以包括任何由于吸引聚合物中的电子而带有“-”电荷的物质。有关掺杂物质的类型没有限制。另外,有关掺杂物质的量也没有限制。掺杂物质的具体实例是锂盐如卤化锂,或具有长烷基链的有机酸。具有长烷基链的有机酸的实例是烷基苯磺酸如p-甲苯磺酸、苯磺酸、辛基苯磺酸、十二烷基苯磺酸。

    作为导电聚合物的代表性的聚合物可以使用与其它聚合物如聚吡咯或称为“载带的聚合物”(从Aldrich公司买到的)的混合物,包括在掺杂聚氨酯芯粘合剂上形成的导电聚吡咯壳。它们也可以用聚氨酯和聚醋酸乙烯酯共聚物的形式而使用。能够与导电聚合物混合或形成共聚物的聚合物类型不限于上述聚合物。

    用于本发明中的导电聚合物具有优良的导电性并且在活性物质或导电物质和粘合剂之间提供良好的附着性,并且能阻止活性物质在提高的温度下的热分解。尤其是,当使用锰活性物质时,导电聚合物能阻止所述物质在提高的温度下的热分解和体积的膨胀。

    用于制备涂料溶液的溶剂可以是有机溶剂如氯仿或m-甲酚,或水,但不限于这些。若导电聚合物良好地溶解于溶剂中时也不存在限制。

    按照本发明其它优选实施方案,可把导电剂或离子导电聚合物加到含有上述导电聚合物的涂料溶液中。能用于本发明中的导电剂包括石墨基导电剂或碳基导电剂等,但不限于这些。石墨基导电剂的实例是KS 6(Timcal公司的产品),碳基导电剂的实例是Super P(MMM公司的产品)、厨黑(ketchenblack)、denka黑、乙炔黑、炭黑等。用于本发明中的离子导电聚合物的实例是聚环氧乙烷、聚环氧丙烷、聚乙二醇,其衍生物或其混合物。可以使用聚合物的盐以及有机溶剂与聚合物或聚合物盐的混合物。

    使锂络合金属氧化物的表面涂上所制备的涂料溶液。在这种情况下,优选使用能把导电聚合物均匀涂覆在锂络合金属氧化物表面上的设备,以便易于控制涂覆工艺。所述设备的实例是附聚器或喷雾干燥器,以及任何能把涂料溶液涂在氧化物粉末表面上的设备都可以使用。当使用所述设备时,根据该设备的容量,最好优化起动条件如输入量、入口温度、流化空气体积、溶液的供应速度、旋转速度(RPM,转/分)、空气喷雾体积等。

    涂覆的导电聚合物的量,按锂金属氧化物计,优选为1-30wt%,更好的是1-10wt%。导电物质的量,按锂金属氧化物计,优选为0.1-10wt%,离子导电聚合物的量优选为0.1-5wt%。

    在锂络合金属氧化物上的涂层厚度优选为0.1-1μm。若厚度低于0.1μm时,就不能期望改善提高温度下的循环寿命,即,涂覆效果。相反,若厚度大于1μm时,随着锂离子非平稳地插入或脱出正极金属氧化物时,初容量就降低。

    锂络合金属氧化物可包括常规用于锂蓄电池中的任何锂络合金属氧化物。下面通式1-9,尤其是通式1-4表示的实例是优选的。

    通式1

    LixMn1-yM′yA2

    通式2

    LixMn1-yM′yO2-zAz

    通式3

    LixMn2O4-zAz

    通式4

    LixMn2-yM′yA4

    通式5

    LixMn1-yM″yA2

    通式6

    LixMO2-zAz

    通式7

    LixNi1-yCoyO2-zAz

    通式8

    LixNi1-y-zCoyM″zAα

    通式9

    LixNi1-y-zMnyM′zAα

    (其中,0.95≤x≤1.1,0≤y≤0.5,0≤z≤0.5,0≤α≤2,M是Ni或Co,M′选自Al、Ni、Co、Cr、Fe、Mg、Sr、V、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No以及Lr中的至少一种,M″选自Al、Cr、Mn、Fe、Mg、Sr、V、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No以及Lr中的至少一种,A选自O、F、S和P。)

    参照下列实施例将对本发明作进一步更加详细地阐述。然而,这些实施例在任何情况下都不应该解释为对本发明范围的限制。

    实施例

    实施例1

    通过溶解掺杂状态的聚吡咯/聚氨酯混合物于纯水中而制备涂料溶液。聚吡咯/聚氨酯的含量基于涂料溶液计为1wt%。涂上聚吡咯/聚氨酯的LiMn2O4是通过向附聚器中添加所制备的涂料溶液和LiMn2O4而制备的。

    实施例2

    通过溶解掺杂状态的聚苯胺于氯仿中而制备涂料溶液。聚苯胺的含量按涂料溶液计为1wt%。涂上聚苯胺的LiMn2O4是通过往附聚器内加入所制备的涂料溶液和LiMn2O4而制备的。

    实施例3

    通过溶解翠绿亚胺基状态的聚苯胺于氯仿中制备涂料溶液。聚苯胺的含量按涂料溶液计为1wt%。涂上聚苯胺的LiMnO2是通过往喷雾干燥器内添加所制备的涂料溶液和LiMnO2而制备的。

    实施例4

    通过溶解以十二烷基苯磺酸和SuperP(MMM公司的产品)再掺杂的聚苯胺于m-甲酚中而制备涂料溶液。聚苯胺和SuperP的各自含量按涂料溶液计为1wt%。涂上聚苯胺和SuperP的LiMn2O4是通过向附聚器添加所制备的涂料溶液和LiMn2O4而制备的。

    实施例5

    通过溶解用十二烷基苯磺酸、Super P(MMM公司的产品)以及聚环氧乙烷再掺杂的聚苯胺于m-甲酚中而制备涂料溶液。聚苯胺、SuperP和聚环氧乙烷的各自含量按涂料溶液计为1wt%。涂上聚苯胺、SuperP和聚环氧乙烷的LiMn2O4是通过向附聚器添加所制备的涂料溶液和LiMn2O4而制备的。

    对比例1

    锂蓄电池用的正极活性物质是通过在LiMn2O4表面上聚合吡咯单体而制备的。

    对比例2

    将LiMn2O4用作锂蓄电池的正极活性物质。

    硬币式锂蓄电池是通过使用按照实施例1-5和对比例1和2制备的正极活性物质制备的。测量含有实施例1和对比例2的正极活性物质的硬币式电池在室温下的循环寿命特性并示于图1中。从图1中可见,使用实施例1正极活性物质的电池(b),比使用对比例2正极活性物质电池(a)在室温下具有更好的寿命特性。

    测量含有实施例1和5以及对比例2正极活性物质的硬币式电池在提高温度下的循环寿命特性并示于图2中。从图2中可见,使用实施例1和5的正极活性物质的硬币式电池(b和c),比使用对比例2正极活性物质的电池(a)在提高的温度下(60℃)具有更好的循环寿命特性。

    由此,本发明提供一种在锂络合金属氧化物表面上涂覆导电聚合物以用作正极活性物质的方法。用这种方法,易于涂覆和均匀涂覆导电聚合物。所制备的正极活性物质具有优良的电化学特性,尤其是在提高的温度下。

制备锂蓄电池用的正极活性物质的方法.pdf_第1页
第1页 / 共10页
制备锂蓄电池用的正极活性物质的方法.pdf_第2页
第2页 / 共10页
制备锂蓄电池用的正极活性物质的方法.pdf_第3页
第3页 / 共10页
点击查看更多>>
资源描述

《制备锂蓄电池用的正极活性物质的方法.pdf》由会员分享,可在线阅读,更多相关《制备锂蓄电池用的正极活性物质的方法.pdf(10页珍藏版)》请在专利查询网上搜索。

本发明涉及一种制备锂蓄电池用的正极活性物质的方法,该法包括通过溶解导电聚合物于溶剂中以制备涂料溶液并使锂络合金属氧化物涂上涂料溶液。由此,本发明提供一种把导电聚合物涂覆在用作正极活性物质的锂络合金属氧化物表面上的方法。使用这种方法,易于涂覆和均匀涂覆导电聚合物。所制备的正极活性物质具有优良的电化学特性,尤其是在提高的温度下。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1