治疗计划逆向规划方法和治疗计划系统.pdf

上传人:le****a 文档编号:8566150 上传时间:2020-08-16 格式:PDF 页数:18 大小:516.84KB
返回 下载 相关 举报
摘要
申请专利号:

CN201110097663.6

申请日:

20110418

公开号:

CN102247660B

公开日:

20160601

当前法律状态:

有效性:

有效

法律详情:

IPC分类号:

A61N5/10

主分类号:

A61N5/10

申请人:

深圳市海博科技有限公司

发明人:

卿侯,刘启平,崔智

地址:

518057 广东省深圳市南山区科苑南路高新南七道惠恒大楼三楼

优先权:

CN201110097663A

专利代理机构:

深圳鼎合诚知识产权代理有限公司

代理人:

任葵

PDF下载: PDF下载
内容摘要

本发明公开了一种治疗计划逆向规划方法,包括:A设置迭代优化参数;B产生个体治疗计划;C计算个体治疗计划剂量场;D根据个体治疗计划筛选策略,对个体治疗计划进行筛选;E根据所述剂量场和所述逆向规划目标计算筛选剩下的个体治疗计划的适应度;F选择当前最优计划;G若进化次数大于种群进化次数,转到I;否则进入下一步;H将种群进化到新一代种群,转到C;I停止种群进化并输出当前最优计划。本发明还公开了一种治疗计划系统。本发明在计算适应度之前对种群计划进行筛选,并对筛选后剩余的个体治疗计划计算适应度,能有效降低计算量,使得整个迭代过程高效。

权利要求书

1.一种治疗计划逆向规划方法,用于在放射治疗前对患者要进行放射治疗的区域进行剂量规划,其特征在于,包括设置逆向规划目标和利用种群进化对初始治疗计划进行治疗计划优化的过程,所述优化过程包括:步骤A:设置迭代优化参数:种群大小、种群进化次数;步骤B:对所述初始治疗计划进行随机抖动,产生种群中的个体治疗计划;步骤C:计算所述种群所有个体治疗计划对应的剂量场;步骤D:根据个体治疗计划筛选策略,对个体治疗计划进行筛选;步骤E:根据所述剂量场和所述逆向规划目标计算筛选剩下的个体治疗计划的适应度;步骤F:选择适应度最大的个体治疗计划作为当前最优计划;步骤G:若当前迭代次数大于所述种群进化次数,则转到步骤I,否则进入下一步;步骤H:将种群进化到新一代种群,转到步骤C;步骤I:停止迭代优化并输出最优的治疗计划;其中所述步骤D包括:步骤D1:将靶体体积向外扩展预设的第一范围,形成靶体第一扩展区,将所述靶体第一扩展区内大于预设第一剂量阈值的体积超过预设第一体积阈值的个体治疗计划筛选出种群;步骤D2:将靶体体积在所述第一扩展区向外扩展预设的第二范围,形成靶体第二扩展区,将靶体第二扩展区内存在大于预设第二剂量阈值剂量的个体治疗计划筛选出种群;步骤D3:将健康组织/危及器官内大于预设第三剂量阈值的体积超过预设第二体积阈值的个体治疗计划筛选出种群;步骤D4:将健康组织/危及器官内存在大于预设第四剂量阈值剂量的个体治疗计划筛选出种群。 2.如权利要求1所述的方法,其特征在于,其中所述逆向规划目标包括:处方剂量D、各个健康组织/危及器官限制剂量D(i),靶体的相对性重要性因子K、健康组织/危及器官的相对性重要性因子K和健康组织/危及器官内部重要性因子K,其中K+K=1,∑K=1;所述适应度通过下式计算:其中,V为靶体中D包络的靶体体积,V为D的体积,V为靶体的体积,V为靶体中剂量值小于处方剂量D的体积,V为第i个健康组织/危及器官中剂量值大于D(i)的体积。 3.如权利要求1或2所述的方法,其特征在于,其中步骤H所述进化到新一代种群包括:通过交配和/或变异进化到新一代种群。 4.如权利要求1或2所述的方法,其特征在于,其中步骤H所述进化到新一代种群包括:通过对当前最优计划进行扰动进化到新一代种群。 5.一种治疗计划系统,用于在放射治疗前对患者要进行放射治疗的区域进行剂量规划,其特征在于,包括设置模块、优化模块、进化模块和迭代模块,所述设置模块,用于设置治疗计划的逆向规划目标;设置迭代优化参数:种群大小、种群进化次数;对初始治疗计划进行随机抖动,产生种群中的个体治疗计划;所述优化模块,用于计算所述种群所有个体治疗计划对应的剂量场;根据个体治疗计划筛选策略,对个体治疗计划进行筛选;根据所述剂量场和所述逆向规划目标计算筛选后剩下的个体治疗计划的适应度;选择适应度最大的个体治疗计划作为当前最优计划;所述进化模块,用于将所述种群进化到新一代种群;所述迭代模块,用于若进化次数大于所述种群进化次数,输出当前最优计划并结束;否则调用进化模块产生新一代种群,再调用优化模块进行优化;其中所述设置模块还用于将靶体体积向外扩展预设的第一范围,形成靶体第一扩展区;将所述靶体体积在所述第一扩展区向外扩展预设的第二范围,形成靶体第二扩展区;其中所述优化模块,还用于将所述靶体第一扩展区内大于预设第一剂量阈值的体积超过预设第一体积阈值的个体治疗计划筛选出种群;将靶体第二扩展区内存在大于预设第二剂量阈值剂量的个体治疗计划筛选出种群;将健康组织/危及器官内大于预设第三剂量阈值的体积超过预设第二体积阈值的个体治疗计划筛选出种群;将健康组织/危及器官内存在大于预设第四剂量阈值剂量的个体治疗计划筛选出种群。 6.如权利要求5所述的系统,其特征在于,其中所述逆向规划目标包括:处方剂量D、各个健康组织/危及器官限制剂量D(i),靶体的相对性重要性因子K、健康组织/危及器官的相对性重要性因子K和健康组织/危及器官内部重要性因子K,其中K+K=1,∑K=1;所述优化模块还用于通过下式计算所述适应度:其中,V为靶体中D包络的靶体体积,V为D的体积,V为靶体的体积,V为靶体中剂量值小于处方剂量D的体积,V为第i个健康组织/危及器官中剂量值大于D(i)的体积。 7.如权利要求5或6所述的系统,其特征在于,其中所述进化模块还用于通过交配和/或变异进化到新一代种群。 8.如权利要求5或6所述的系统,其特征在于,其中所述进化模块还用于对当前最优计划进行扰动进化到新一代种群。

说明书

技术领域

本发明涉及一种放射治疗规划技术,尤其涉及放射治疗计划逆向规划方法 和治疗计划系统。

背景技术

立体定向放射治疗手术或立体定向放射治疗是放射治疗中常见的两种放 射治疗技术,常见的设备是基于钴-60放射源的伽玛刀和基于电子加速器的X 刀。前者通常采用多个钴-60放射源聚焦照射的方式,使靶体接受高剂量的均 匀照射而周围健康组织受量很低以达到控制或根除病变的目的。利用伽玛刀治 疗设备实施放射治疗之前,通常需要制定出一个可接受的放射治疗计划。伽玛 刀的治疗计划通常通过手工采用交互迭代的方式进行。这是一个正向规划过程, 即:医生或物理师根据靶体的体积和形状,采用试错方式,逐步增加靶点数目, 交互调整各靶点的位置、准直器大小以及相对权重等参数,直到最终获得一个 令人满意的治疗计划。由于伽玛刀可供选择的准直器大小有限,治疗计划通常 需要采用多个靶点照射,这样需要调整的参数很多,尤其是当靶体的体积较大 且形状不规则,或者靶体邻近有健康组织时,这是一个非常费时的过程,同时 对计划设计人员的经验和技能要求很高。

为了解决这个问题提出了治疗计划的逆向规划,即由医生或物理师预先给 出放射治疗的若干目标,然后通过数学优化技术,反求出满足这些放射治疗目 标的最优的治疗计划。当前治疗计划的逆向规划方法通常是预设一个初始计划, 然后根据计划设计人员设定的治疗目标,通过迭代优化方式,对初始计划进行 优化以获得一个最优的治疗计划。因此对于逆向规划而言,其迭代过程是否高 效成为一个关键问题。

发明内容

本发明要解决的技术问题是提供一种高效的治疗计划逆向规划方法;

本发明要解决的另一技术问题是提供一种基于该规划方法的治疗计划系 统。

本发明要解决的技术问题通过以下技术方案加以解决:

一种治疗计划逆向规划方法,用于在放射治疗前对患者要进行放射治疗的 区域进行剂量规划,包括设置逆向规划目标和利用种群进化对初始治疗计划进 行治疗计划优化的过程,所述优化过程包括:

步骤A:设置迭代优化参数:种群大小、种群进化次数;

步骤B:对所述初始治疗计划进行随机抖动,产生种群中的个体治疗计划;

步骤C:计算所述种群所有个体治疗计划对应的剂量场;

步骤D:根据个体治疗计划筛选策略,对个体治疗计划进行筛选;

步骤E:根据所述剂量场和所述逆向规划目标计算筛选剩下的个体治疗计 划的适应度;

步骤F:选择适应度最大的个体治疗计划作为当前最优计划;

步骤G:若当前迭代次数大于所述种群进化次数,则转到步骤I,否则进 入下一步;

步骤H:将种群进化到新一代种群,转到步骤C;

步骤I:停止迭代优化并输出最优的治疗计划。

其中所述逆向规划目标包括:处方剂量Dp、各个健康组织/危及器官限制 剂量Dm(i),靶体的相对性重要性因子Ka、健康组织/危及器官的相对性重要 性因子Kb和健康组织/危及器官内部重要性因子Ks,其中Ka+Kb=1,∑Ks=1;

所述适应度通过下式计算:

f ( k ) = ( 1 - V 1 2 V 2 V 3 ) K a V ptv + K b Σ K s V oars i ]]>

其中,V1为靶体中Dp包络的靶体体积,V2为Dp的体积,V3为靶体的体积,Vptv为靶体中剂量值小于处方剂量Dp的体积,为第i个健康组织/危及器官中剂量值大于Dm(i)的体积。

其中所述步骤D包括:

步骤D1:将靶体体积向外扩展预设的第一范围,形成靶体第一扩展区,将 所述靶体第一扩展区内大于预设第一剂量阈值的体积超过预设第一体积阈值 的个体治疗计划筛选出种群;

步骤D2:将靶体体积在所述第一扩展区向外扩展预设的第二范围,形成靶 体第二扩展区,将靶体第二扩展区内存在大于预设第二剂量阈值剂量的个体治 疗计划筛选出种群;

步骤D3:将健康组织/危及器官内大于预设第三剂量阈值的体积超过预设 第二体积阈值的个体治疗计划筛选出种群;

步骤D4:将健康组织/危及器官内存在大于预设第四剂量阈值剂量的个体 治疗计划筛选出种群。

其中步骤H所述进化到新一代种群包括:通过交配和/或变异进化到新一 代种群。

其中步骤H所述进化到新一代种群包括:通过对当前最优计划进行扰动进 化到新一代种群。

一种治疗计划系统,用于在放射治疗前对患者要进行放射治疗的区域进行 剂量规划,包括设置模块、优化模块、进化模块和迭代模块,

所述设置模块用于,

设置治疗计划的逆向规划目标;

设置迭代优化参数:种群大小、种群进化次数;

对初始治疗计划进行随机抖动,产生种群中的个体治疗计划;

所述优化模块用于

计算所述种群所有个体治疗计划对应的剂量场;

根据个体治疗计划筛选策略,对个体治疗计划进行筛选;

根据所述剂量场和所述逆向规划目标计算筛选后剩下的个体治疗计划的适 应度;

选择适应度最大的个体治疗计划作为当前最优计划;

所述进化模块用于将所述种群进化到新一代种群;

所述迭代模块用于若进化次数大于所述种群进化次数,输出当前最优计划 并结束;否则调用进化模块产生新一代种群,再调用优化模块进行优化。

其中所述逆向规划目标包括:处方剂量Dp、各个健康组织/危及器官限制 剂量Dm(i),靶体的相对性重要性因子Ka、健康组织/危及器官的相对性重要 性因子Kb和健康组织/危及器官内部重要性因子Ks,其中Ka+Kb=1,∑Ks=1;

所述优化模块还用于通过下式计算所述适应度:

f ( k ) = ( 1 - V 1 2 V 2 V 3 ) K a V ptv + K b Σ K s V oars i ]]>

其中,V1为靶体中Dp包络的靶体体积,V2为Dp的体积,V3为靶体的体积,Vptv为靶体中剂量值小于处方剂量Dp的体积,为第i个健康组织/危及器官中剂量值大于Dm(i)的体积。

其中所述设置模块还用于将所述靶体体积向外扩展预设的第一范围,形成 靶体第一扩展区;将所述靶体体积在所述第一扩展区向外扩展预设的第二范 围,形成靶体第二扩展区;

其中所述优化模块还用于:

将所述靶体第一扩展区内大于预设第一剂量阈值的体积超过预设第一体积 阈值的个体治疗计划筛选出种群;

将靶体第二扩展区内存在大于预设第二剂量阈值剂量的个体治疗计划筛选 出种群;

将健康组织/危及器官内大于预设第三剂量阈值的体积超过预设第二体积 阈值的个体治疗计划筛选出种群;

将健康组织/危及器官内存在大于预设第四剂量阈值剂量的个体治疗计划 筛选出种群。

其中所述进化模块还用于通过交配和/或变异进化到新一代种群。

其中所述进化模块还用于对当前最优计划进行扰动进化到新一代种群。

由于采用了以上技术方案,使本发明具备的有益效果在于:

(1)本发明在计算适应度之前对种群计划进行筛选,并对筛选后剩余的个 体治疗计划计算适应度,能有效降低计算量,使得整个迭代过程高效。

(2)本发明采用计算适应度的方法来进行最优计划的选择,能加快种群的 进化效率,进一步提高了优化的效率。

附图说明

图1示出根据本发明治疗计划逆向规划方法的一个实施例的流程图;

图2示出根据本发明方法的一个实施例的靶体及扩展区示意图;

图3示出根据本发明治疗计划逆向规划方法的另一个实施例的流程图;

图4示出根据本发明治疗计划逆向规划方法的另一个实施例的靶体外轮廓 插值示意图;

图5示出根据本发明治疗计划逆向规划方法的另一个实施例的患者3D体 素模型的示意图;

图6示出根据本发明方法的一个实施例的交配前示意图;

图7示出根据本发明方法的一个实施例的交配后示意图;

图8示出根据本发明方法的一个实施例的变异前示意图;

图9示出根据本发明方法的一个实施例的变异后示意图;

图10示出根据本发明治疗计划系统的一个实施例的结构示意图。

具体实施方式

下面通过具体实施方式结合附图对本发明作进一步详细说明。

图1示出根据本发明治疗计划逆向规划方法的一个实施例的流程图,包括 设置逆向规划目标和利用种群进化对初始治疗计划进行治疗计划优化的过程, 该优化过程包括:

步骤102:设置迭代优化参数:种群大小、种群进化次数;

步骤104:对初始治疗计划进行随机抖动,产生种群中的个体治疗计划;

步骤106:计算种群所有个体治疗计划对应的剂量场;

步骤108:根据个体治疗计划筛选策略,对个体治疗计划进行筛选;

步骤110:根据所述剂量场和所述逆向规划目标计算筛选剩下的个体治疗 计划的适应度;

步骤112:选择适应度最大的个体治疗计划作为当前最优计划;

步骤114:若进化次数达到种群进化次数,转到步骤118;否则进入下一步;

步骤116:将种群进化到新一代种群,转到步骤106;

步骤118:停止种群进化并输出当前最优计划。

种群大小是指种群中的个体个数,例如可以设为20个,种群进化次数是 指从初始算起允许进化多少代,例如可以设为10。

一种实施方式,其中步骤104还包括:将靶体体积向外扩展预设的第一范 围Ex1,形成靶体第一扩展区Vex1;将靶体体积在第一扩展区Vex1向外扩展预 设的第二范围Ex2,形成靶体第二扩展区Vex2,如图2所示。

一种实施方式,针对单个健康组织/危及器官,逆向规划目标包括:处方剂 量Dp、健康组织/危及器官限制剂量Dm;其适应度可通过下式计算:

f ( k ) = a V t + bV s + c V total V p V 0 ]]>

其中,k为进化代数;a、b、c是权重因子,且a+b+c=1.0;Vt是靶体 中剂量值小于Dp的体积,Vs是健康组织/危及器官中剂量值大于Dm的体积, Vp是靶体中剂量值大于Dp的体积,Vtotal是靶体、第一扩展区Vex1和第二扩展 区Vex2中剂量值大于Dp的总体积,V0是单位体积,例如是一个体素的体积。 上式的第三项被称为惩罚因子。

另一种实施方式,针对多个健康组织/危及器官,逆向规划目标包括:处方 剂量Dp、各个健康组织/危及器官限制剂量Dm(i)、靶体的相对性重要性因子 Ka、健康组织/危及器官的相对性重要性因子Kb和健康组织/危及器官内部重要 性因子Ks,其中Ka+Kb=1,∑Ks=1;其适应度通过下式计算:

f ( k ) = ( 1 - V 1 2 V 2 V 3 ) K a V ptv + K b Σ K s V oars i ]]>

其中,V1为靶体中Dp包络的靶体体积,V2为Dp的体积,V3为靶体的体积,Vptv为靶体中剂量值小于处方剂量Dp的体积,为第i个健康组织/危及器官中剂量值大于Dm(i)的体积。

一种实施方式,步骤108包括:

步骤1082:将靶体第一扩展区Vex1内大于预设第一剂量阈值的体积超过预 设第一体积阈值的个体治疗计划筛选出种群;

步骤1084:将靶体第二扩展区Vex2内存在大于预设第二剂量阈值剂量的个 体治疗计划筛选出种群;

步骤1086:将健康组织/危及器官内大于预设第三剂量阈值的体积超过预 设第二体积阈值的个体治疗计划筛选出种群;

步骤1088:将健康组织/危及器官内存在大于预设第四剂量阈值剂量的个 体治疗计划筛选出种群。

本领域技术人员应该理解,筛选的过程并不依赖上述步骤,也就是说可以 按照上述步骤进行,但也可以任意顺序进行,例如可以将步骤1086和1088提 前进行。

一种实施方式,步骤116可通过交配和/或变异进化到新一代种群来实现。

另一种实施方式,步骤116通过对当前最优计划进行扰动进化到新一代种 群来实现。

扰动可包括随机扰动和组合扰动。

随机扰动可包括以下操作:

步骤S1:随机选择当前最优计划的靶点位置和/或准直器型号和/或权重作 为第一被扰动量;

步骤S2:随机选择扰动量Δ1,Δ1小于预设的第一扰动幅度,将所述扰动 量Δ1与步骤S1所选择的第一被扰动量相加;

步骤S3:重复步骤S1至S2,直到形成种群大小数目的新一代个体治疗计 划。

组合扰动可包括以下操作:

步骤T1:选择当前最优计划的靶点位置、准直器型号或权重的任一种作为 作为第二被扰动量;

步骤T2:随机选择扰动量Δ2,Δ2小于预设的第二扰动幅度,将所述扰动 量Δ2与步骤T1所选择的第二被扰动量相加;

步骤T3:重复步骤T1至T2,直到形成种群大小数目的新一代个体治疗计 划。

图3示出根据本发明治疗计划逆向规划方法的另一个实施例的流程图,其 使用SGS-II型立体定向伽玛治疗系统进行放射治疗,包括:

步骤302:输入患者图像,可输入患者的CT或MRI图像序列;

步骤304:勾画患者体表、靶体、危及器官等组织轮廓;

步骤306:设置治疗计划逆向规划参数

靶体PTV处方剂量Dp:一般选择50%等剂量线

靶体弹性扩展区域限制剂量DpEx1:为靶体弹性扩展区域(即靶体第一扩展 区)内的剂量限制(即第一剂量阈值);

靶体限制扩展区域限制剂量DpEx2:为靶体限制扩展区域(即靶体第二扩展 区)内的最大剂量限制(即第二剂量阈值);

靶体弹性扩展区域限制剂量体积比Rptv(即第一体积阈值):为靶体弹性扩 展区域内,剂量超过限制剂量的体积与该区域体积之比的最大限制值;

健康组织/危及器官OARs限制剂量Doar(k):为危及器官/健康组织的剂量 限制(即第三剂量阈值);

健康组织/危及器官OARs最大限制剂量Dmoar(k):为危及器官/健康组织内 的最大剂量限制,即不允许超过的最大限制剂量(即第四剂量阈值);

健康组织/危及器官OARs限制剂量体积比Roar(k)(即第二体积阈值):为 危及器官/健康组织中,剂量超过限制剂量的体积与危及器官/健康组织体积之 比的最大限制值。

靶体PTV/健康组织/危及器官OARs之间相对重要性因子Ka、Kb:0≤Ka≤1, 0≤Kb≤1

健康组织/危及器官之间相对重要性因子Ks(k):0≤Ks(k)≤1,∑Ks(k)=1,K 为OARs数目。

步骤308:建立患者3D体素模型;

根据用户在定位序列图像上勾画的体表、靶体、危及器官等组织外轮廓, 构造患者3D体素模型。具体方法如下:

A:组织外轮廓插值

通常定位扫描时,采用的层厚或层间距比定位图像的像素尺寸大很多,为 了构造患者的3D体素模型,需要定位序列图像上勾画的体表、靶体、危及器 官等所有外轮廓插值。插值采用线性插值,图4所示为靶体外轮廓插值示意图。 体表和危及器官等的外轮廓采用相同的方法进行插值。

B:通过体素化构造患者3D体素模型

对体表、靶体、危及器官等所有外轮廓进行插值后,将这些轮廓体素化即 得到患者的3D体素模型。患者3D体素模型通常需要足够高的分辨率以确保后 续治疗计划逆向规划获得好的结果。一种可选择的分辨率是采用患者定位图像 的分辨率,这个分辨率一般为0.5mm-1mm。另一种方法确定分辨率的方法是由 用户定制分辨率大小。例如:在SGS-II的治疗计划逆向规划中,3D体素模型 的分辨率采用与剂量计算网格相同的分辨率。这样用户可以通过设置剂量计算 矩阵网格的分辨率来调整3D体素模型的分辨率。

图5示出一个患者3D体素模型的示意图。

步骤310:创建初始“种子”治疗计划

“种子”治疗计划用作创建一个种群的“种子”,即一个种群可以由该“种子” 计划构造出来。

“种子”治疗计划可以通过手工交互的方式建立。另一种可选方法是通过自 动靶点布置技术创建。在SGS的治疗计划逆向规划中,支持上述两种创建初始 治疗计划方式。

步骤312:治疗计划的逆向规划

采用并行遗传算法,通过迭代优化技术进行治疗计划的逆向规划。具体流 程如下:

1.设置迭代优化参数

种群大小Np:种群中个体数目

种群进化代数Nr:种群需要进化的代数

交叉概率Pc:遗传优化中个体之间的交叉概率,一般由程序预设,不用用 户设置。

变异概率Pm:遗传优化中个体变异概率,一般由程序预设,不用用户设置。

2.种群初始化

种群由若干个体组成,其中每一个个体对应一个候选的治疗计划。种群初 始化就是创建一个包含若干候选治疗计划的初始种群。

A:个体治疗计划编码

一个治疗计划主要包括如下参数:靶点数目Nf、靶点位置Pk(x,y,z),靶点 权重Wk,靶点准直器规格Ck等。为了适应遗传优化算法,需要对上述参数进 行编码。编码方式有多种,可以采用二进制编码、实数编码或者格雷码编码等。 在SGS-II逆向治疗计划规划中,采用了标准的二进制编码方法。表1给出了一 个个体治疗计划的二进制编码:

表1治疗计划二进制编码示例

B:构造种群

根据前述建立的“种子”治疗计划创建初始种群。为了确保种群中个体尽量 多样化,采用随机“抖动”技术来构造初始种群。这里的随机“抖动”就是按照一 定的随机概率,将对应序列中的某位进行取反。具体方法如下:

(1)将前述建立的初始治疗计划进行编码,获得一个二进制0/1序列Sb。

通过迭代方式,随机对Sb0序列进行随机“扰动”,得到若干新的二进制0/1 序列S’b。每一个新序列即代表一个新个体。

(2)解码每个新序列,得到初始的种群,即若干初始治疗计划。解码过程 是编码过程的逆过程。

初始种群包括“种子”治疗计划。并将该“种子”治疗计划预设为上一代种群 中的最优治疗计划。

步骤314:种群剂量场并行计算

采用剂量场计算引擎计算一个种群所有个体治疗计划对应的剂量场分布。

通常,剂量场可以用一个3D剂量计算网格Dm×m×n来表示,如图2所示。 一个治疗计划的3D剂量场Dpm×m×n为其所有靶点的剂量场Dfm×m×n(k)叠加,

Dpm×m×n=∑Dfm×m×n(k)

其中:

Dpm×m×n:为某个治疗计划的3D剂量场

Dfm×m×n(k):为第k个靶点的3D剂量场

k:为治疗计划包含的靶点数目。

这样一个治疗计划的总的剂量计算网格数目Nd可以如下计算得到:

Nd=m×m×n×k

一个大小为Np的种群的总的剂量计算网格数目Nd可以如下计算得到:

Ng=m×m×n×k×Np

这样一个种群的剂量场可以通过Ng个剂量点的并行计算快速得到。

步骤316:种群适应度计算

适应度反映了各个体代表的治疗计划度前述逆向规划目标的满足程度。

适应度通过下式计算:

f ( k ) = ( 1 - V 1 2 V 2 V 3 ) K a V ptv + K b Σ K s V oars i ]]>

其中,V1为靶体中Dp包络的靶体体积,V2为Dp的体积,V3为靶体的体积,Vptv为靶体中剂量值小于处方剂量Dp的体积,为第i个健康组织/危及器官中剂量值大于Dm(i)的体积。

步骤318:对种群的个体治疗计划进行筛选;

种群个体预筛选的目的是根据种群剂量场,将某些明显不合格的治疗计划 预先剔除,这样可以避免不必要的计算,提高效率。剔除的具体标准如下:

A:基于靶体的剂量场分析

对于靶体,采用靶体体积扩展模型进行分析。靶体体积扩展模型通过对靶 体体积进行扩展建立,如图2所示:

将靶体体积V向外扩展预设范围Ex1,形成靶体体积扩展区VEx1即第一 扩展区;

将靶体体积向外扩展预设范围Ex2,形成靶体体积扩展区VEx2即第二扩 展区;

VEx1称为弹性扩展区。允许VEx1内一些点的剂量大于某个设定剂量阈 值即第一剂量阈值,但是VEx1内剂量大于某个设置剂量阈值的体积不超过某 个设定的体积阈值即第一体积阈值;

VEx2称为限制扩展区。VEx2内任意点的剂量都不得大于某个设定剂量阈 值即第二剂量阈值。

基于上述模型,不合格治疗计划的剔除标准如下:

靶体体积内,剂量大于某个预设剂量阈值(如处方剂量Dp)的体积与靶体 体积之比小于某个预设阈值的治疗计划应该剔除;

弹性扩展区域VEx1内,剂量大于第一剂量阈值(如靶体弹性区域限制剂 量DpEx1)的体积与该区域的体积之比大于第一体积阈值Rptv的治疗计划应该剔 除;

限制扩展区域VEx2内,存在剂量大于第二剂量阈值(如靶体限制区域限 制剂量DpEx2)的治疗计划应该剔除。

B:基于健康组织/危及器官的剂量场分析

基于健康组织/危及器官不合格治疗计划的剔除标准如下:

健康组织/危及器官体积内,剂量大于某个预设剂量阈值即第三剂量阈值 (如健康组织/危及器官的限制剂量Doar(k))的体积与健康组织/危及器官体积 体积之比大于某个预设阈值Roar(k)即第二体积阈值的治疗计划应该剔除;

健康组织/危及器官体积内,存在剂量大于某个预设剂量阈值即第四剂量阈 值(如健康组织/危及器官的最大限制剂量Dmoar(k))的治疗计划应该剔除;

步骤320:种群最优个体治疗计划选择

遍历种群个体计划,搜索适应度最大的个体治疗计划,即当前迭代中最优 的治疗计划。

步骤322:判断是否达到种群进化代数Nr,是则转步骤328;否则进入下 一步;

步骤324:创建新一代种群;

计算当前种群中最优个体治疗计划与上一代种群中最优个体治疗计划的 差异。如果差异小于给定的预设阈值,则将“种子”治疗计划更新为当前最优治 疗计划,通过当代种群的交配和/或变异操作进化生成新一代种群。

1.交配操作

随机选择两个个体治疗计划;

采用随机数生成器生成一个随机数a,当a小于交叉概率Pc,则进行后续 操作,反之退出交配操作;

随机确定交配位置k;

图6示出根据本发明一个实施例的交配前示意图,图中个体为i和j,k为 交配位置。

图7示出根据本发明一个实施例的交配后示意图,图中个体i和j在k位 置以后的数位进行交换,形成i’和j’,如图中黑体所示。

2.变异操作

选择个体治疗计划;

采用随机数生成器生成一个随机数b,当b小于变异概率Pm,则进行变异 操作,反之退出变异操作;

随机确定变异的位置h;

将个体h位置的二进制编码取反;

图8示出根据本发明一个实施例的变异前示意图;图9示出根据本发明一 个实施例的变异后示意图。

步骤326:把经过交配和/或变异后的种群作为当前种群,转步骤314;

步骤328:停止迭代并输出当前最优计划。

图10示出根据本发明治疗计划系统的一个实施例的结构示意图,用于在 放射治疗前对患者要进行放射治疗的区域进行剂量规划,包括设置模块、优化 模块、进化模块和迭代模块,

设置模块用于,输入患者医学图像;根据患者医学图像勾画患者体表、靶 体、危及器官的组织轮廓;设置治疗计划的逆向规划目标;创建初始治疗计划; 设置迭代优化参数:种群大小、种群进化次数;对初始治疗计划进行随机抖动, 产生种群中的个体治疗计划。

优化模块用于计算种群所有个体治疗计划对应的剂量场;根据个体治疗计 划筛选策略,对个体治疗计划进行筛选;根据所述剂量场和所述逆向规划目标 计算筛选后剩下的个体治疗计划的适应度;选择适应度最大的个体治疗计划作 为当前最优计划。

进化模块用于将种群进化到新一代种群;

迭代模块用于:若进化次数大于所述种群进化次数,输出当前最优计划并 结束;否则调用进化模块产生新一代种群,再调用优化模块进行优化。

一种实施方式,设置模块还用于将靶体体积向外扩展预设的第一范围,形 成靶体第一扩展区;将靶体体积在第一扩展区向外扩展预设的第二范围,形成 靶体第二扩展区;逆向规划目标包括:处方剂量Dp、健康组织/危及器官限制 剂量Dm;优化模块还用于通过下式计算所述适应度:

f ( k ) = a V t + bV s + c V total V p V 0 ]]>

其中,k为进化代数;a、b、c是权重因子,且a+b+c=1.0;Vt是靶体 中剂量值小于Dp的体积,Vs是健康组织/危及器官中剂量值大于Dm的体积, Vp是靶体中剂量值大于Dp的体积,Vtotal是靶体、第一扩展区和第二扩展区中 剂量值大于Dp的总体积,V0是单位体积。

另一种实施方式,逆向规划目标包括:处方剂量Dp、各个健康组织/危及 器官限制剂量Dm(i),靶体的相对性重要性因子Ka、健康组织/危及器官的相 对性重要性因子Kb和健康组织/危及器官内部重要性因子Ks,其中Ka+Kb=1, ∑Ks=1;优化模块还用于通过下式计算所述适应度:

f ( k ) = ( 1 - V 1 2 V 2 V 3 ) K a V ptv + K b Σ K s V oars i ]]>

其中,V1为靶体中Dp包络的靶体体积,V2为Dp的体积,V3为靶体的体积,Vptv为靶体中剂量值小于处方剂量Dp的体积,为第i个健康组织/危及器官中剂量值大于Dm(i)的体积。

一种实施方式,优化模块还用于:

将靶体第一扩展区内大于预设第一剂量阈值的体积超过预设第一体积阈值 的个体治疗计划筛选出种群;将靶体第二扩展区内存在大于预设第二剂量阈值 剂量的个体治疗计划筛选出种群;将健康组织/危及器官内大于预设第三剂量阈 值的体积超过预设第二体积阈值的个体治疗计划筛选出种群;将健康组织/危及 器官内存在大于预设第四剂量阈值剂量的个体治疗计划筛选出种群。

一种实施方式,进化模块还用于通过交配和/或变异进化到新一代种群。

另一种实施方式,进化模块还用于对当前最优计划进行扰动进化到新一代 种群。

以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认 定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术 人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换, 都应当视为属于本发明的保护范围。

治疗计划逆向规划方法和治疗计划系统.pdf_第1页
第1页 / 共18页
治疗计划逆向规划方法和治疗计划系统.pdf_第2页
第2页 / 共18页
治疗计划逆向规划方法和治疗计划系统.pdf_第3页
第3页 / 共18页
点击查看更多>>
资源描述

《治疗计划逆向规划方法和治疗计划系统.pdf》由会员分享,可在线阅读,更多相关《治疗计划逆向规划方法和治疗计划系统.pdf(18页珍藏版)》请在专利查询网上搜索。

1、(10)授权公告号 (45)授权公告日 (21)申请号 201110097663.6 (22)申请日 2011.04.18 A61N 5/10(2006.01) (73)专利权人 深圳市海博科技有限公司 地址 518057 广东省深圳市南山区科苑南路 高新南七道惠恒大楼三楼 (72)发明人 卿侯 刘启平 崔智 (74)专利代理机构 深圳鼎合诚知识产权代理有 限公司 44281 代理人 任葵 CN 101120871 A,2008.02.13, CN 101421736 A,2009.04.29, US 2009154644 A1,2009.06.18, 曹明勇 . 双种群遗传算法优化射野方向与。

2、权 重的研究 .中国知网 .2009, 周凌宏 . 基于遗传算法的剂量优化技术研 究 .南方医科大学学报 .2007, 盛大宁 .IMRT 逆向治疗计划中的混合多目 标 .中国知网 .2010, (54) 发明名称 治疗计划逆向规划方法和治疗计划系统 (57) 摘要 本发明公开了一种治疗计划逆向规划方法, 包括 : A设置迭代优化参数 ; B产生个体治疗计划 ; C 计算个体治疗计划剂量场 ; D 根据个体治疗计划 筛选策略, 对个体治疗计划进行筛选 ; E 根据所述 剂量场和所述逆向规划目标计算筛选剩下的个体 治疗计划的适应度 ; F 选择当前最优计划 ; G 若进 化次数大于种群进化次数,。

3、 转到 I ; 否则进入下一 步 ; H 将种群进化到新一代种群, 转到 C ; I 停止种 群进化并输出当前最优计划。本发明还公开了一 种治疗计划系统。本发明在计算适应度之前对种 群计划进行筛选, 并对筛选后剩余的个体治疗计 划计算适应度, 能有效降低计算量, 使得整个迭代 过程高效。 (51)Int.Cl. (56)对比文件 审查员 蔡世君 (19)中华人民共和国国家知识产权局 (12)发明专利 权利要求书2页 说明书10页 附图5页 CN 102247660 B 2016.06.01 CN 102247660 B 1.一种治疗计划逆向规划方法,用于在放射治疗前对患者要进行放射治疗的区域进。

4、行 剂量规划, 其特征在于, 包括设置逆向规划目标和利用种群进化对初始治疗计划进行治疗 计划优化的过程, 所述优化过程包括: 步骤A: 设置迭代优化参数: 种群大小、 种群进化次数; 步骤B: 对所述初始治疗计划进行随机抖动, 产生种群中的个体治疗计划; 步骤C: 计算所述种群所有个体治疗计划对应的剂量场; 步骤D: 根据个体治疗计划筛选策略, 对个体治疗计划进行筛选; 步骤E: 根据所述剂量场和所述逆向规划目标计算筛选剩下的个体治疗计划的适应度; 步骤F: 选择适应度最大的个体治疗计划作为当前最优计划; 步骤G: 若当前迭代次数大于所述种群进化次数, 则转到步骤I, 否则进入下一步; 步骤H。

5、: 将种群进化到新一代种群, 转到步骤C; 步骤I: 停止迭代优化并输出最优的治疗计划; 其中所述步骤D包括: 步骤D1: 将靶体体积向外扩展预设的第一范围, 形成靶体第一扩展区, 将所述靶体第一 扩展区内大于预设第一剂量阈值的体积超过预设第一体积阈值的个体治疗计划筛选出种 群; 步骤D2: 将靶体体积在所述第一扩展区向外扩展预设的第二范围, 形成靶体第二扩展 区, 将靶体第二扩展区内存在大于预设第二剂量阈值剂量的个体治疗计划筛选出种群; 步骤D3: 将健康组织/危及器官内大于预设第三剂量阈值的体积超过预设第二体积阈 值的个体治疗计划筛选出种群; 步骤D4: 将健康组织/危及器官内存在大于预设。

6、第四剂量阈值剂量的个体治疗计划筛 选出种群。 2.如权利要求1所述的方法, 其特征在于, 其中所述逆向规划目标包括: 处方剂量Dp、 各 个健康组织/危及器官限制剂量Dm(i), 靶体的相对性重要性因子Ka、 健康组织/危及器官的 相对性重要性因子Kb和健康组织/危及器官内部重要性因子Ks, 其中Ka+Kb1, Ks1; 所述适应度通过下式计算: 其中, V1为靶体中Dp包络的靶体体积, V2为Dp的体积, V3为靶体的体积, Vptv为靶体中剂量 值小于处方剂量Dp的体积, Vioars为第i个健康组织/危及器官中剂量值大于Dm(i)的体积。 3.如权利要求1或2所述的方法, 其特征在于, 。

7、其中步骤H所述进化到新一代种群包括: 通过交配和/或变异进化到新一代种群。 4.如权利要求1或2所述的方法, 其特征在于, 其中步骤H所述进化到新一代种群包括: 通过对当前最优计划进行扰动进化到新一代种群。 5.一种治疗计划系统, 用于在放射治疗前对患者要进行放射治疗的区域进行剂量规 划, 其特征在于, 包括设置模块、 优化模块、 进化模块和迭代模块, 所述设置模块, 用于设置治疗计划的逆向规划目标; 设置迭代优化参数: 种群大小、 种群进化次数; 对初始治疗计划进行随机抖动, 产生种群中的个体治疗计划; 权利要求书 1/2 页 2 CN 102247660 B 2 所述优化模块, 用于计算所。

8、述种群所有个体治疗计划对应的剂量场; 根据个体治疗计划筛选策略, 对个体治疗计划进行筛选; 根据所述剂量场和所述逆向规划目标计算筛选后剩下的个体治疗计划的适应度; 选择适应度最大的个体治疗计划作为当前最优计划; 所述进化模块, 用于将所述种群进化到新一代种群; 所述迭代模块, 用于若进化次数大于所述种群进化次数, 输出当前最优计划并结束; 否 则调用进化模块产生新一代种群, 再调用优化模块进行优化; 其中所述设置模块还用于将靶体体积向外扩展预设的第一范围, 形成靶体第一扩展 区; 将所述靶体体积在所述第一扩展区向外扩展预设的第二范围, 形成靶体第二扩展区; 其中所述优化模块, 还用于将所述靶体。

9、第一扩展区内大于预设第一剂量阈值的体积超 过预设第一体积阈值的个体治疗计划筛选出种群; 将靶体第二扩展区内存在大于预设第二 剂量阈值剂量的个体治疗计划筛选出种群; 将健康组织/危及器官内大于预设第三剂量阈 值的体积超过预设第二体积阈值的个体治疗计划筛选出种群; 将健康组织/危及器官内存 在大于预设第四剂量阈值剂量的个体治疗计划筛选出种群。 6.如权利要求5所述的系统, 其特征在于, 其中所述逆向规划目标包括: 处方剂量Dp、 各 个健康组织/危及器官限制剂量Dm(i), 靶体的相对性重要性因子Ka、 健康组织/危及器官的 相对性重要性因子Kb和健康组织/危及器官内部重要性因子Ks, 其中Ka+。

10、Kb1, Ks1; 所述优化模块还用于通过下式计算所述适应度: 其中, V1为靶体中Dp包络的靶体体积, V2为Dp的体积, V3为靶体的体积, Vptv为靶体中剂量 值小于处方剂量Dp的体积, Vioars为第i个健康组织/危及器官中剂量值大于Dm(i)的体积。 7.如权利要求5或6所述的系统, 其特征在于, 其中所述进化模块还用于通过交配和/或 变异进化到新一代种群。 8.如权利要求5或6所述的系统, 其特征在于, 其中所述进化模块还用于对当前最优计 划进行扰动进化到新一代种群。 权利要求书 2/2 页 3 CN 102247660 B 3 治疗计划逆向规划方法和治疗计划系统 技术领域 0。

11、001 本发明涉及一种放射治疗规划技术, 尤其涉及放射治疗计划逆向规划方法和治疗 计划系统。 背景技术 0002 立体定向放射治疗手术或立体定向放射治疗是放射治疗中常见的两种放射治疗 技术, 常见的设备是基于钴-60放射源的伽玛刀和基于电子加速器的X刀。 前者通常采用多 个钴-60放射源聚焦照射的方式, 使靶体接受高剂量的均匀照射而周围健康组织受量很低 以达到控制或根除病变的目的。 利用伽玛刀治疗设备实施放射治疗之前, 通常需要制定出 一个可接受的放射治疗计划。 伽玛刀的治疗计划通常通过手工采用交互迭代的方式进行。 这是一个正向规划过程, 即: 医生或物理师根据靶体的体积和形状, 采用试错方式。

12、, 逐步增 加靶点数目, 交互调整各靶点的位置、 准直器大小以及相对权重等参数, 直到最终获得一个 令人满意的治疗计划。 由于伽玛刀可供选择的准直器大小有限, 治疗计划通常需要采用多 个靶点照射, 这样需要调整的参数很多, 尤其是当靶体的体积较大且形状不规则, 或者靶体 邻近有健康组织时, 这是一个非常费时的过程, 同时对计划设计人员的经验和技能要求很 高。 0003 为了解决这个问题提出了治疗计划的逆向规划, 即由医生或物理师预先给出放射 治疗的若干目标, 然后通过数学优化技术, 反求出满足这些放射治疗目标的最优的治疗计 划。 当前治疗计划的逆向规划方法通常是预设一个初始计划, 然后根据计划。

13、设计人员设定 的治疗目标, 通过迭代优化方式, 对初始计划进行优化以获得一个最优的治疗计划。 因此对 于逆向规划而言, 其迭代过程是否高效成为一个关键问题。 发明内容 0004 本发明要解决的技术问题是提供一种高效的治疗计划逆向规划方法; 0005 本发明要解决的另一技术问题是提供一种基于该规划方法的治疗计划系统。 0006 本发明要解决的技术问题通过以下技术方案加以解决: 0007 一种治疗计划逆向规划方法, 用于在放射治疗前对患者要进行放射治疗的区域进 行剂量规划, 包括设置逆向规划目标和利用种群进化对初始治疗计划进行治疗计划优化的 过程, 所述优化过程包括: 0008 步骤A: 设置迭代。

14、优化参数: 种群大小、 种群进化次数; 0009 步骤B: 对所述初始治疗计划进行随机抖动, 产生种群中的个体治疗计划; 0010 步骤C: 计算所述种群所有个体治疗计划对应的剂量场; 0011 步骤D: 根据个体治疗计划筛选策略, 对个体治疗计划进行筛选; 0012 步骤E: 根据所述剂量场和所述逆向规划目标计算筛选剩下的个体治疗计划的适 应度; 0013 步骤F: 选择适应度最大的个体治疗计划作为当前最优计划; 说明书 1/10 页 4 CN 102247660 B 4 0014 步骤G: 若当前迭代次数大于所述种群进化次数, 则转到步骤I, 否则进入下一步; 0015 步骤H: 将种群进。

15、化到新一代种群, 转到步骤C; 0016 步骤I: 停止迭代优化并输出最优的治疗计划。 0017 其中所述逆向规划目标包括: 处方剂量Dp、 各个健康组织/危及器官限制剂量Dm (i), 靶体的相对性重要性因子Ka、 健康组织/危及器官的相对性重要性因子Kb和健康组织/ 危及器官内部重要性因子Ks, 其中Ka+Kb1, Ks1; 0018 所述适应度通过下式计算: 0019 0020 其中, V1为靶体中Dp包络的靶体体积, V2为Dp的体积, V3为靶体的体积, Vptv为靶体中 剂量值小于处方剂量Dp的体积,为第i个健康组织/危及器官中剂量值大于Dm(i)的体 积。 0021 其中所述步骤。

16、D包括: 0022 步骤D1: 将靶体体积向外扩展预设的第一范围, 形成靶体第一扩展区, 将所述靶体 第一扩展区内大于预设第一剂量阈值的体积超过预设第一体积阈值的个体治疗计划筛选 出种群; 0023 步骤D2: 将靶体体积在所述第一扩展区向外扩展预设的第二范围, 形成靶体第二 扩展区, 将靶体第二扩展区内存在大于预设第二剂量阈值剂量的个体治疗计划筛选出种 群; 0024 步骤D3: 将健康组织/危及器官内大于预设第三剂量阈值的体积超过预设第二体 积阈值的个体治疗计划筛选出种群; 0025 步骤D4: 将健康组织/危及器官内存在大于预设第四剂量阈值剂量的个体治疗计 划筛选出种群。 0026 其中。

17、步骤H所述进化到新一代种群包括: 通过交配和/或变异进化到新一代种群。 0027 其中步骤H所述进化到新一代种群包括: 通过对当前最优计划进行扰动进化到新 一代种群。 0028 一种治疗计划系统, 用于在放射治疗前对患者要进行放射治疗的区域进行剂量规 划, 包括设置模块、 优化模块、 进化模块和迭代模块, 0029 所述设置模块用于, 0030 设置治疗计划的逆向规划目标; 0031 设置迭代优化参数: 种群大小、 种群进化次数; 0032 对初始治疗计划进行随机抖动, 产生种群中的个体治疗计划; 0033 所述优化模块用于 0034 计算所述种群所有个体治疗计划对应的剂量场; 0035 根据。

18、个体治疗计划筛选策略, 对个体治疗计划进行筛选; 0036 根据所述剂量场和所述逆向规划目标计算筛选后剩下的个体治疗计划的适应度; 0037 选择适应度最大的个体治疗计划作为当前最优计划; 0038 所述进化模块用于将所述种群进化到新一代种群; 0039 所述迭代模块用于若进化次数大于所述种群进化次数, 输出当前最优计划并结 说明书 2/10 页 5 CN 102247660 B 5 束; 否则调用进化模块产生新一代种群, 再调用优化模块进行优化。 0040 其中所述逆向规划目标包括: 处方剂量Dp、 各个健康组织/危及器官限制剂量Dm (i), 靶体的相对性重要性因子Ka、 健康组织/危及器。

19、官的相对性重要性因子Kb和健康组织/ 危及器官内部重要性因子Ks, 其中Ka+Kb1, Ks1; 0041 所述优化模块还用于通过下式计算所述适应度: 0042 0043 其中, V1为靶体中Dp包络的靶体体积, V2为Dp的体积, V3为靶体的体积, Vptv为靶体中 剂量值小于处方剂量Dp的体积,为第i个健康组织/危及器官中剂量值大于Dm(i)的体 积。 0044 其中所述设置模块还用于将所述靶体体积向外扩展预设的第一范围, 形成靶体第 一扩展区; 将所述靶体体积在所述第一扩展区向外扩展预设的第二范围, 形成靶体第二扩 展区; 0045 其中所述优化模块还用于: 0046 将所述靶体第一扩。

20、展区内大于预设第一剂量阈值的体积超过预设第一体积阈值 的个体治疗计划筛选出种群; 0047 将靶体第二扩展区内存在大于预设第二剂量阈值剂量的个体治疗计划筛选出种 群; 0048 将健康组织/危及器官内大于预设第三剂量阈值的体积超过预设第二体积阈值的 个体治疗计划筛选出种群; 0049 将健康组织/危及器官内存在大于预设第四剂量阈值剂量的个体治疗计划筛选出 种群。 0050 其中所述进化模块还用于通过交配和/或变异进化到新一代种群。 0051 其中所述进化模块还用于对当前最优计划进行扰动进化到新一代种群。 0052 由于采用了以上技术方案, 使本发明具备的有益效果在于: 0053 (1)本发明在。

21、计算适应度之前对种群计划进行筛选, 并对筛选后剩余的个体治疗 计划计算适应度, 能有效降低计算量, 使得整个迭代过程高效。 0054 (2)本发明采用计算适应度的方法来进行最优计划的选择, 能加快种群的进化效 率, 进一步提高了优化的效率。 附图说明 0055 图1示出根据本发明治疗计划逆向规划方法的一个实施例的流程图; 0056 图2示出根据本发明方法的一个实施例的靶体及扩展区示意图; 0057 图3示出根据本发明治疗计划逆向规划方法的另一个实施例的流程图; 0058 图4示出根据本发明治疗计划逆向规划方法的另一个实施例的靶体外轮廓插值示 意图; 0059 图5示出根据本发明治疗计划逆向规划。

22、方法的另一个实施例的患者3D体素模型的 示意图; 0060 图6示出根据本发明方法的一个实施例的交配前示意图; 说明书 3/10 页 6 CN 102247660 B 6 0061 图7示出根据本发明方法的一个实施例的交配后示意图; 0062 图8示出根据本发明方法的一个实施例的变异前示意图; 0063 图9示出根据本发明方法的一个实施例的变异后示意图; 0064 图10示出根据本发明治疗计划系统的一个实施例的结构示意图。 具体实施方式 0065 下面通过具体实施方式结合附图对本发明作进一步详细说明。 0066 图1示出根据本发明治疗计划逆向规划方法的一个实施例的流程图, 包括设置逆 向规划目。

23、标和利用种群进化对初始治疗计划进行治疗计划优化的过程, 该优化过程包括: 0067 步骤102: 设置迭代优化参数: 种群大小、 种群进化次数; 0068 步骤104: 对初始治疗计划进行随机抖动, 产生种群中的个体治疗计划; 0069 步骤106: 计算种群所有个体治疗计划对应的剂量场; 0070 步骤108: 根据个体治疗计划筛选策略, 对个体治疗计划进行筛选; 0071 步骤110: 根据所述剂量场和所述逆向规划目标计算筛选剩下的个体治疗计划的 适应度; 0072 步骤112: 选择适应度最大的个体治疗计划作为当前最优计划; 0073 步骤114: 若进化次数达到种群进化次数, 转到步骤。

24、118; 否则进入下一步; 0074 步骤116: 将种群进化到新一代种群, 转到步骤106; 0075 步骤118: 停止种群进化并输出当前最优计划。 0076 种群大小是指种群中的个体个数, 例如可以设为20个, 种群进化次数是指从初始 算起允许进化多少代, 例如可以设为10。 0077 一种实施方式, 其中步骤104还包括: 将靶体体积向外扩展预设的第一范围Ex1, 形 成靶体第一扩展区Vex1; 将靶体体积在第一扩展区Vex1向外扩展预设的第二范围Ex2, 形成靶 体第二扩展区Vex2, 如图2所示。 0078 一种实施方式, 针对单个健康组织/危及器官, 逆向规划目标包括: 处方剂量。

25、Dp、 健 康组织/危及器官限制剂量Dm; 其适应度可通过下式计算: 0079 0080 其中, k为进化代数; a、 b、 c是权重因子, 且a+b+c1.0; Vt是靶体中剂量值小于Dp的 体积, Vs是健康组织/危及器官中剂量值大于Dm的体积, Vp是靶体中剂量值大于Dp的体积, Vtotal是靶体、 第一扩展区Vex1和第二扩展区Vex2中剂量值大于Dp的总体积, V0是单位体积, 例 如是一个体素的体积。 上式的第三项被称为惩罚因子。 0081 另一种实施方式, 针对多个健康组织/危及器官, 逆向规划目标包括: 处方剂量Dp、 各个健康组织/危及器官限制剂量Dm(i)、 靶体的相对性。

26、重要性因子Ka、 健康组织/危及器官 的相对性重要性因子Kb和健康组织/危及器官内部重要性因子Ks, 其中Ka+Kb1, Ks1; 其 适应度通过下式计算: 0082 0083 其中, V1为靶体中Dp包络的靶体体积, V2为Dp的体积, V3为靶体的体积, Vptv为靶体中 说明书 4/10 页 7 CN 102247660 B 7 剂量值小于处方剂量Dp的体积,为第i个健康组织/危及器官中剂量值大于Dm(i)的体 积。 0084 一种实施方式, 步骤108包括: 0085 步骤1082: 将靶体第一扩展区Vex1内大于预设第一剂量阈值的体积超过预设第一 体积阈值的个体治疗计划筛选出种群; 。

27、0086 步骤1084: 将靶体第二扩展区Vex2内存在大于预设第二剂量阈值剂量的个体治疗 计划筛选出种群; 0087 步骤1086: 将健康组织/危及器官内大于预设第三剂量阈值的体积超过预设第二 体积阈值的个体治疗计划筛选出种群; 0088 步骤1088: 将健康组织/危及器官内存在大于预设第四剂量阈值剂量的个体治疗 计划筛选出种群。 0089 本领域技术人员应该理解, 筛选的过程并不依赖上述步骤, 也就是说可以按照上 述步骤进行, 但也可以任意顺序进行, 例如可以将步骤1086和1088提前进行。 0090 一种实施方式, 步骤116可通过交配和/或变异进化到新一代种群来实现。 0091 。

28、另一种实施方式, 步骤116通过对当前最优计划进行扰动进化到新一代种群来实 现。 0092 扰动可包括随机扰动和组合扰动。 0093 随机扰动可包括以下操作: 0094 步骤S1: 随机选择当前最优计划的靶点位置和/或准直器型号和/或权重作为第一 被扰动量; 0095 步骤S2: 随机选择扰动量1, 1小于预设的第一扰动幅度, 将所述扰动量1与 步骤S1所选择的第一被扰动量相加; 0096 步骤S3: 重复步骤S1至S2, 直到形成种群大小数目的新一代个体治疗计划。 0097 组合扰动可包括以下操作: 0098 步骤T1: 选择当前最优计划的靶点位置、 准直器型号或权重的任一种作为作为第 二被。

29、扰动量; 0099 步骤T2: 随机选择扰动量2, 2小于预设的第二扰动幅度, 将所述扰动量2与 步骤T1所选择的第二被扰动量相加; 0100 步骤T3: 重复步骤T1至T2, 直到形成种群大小数目的新一代个体治疗计划。 0101 图3示出根据本发明治疗计划逆向规划方法的另一个实施例的流程图, 其使用 SGS-II型立体定向伽玛治疗系统进行放射治疗, 包括: 0102 步骤302: 输入患者图像, 可输入患者的CT或MRI图像序列; 0103 步骤304: 勾画患者体表、 靶体、 危及器官等组织轮廓; 0104 步骤306: 设置治疗计划逆向规划参数 0105 靶体PTV处方剂量Dp: 一般选。

30、择50等剂量线 0106 靶体弹性扩展区域限制剂量DpEx1: 为靶体弹性扩展区域(即靶体第一扩展区)内的 剂量限制(即第一剂量阈值); 0107 靶体限制扩展区域限制剂量DpEx2: 为靶体限制扩展区域(即靶体第二扩展区)内的 最大剂量限制(即第二剂量阈值); 说明书 5/10 页 8 CN 102247660 B 8 0108 靶体弹性扩展区域限制剂量体积比Rptv(即第一体积阈值): 为靶体弹性扩展区域 内, 剂量超过限制剂量的体积与该区域体积之比的最大限制值; 0109 健康组织/危及器官OARs限制剂量Doar(k): 为危及器官/健康组织的剂量限制(即 第三剂量阈值); 0110 。

31、健康组织/危及器官OARs最大限制剂量Dmoar(k): 为危及器官/健康组织内的最大 剂量限制, 即不允许超过的最大限制剂量(即第四剂量阈值); 0111 健康组织/危及器官OARs限制剂量体积比Roar(k)(即第二体积阈值): 为危及器官/ 健康组织中, 剂量超过限制剂量的体积与危及器官/健康组织体积之比的最大限制值。 0112 靶体PTV/健康组织/危及器官OARs之间相对重要性因子Ka、 Kb: 0 Ka 1, 0 Kb 1 0113 健康组织/危及器官之间相对重要性因子Ks(k): 0 Ks(k) 1, Ks(k)1, K为 OARs数目。 0114 步骤308: 建立患者3D体素。

32、模型; 0115 根据用户在定位序列图像上勾画的体表、 靶体、 危及器官等组织外轮廓, 构造患者 3D体素模型。 具体方法如下: 0116 A: 组织外轮廓插值 0117 通常定位扫描时, 采用的层厚或层间距比定位图像的像素尺寸大很多, 为了构造 患者的3D体素模型, 需要定位序列图像上勾画的体表、 靶体、 危及器官等所有外轮廓插值。 插值采用线性插值, 图4所示为靶体外轮廓插值示意图。 体表和危及器官等的外轮廓采用相 同的方法进行插值。 0118 B: 通过体素化构造患者3D体素模型 0119 对体表、 靶体、 危及器官等所有外轮廓进行插值后, 将这些轮廓体素化即得到患者 的3D体素模型。 。

33、患者3D体素模型通常需要足够高的分辨率以确保后续治疗计划逆向规划获 得好的结果。 一种可选择的分辨率是采用患者定位图像的分辨率, 这个分辨率一般为 0.5mm-1mm。 另一种方法确定分辨率的方法是由用户定制分辨率大小。 例如: 在SGS-II的治 疗计划逆向规划中, 3D体素模型的分辨率采用与剂量计算网格相同的分辨率。 这样用户可 以通过设置剂量计算矩阵网格的分辨率来调整3D体素模型的分辨率。 0120 图5示出一个患者3D体素模型的示意图。 0121 步骤310: 创建初始 “种子” 治疗计划 0122 “种子” 治疗计划用作创建一个种群的 “种子” , 即一个种群可以由该 “种子” 计划。

34、构 造出来。 0123 “种子” 治疗计划可以通过手工交互的方式建立。 另一种可选方法是通过自动靶点 布置技术创建。 在SGS的治疗计划逆向规划中, 支持上述两种创建初始治疗计划方式。 0124 步骤312: 治疗计划的逆向规划 0125 采用并行遗传算法, 通过迭代优化技术进行治疗计划的逆向规划。 具体流程如下: 0126 1.设置迭代优化参数 0127 种群大小Np: 种群中个体数目 0128 种群进化代数Nr: 种群需要进化的代数 0129 交叉概率Pc: 遗传优化中个体之间的交叉概率, 一般由程序预设, 不用用户设置。 0130 变异概率Pm: 遗传优化中个体变异概率, 一般由程序预设。

35、, 不用用户设置。 说明书 6/10 页 9 CN 102247660 B 9 0131 2.种群初始化 0132 种群由若干个体组成, 其中每一个个体对应一个候选的治疗计划。 种群初始化就 是创建一个包含若干候选治疗计划的初始种群。 0133 A: 个体治疗计划编码 0134 一个治疗计划主要包括如下参数: 靶点数目Nf、 靶点位置Pk(x, y, z), 靶点权重Wk, 靶点准直器规格Ck等。 为了适应遗传优化算法, 需要对上述参数进行编码。 编码方式有多 种, 可以采用二进制编码、 实数编码或者格雷码编码等。 在SGS-II逆向治疗计划规划中, 采 用了标准的二进制编码方法。 表1给出了。

36、一个个体治疗计划的二进制编码: 0135 表1治疗计划二进制编码示例 0136 0137 B: 构造种群 0138 根据前述建立的 “种子” 治疗计划创建初始种群。 为了确保种群中个体尽量多样 化, 采用随机 “抖动” 技术来构造初始种群。 这里的随机 “抖动” 就是按照一定的随机概率, 将 对应序列中的某位进行取反。 具体方法如下: 0139 (1)将前述建立的初始治疗计划进行编码, 获得一个二进制0/1序列Sb。 0140 通过迭代方式, 随机对Sb0序列进行随机 “扰动” , 得到若干新的二进制0/1序列Sb。 每一个新序列即代表一个新个体。 0141 (2)解码每个新序列, 得到初始的。

37、种群, 即若干初始治疗计划。 解码过程是编码过 程的逆过程。 0142 初始种群包括 “种子” 治疗计划。 并将该 “种子” 治疗计划预设为上一代种群中的最 优治疗计划。 0143 步骤314: 种群剂量场并行计算 0144 采用剂量场计算引擎计算一个种群所有个体治疗计划对应的剂量场分布。 0145 通常, 剂量场可以用一个3D剂量计算网格Dmmn来表示, 如图2所示。 一个治疗计划 的3D剂量场Dpmmn为其所有靶点的剂量场Dfmmn(k)叠加, 0146 DpmmnDfmmn(k) 0147 其中: 0148 Dpmmn: 为某个治疗计划的3D剂量场 说明书 7/10 页 10 CN 10。

38、2247660 B 10 0149 Dfmmn(k): 为第k个靶点的3D剂量场 0150 k: 为治疗计划包含的靶点数目。 0151 这样一个治疗计划的总的剂量计算网格数目Nd可以如下计算得到: 0152 Ndmmnk 0153 一个大小为Np的种群的总的剂量计算网格数目Nd可以如下计算得到: 0154 NgmmnkNp 0155 这样一个种群的剂量场可以通过Ng个剂量点的并行计算快速得到。 0156 步骤316: 种群适应度计算 0157 适应度反映了各个体代表的治疗计划度前述逆向规划目标的满足程度。 0158 适应度通过下式计算: 0159 0160 其中, V1为靶体中Dp包络的靶体体。

39、积, V2为Dp的体积, V3为靶体的体积, Vptv为靶体中 剂量值小于处方剂量Dp的体积,为第i个健康组织/危及器官中剂量值大于Dm(i)的体 积。 0161 步骤318: 对种群的个体治疗计划进行筛选; 0162 种群个体预筛选的目的是根据种群剂量场, 将某些明显不合格的治疗计划预先剔 除, 这样可以避免不必要的计算, 提高效率。 剔除的具体标准如下: 0163 A: 基于靶体的剂量场分析 0164 对于靶体, 采用靶体体积扩展模型进行分析。 靶体体积扩展模型通过对靶体体积 进行扩展建立, 如图2所示: 0165 将靶体体积V向外扩展预设范围Ex1, 形成靶体体积扩展区VEx1即第一扩展。

40、区; 0166 将靶体体积向外扩展预设范围Ex2, 形成靶体体积扩展区VEx2即第二扩展区; 0167 VEx1称为弹性扩展区。 允许VEx1内一些点的剂量大于某个设定剂量阈值即第一剂 量阈值, 但是VEx1内剂量大于某个设置剂量阈值的体积不超过某个设定的体积阈值即第一 体积阈值; 0168 VEx2称为限制扩展区。 VEx2内任意点的剂量都不得大于某个设定剂量阈值即第二 剂量阈值。 0169 基于上述模型, 不合格治疗计划的剔除标准如下: 0170 靶体体积内, 剂量大于某个预设剂量阈值(如处方剂量Dp)的体积与靶体体积之比 小于某个预设阈值的治疗计划应该剔除; 0171 弹性扩展区域VEx。

41、1内, 剂量大于第一剂量阈值(如靶体弹性区域限制剂量DpEx1)的 体积与该区域的体积之比大于第一体积阈值Rptv的治疗计划应该剔除; 0172 限制扩展区域VEx2内, 存在剂量大于第二剂量阈值(如靶体限制区域限制剂量 DpEx2)的治疗计划应该剔除。 0173 B: 基于健康组织/危及器官的剂量场分析 0174 基于健康组织/危及器官不合格治疗计划的剔除标准如下: 0175 健康组织/危及器官体积内, 剂量大于某个预设剂量阈值即第三剂量阈值(如健康 组织/危及器官的限制剂量Doar(k)的体积与健康组织/危及器官体积体积之比大于某个预 说明书 8/10 页 11 CN 102247660 。

42、B 11 设阈值Roar(k)即第二体积阈值的治疗计划应该剔除; 0176 健康组织/危及器官体积内, 存在剂量大于某个预设剂量阈值即第四剂量阈值(如 健康组织/危及器官的最大限制剂量Dmoar(k)的治疗计划应该剔除; 0177 步骤320: 种群最优个体治疗计划选择 0178 遍历种群个体计划, 搜索适应度最大的个体治疗计划, 即当前迭代中最优的治疗 计划。 0179 步骤322: 判断是否达到种群进化代数Nr, 是则转步骤328; 否则进入下一步; 0180 步骤324: 创建新一代种群; 0181 计算当前种群中最优个体治疗计划与上一代种群中最优个体治疗计划的差异。 如 果差异小于给定。

43、的预设阈值, 则将 “种子” 治疗计划更新为当前最优治疗计划, 通过当代种 群的交配和/或变异操作进化生成新一代种群。 0182 1.交配操作 0183 随机选择两个个体治疗计划; 0184 采用随机数生成器生成一个随机数a, 当a小于交叉概率Pc, 则进行后续操作, 反之 退出交配操作; 0185 随机确定交配位置k; 0186 图6示出根据本发明一个实施例的交配前示意图, 图中个体为i和j, k为交配位置。 0187 图7示出根据本发明一个实施例的交配后示意图, 图中个体i和j在k位置以后的数 位进行交换, 形成i 和j , 如图中黑体所示。 0188 2.变异操作 0189 选择个体治疗。

44、计划; 0190 采用随机数生成器生成一个随机数b, 当b小于变异概率Pm, 则进行变异操作, 反之 退出变异操作; 0191 随机确定变异的位置h; 0192 将个体h位置的二进制编码取反; 0193 图8示出根据本发明一个实施例的变异前示意图; 图9示出根据本发明一个实施例 的变异后示意图。 0194 步骤326: 把经过交配和/或变异后的种群作为当前种群, 转步骤314; 0195 步骤328: 停止迭代并输出当前最优计划。 0196 图10示出根据本发明治疗计划系统的一个实施例的结构示意图, 用于在放射治疗 前对患者要进行放射治疗的区域进行剂量规划, 包括设置模块、 优化模块、 进化模。

45、块和迭代 模块, 0197 设置模块用于, 输入患者医学图像; 根据患者医学图像勾画患者体表、 靶体、 危及 器官的组织轮廓; 设置治疗计划的逆向规划目标; 创建初始治疗计划; 设置迭代优化参数: 种群大小、 种群进化次数; 对初始治疗计划进行随机抖动, 产生种群中的个体治疗计划。 0198 优化模块用于计算种群所有个体治疗计划对应的剂量场; 根据个体治疗计划筛选 策略, 对个体治疗计划进行筛选; 根据所述剂量场和所述逆向规划目标计算筛选后剩下的 个体治疗计划的适应度; 选择适应度最大的个体治疗计划作为当前最优计划。 0199 进化模块用于将种群进化到新一代种群; 说明书 9/10 页 12 。

46、CN 102247660 B 12 0200 迭代模块用于: 若进化次数大于所述种群进化次数, 输出当前最优计划并结束; 否 则调用进化模块产生新一代种群, 再调用优化模块进行优化。 0201 一种实施方式, 设置模块还用于将靶体体积向外扩展预设的第一范围, 形成靶体 第一扩展区; 将靶体体积在第一扩展区向外扩展预设的第二范围, 形成靶体第二扩展区; 逆 向规划目标包括: 处方剂量Dp、 健康组织/危及器官限制剂量Dm; 优化模块还用于通过下式计 算所述适应度: 0202 0203 其中, k为进化代数; a、 b、 c是权重因子, 且a+b+c1.0; Vt是靶体中剂量值小于Dp的 体积, 。

47、Vs是健康组织/危及器官中剂量值大于Dm的体积, Vp是靶体中剂量值大于Dp的体积, Vtotal是靶体、 第一扩展区和第二扩展区中剂量值大于Dp的总体积, V0是单位体积。 0204 另一种实施方式, 逆向规划目标包括: 处方剂量Dp、 各个健康组织/危及器官限制 剂量Dm(i), 靶体的相对性重要性因子Ka、 健康组织/危及器官的相对性重要性因子Kb和健康 组织/危及器官内部重要性因子Ks, 其中Ka+Kb1, Ks1; 优化模块还用于通过下式计算 所述适应度: 0205 0206 其中, V1为靶体中Dp包络的靶体体积, V2为Dp的体积, V3为靶体的体积, Vptv为靶体中 剂量值小。

48、于处方剂量Dp的体积,为第i个健康组织/危及器官中剂量值大于Dm(i)的体 积。 0207 一种实施方式, 优化模块还用于: 0208 将靶体第一扩展区内大于预设第一剂量阈值的体积超过预设第一体积阈值的个 体治疗计划筛选出种群; 将靶体第二扩展区内存在大于预设第二剂量阈值剂量的个体治疗 计划筛选出种群; 将健康组织/危及器官内大于预设第三剂量阈值的体积超过预设第二体 积阈值的个体治疗计划筛选出种群; 将健康组织/危及器官内存在大于预设第四剂量阈值 剂量的个体治疗计划筛选出种群。 0209 一种实施方式, 进化模块还用于通过交配和/或变异进化到新一代种群。 0210 另一种实施方式, 进化模块还。

49、用于对当前最优计划进行扰动进化到新一代种群。 0211 以上内容是结合具体的实施方式对本发明所作的进一步详细说明, 不能认定本发 明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员来说, 在不脱 离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本发明的保护 范围。 说明书 10/10 页 13 CN 102247660 B 13 图1 说明书附图 1/5 页 14 CN 102247660 B 14 图2 说明书附图 2/5 页 15 CN 102247660 B 15 图3 说明书附图 3/5 页 16 CN 102247660 B 16 图4 图5 图6图7 说明书附图 4/5 页 17 CN 102247660 B 17 图8 图9 图10 说明书附图 5/5 页 18 CN 102247660 B 18 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人类生活必需 > 医学或兽医学;卫生学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1