本申请为1986年2月24日提交的未决美国专利申请No.06/834,491的部分继续申请,其全部公开内容供此参考。 本发明涉及在铁,钢,和其它金属制品表面上形成含磷酸锌保护层的改进法。这些层足够均匀和致密时可在后续拉制或类似成型加工前形成有效润滑基体。更具体地讲,本发明涉及磷化操作中减少于渣形量的处理液组合物和方法。
金属磷化液广泛用来在金属制品,特别是铁和碳钢制品表面上形成涂层。金属磷化液一般为磷酸和其它化学品,常包括锌,钙,和其它金属离子的稀水溶液,通过浸涂,喷涂或类似方式可将其与金属表面接触。金属表面与该溶液反应并且在适当条件下此反应可在表面上形成各种金属,若为磷化金属一部分,则常包括一些铁,以及溶液中作为阳离子存在的任何金属的基本上不溶性晶体磷酸盐的整块涂层。
这样形成的涂层可作为后续喷漆,润滑剂和其它物料的有效基体。这些涂层常能在金属制品应用时常常处于的各种环境中防腐,並阻止其下面的金属受腐蚀。这些涂层在工业上得到了广泛的应用。
磷化层已成熟的一个特殊应用领域是制造用来拉制和其它类似成型操作的金属,其中要求降低表面摩擦。在某些这类应用之中,已发现含锌和钙阳离子的磷化液优于绝大多数其它磷化液。例如,1987年8月25日授予Hagita etal的USP 4,688,411说明了混合钙和锌磷化液的应用,其中钙/锌之比70-90℃下为0.3-1。如该Hagita专利的图4所示,钙/锌之比越大,则任何非零具体处理时间内达到的涂层重量就越低。
本专业中已知可在磷化液中应用羟基胺促进磷化反应,从而可在给定条件下与其它不含羟基胺的类似溶液相比而增大含羟基胺地磷化液中磷酸盐涂层形成量。
除了其要求效果而外,所有已知磷化液应用期间均会生成本专业一般称为“淤渣”的废料,为磷化液应用时沉淀出的金属磷酸盐和有时的其它物质之不溶混合物,必要时必须除去该废料以达到令人满意的连续操作。若淤渣集聚到超过一定水平,则其中一部分常会粘在某些被磷化金属制品上,从而在这些制品上形成不合要求的表面污点。排除淤渣费用昂贵,因为其中高浓度的毒性金属离子按现行法律要求有环保措施。因此,减少操作中余渣形成量为改进磷化工艺的很高目标。
除操作例中另有明确相反的说明而外,本文中说明物料量或反应或应用条件的所有数值需应理解为“大约”的。
已发现令人满意的预拉制润滑所需磷酸盐涂层可在3-15g/m2表面的涂层重量范围内形成并且该范围内的低涂层重量有时更为优选,只要形成了连续致密磷酸盐膜就可行。还发现锌磷化液,包括还含钙和/或某些其它金属离子的溶液中存在有限量的羟基胺可大大降低操作中淤渣形成量,而同时又不会给磷化工艺带来不利影响。
本发明优选实施方案之一是pH1-3.7,更优选2.5-3.5的磷化液,其中包括或更优选其基本相成为以下成分:(A)1-4wt%锌离子;(B)最多3wt%钙离子;(C)1-7.5wt%磷酸根;(D)至少0.02wt%羟基胺;(E)除羟基胺而外的促进剂,为本专业已知,其中可包含有效促进量的一种以上的化学品;(F)最多约0.1wt%镍和/或铜阳离子;(G)最多约0.2wt%锰阳离子;以及(H)水。本文中,任何“磷酸根”量均应理解为是溶液中磷酸和非成酸成分各种离子之和的PO-34化学计量当量。而且,应当看到本发明溶液中还存在必然出现的对应离子,这在磷化过程中化学上无害处,对应于据说以离子形态出现的任何成分。
优选促进剂为硝酸根,为磷化液的1-7.5wt%。其它适宜促进剂包括,但不仅限于亚硫酸根,苦味酸根,钒酸盐,和/或钼酸盐。
在上述优选组成范围内,镍和铜阳离子之总量更优选为0.001-0.01wt%,最优选值为0.006wt%。若钙离子存在于溶液中,则其浓度优选为至少0.5wt%。
羟基胺量优选应使所有羟基胺均被代替且均由其量为被代替羟基胺的3wt%的亚硝酸根代替的同等锌磷化液比含羟基胺的溶液多生成至少50%的淤渣,其中以等量的磷化金属表面计。溶液中一般优选采用不多于0.4wt%的羟基胺,且羟基胺的最优选值为0.05wt%。
用本发明含羟基胺磷化液对金属表面的处理可采用浸入,喷射,联合方式,或任何其它可达到有效接触的方法,且温度,时间和其它处理条件一般与本专业用含等浓度相同金属离子和其它促进剂的溶液进行磷化处理的条件相同。而且,本发明磷化处理可有利地联用其它已知工艺步骤,如磷化前清洗,浸酸,和调理操作以及磷化后冲洗,铬磷酸或其它涂层钝化处理,涂润滑剂,上漆等,均以本专业熟知的方式进行。
本发明磷化液中特殊成分的适宜实用而优选的来源在本专业已知知。例如,羟基胺优选来源于存储稳定性盐或配合物,其中几种已投入市场。最优选为硫酸羟基胺,有时也称作硫酸羟基胺和基本化学式为(NH2OH)2。(H2SO4)或(NH3OH)2SO4的羟基胺。硫酸羟基胺以下简称为“HAS”。
在磷化液使用期间产生的余渣体积以本专业熟知的方法测定。一般来说,从进行该工艺容器中取出等分量样品液,注意保证为代表性样品。将含悬浮固体的等分液转入透明锥形量筒中并让其在环境中重力影响下沉降约24小时。该沉降操作在容器底层和液层之间产生一条易于识别的界线。在容器的刻度线上即可读出余渣量。
典型的本发明磷化液产生7-11ml淤渣/m2磷化金属,而常见磷酸锌涂层液产生14-25ml淤渣/m2磷化金属。
以下用非限制性操作例详述本发明。
实例1-5
这些实例说明本发明磷化液制法和应用。这些溶液组成如表1,用氧化锌作锌源,用硝酸作硝酸根源,磷酸作磷酸根源,氢氧化钙作为钙离子源,硝酸镍作为镍离子源,而HAS作为羟基胺源。应用这些溶液的某些结果如表2。
实例6-7和比较例1C-3C
这些实例的溶液组成见表3。采用实例1-5所述相同成分源,而用亚硝酸钠作亚硝酸根源。
比较例均用现有技术中已知的溶液。比较例1C用常见锌溶液而进行高涂层重量磷化,而2C用常见溶液进行低涂层重量涂层,两例中均不用钙。比较例3C含钙,但其它却相当近于1C。所有这些比较例含亚硝酸盐作为促进剂。联用硝酸盐。
用这些溶液得到的某些结果见表4。实例7用等同于比较例3C的溶液,只是实例7溶液中羟基胺已在比较例3C溶液中用亚硝酸根代替;所用亚硝酸根量为被代替羟基胺量的3wt%。用两种溶液得到的磷化涂层重量和质量基本相同,但余渣量在实例7中却减少了40%以上。将实例6与比较例1C比较表明了总的来说用高锌:钙比溶液达到确效果基本相同。
实例8
该例说明了联合方法,包括应用本发明磷化液,这在制造后续拉制或冷拔工艺用钢管或线时特别有效。
钢材应进清洗以保证除去所有油脂和油,一般是采用本专业已知的表面活性剂。用过表面活性剂后,再用热水冲洗干净。若表面上还有刻痕或锈斑,则应用常规浸酸处理,优选在阻热硫酸或盐酸中进行。浸酸后,金属必须冲洗干净,以防止太多的酸性物质污染磷化液。建议进行两次冲水洗涤,第一次用冷水,第二次按需要用热水或冷水。
这样冲洗后,将金属浸入本发明磷化液中,维持约71-93℃,并且在溶液中停留约30秒至约5分钟以得到要求涂层。优选涂层重量取决于待处理金属的准确组成,预处理操作,以及被处理金属上待进行的后续加工,方式一般为本专业人员所熟知。
在更优选实施方案中,在不锈钢加工罐中将单独配制和添加剂液配合起来即可制成磷化液。在典型设施中,在该罐中充水至其体积的四分之三,然后加12.2加仑组成如下的配制液即可制成100加仑加工液。之后将组成如下的约3.7加仑添加剂液而完成磷化混合物的制备步骤。
该优选实施方案的配制液由87.5份氧化锌,2.3份含13.7wt%镍离子的硝酸镍水溶液,211.0份75%磷酸水溶液,6.0份HAS,和113份42°Baumè硝酸组成,所有成分溶于足够的水中以达到总共1000份。添加剂液是将261.7份氢氧化钙和665.4份42°Baumè硝酸与足量水混合而达到总共1000份。(该段中所有“份”均以重量计)。
在进行磷化涂层之后,处理制品充分冲洗而除去并防止任何可能夹带磷化液。然后用皂水溶液涂上适宜润滑剂。这样得到的制品就可进行使其承受应力的拉制或其它成型加工操作。
在该法操作中,集聚一些余渣。这在达到足够量而在涂层上造成污染之前应定期除去。而且,连续使用时,浓度会发生变化,应在适当的时间备隔处向磷化液中加入更多的上述添加剂液以补偿某些原用成分的变化。
表1
例1-5中溶液组成
成分 各成分重量百分比
1 2 3 4 5
锌离子 1.3 1.7 2.0 2.1 2.7
钙离子 1.3 0.9 0.7 0.5 无
镍离子 0.006 0.006 0.006 0.006 0.006
硝酸根 3.5 3.5 3.5 3.5 3.5
磷酸根 3.3 3.3 3.3 3.3 3.3
羟基胺 0.05 0.05 0.05 0.05 0.05
其余均为水
表2
例1-5中涂层重量和淤渣体积 淤渣体积
例号 涂层重量g/m2ml/m2
1 3-5 10
2 8-10 10
3 9-13 11
4 12-15 10
5 12-20 9
表3
例6-7和1c-3c中溶液组成
成分
6 1C 2C 3C 7
锌离子 1.5 3.0 1.9 1.2 1.2
钙离子 0.8 无 无 1.2 1.2
镍离子 0.006 0.006 0.006 0.006 0.006
硝酸根 4.3 3.6 2.9 4.7 4.7
磷酸根 3.4 3.4 0.6 3.2 3.2
羟基胺 0.05 无 无 无 0.05
亚硝酸根 无 .0015 .0015 .0015 无
表4
例6-7和1C-3C中涂层重量和淤渣体积
淤渣体积
例号 涂层重量g/m2ml/m2
6 8-10 8.4
1C 9-14 14
2C 6-9 25
3C 4-8 14
7 4-8 7.9