半导体元件用金合金细线 本发明涉及连接半导体元件上的电极与外部引线之用的、焊接接合区可靠性极佳的金合金细线。
现在,在半导体元件上的电极与外部引线之间进行连接用的焊接连接线主要是使用金合金细线。金合金细线的焊接技术通常采用超声波与热压同时并用的方式。即,是利用电弧加热,将金细线的线头熔化,并借助表面张力形成小球,然后将该小球压在加热到150-300℃范围以内的半导体元件的电极上,再利用超声波使之与外部引线进行焊接的方法。
为了制作晶体管或IC(集成电路)等半导体元件之用,在利用上述金合金细线进行焊接之后,为了达到保护的目的,要将Si芯片、焊接线和装配Si芯片的部分的引线框用树脂进行封装。
随着半导体元件向高集成化和薄型化的方向发展,金合金细线应满足的特性也多样化,例如,为了适应高密度布线和窄间距的要求,金合金细线要长尺度化、细线化或高拱曲化,以及可使半导体元件实现实薄型化的低拱曲化等。针对上述长尺度化、细线化、拱曲高度方面的调整,开发了添加几种合金化元素的金合金细线,例如,特开昭61-296731号公报及特开昭61-172343号公报等所公开发表的方法。
最近,使用半导体元件的环境条件越来越苛刻,例如,在汽车的发动机舱内所用地半导体元件,有时是在150°-250℃的高温或高湿等环境中使用。另外,由于半导体元件的高密度装配,在使用时发生的热量也不容忽视、同时,现已发现,在使用金合金细线时,在高温环境下存在与铝电极的焊接接合区的长期可靠性降低的问题。
在要求耐热性的环境条件下使用的半导体元件中,过去是使用以铝合金细线作为焊接连接线的陶瓷封装地半导体元件。使用铝合金细线的优点是,由于在与半导体元件上的电极的焊接接合区是同种金属的接合,可以取得高可靠性的优点。但是,与树脂封装比较,陶瓷封装的价格高,另外,使用铝合金细线在大气中难于形成正常的小球,所以,作为焊接方法,通常是楔焊法,与金合金细线相比,生产效率低。
因此,由于成本和生产效率等方面的原因,铝合金细线的使用只限于特定的半导体元件,可以认为今后焊接方式的主流还是要采用在高速性、生产效率及作业方便等方面的条件具佳的金合金细线的焊接方式。
现已发现,在高温环境(50-200℃)中使用旧有的金合金细线时,存在半导体元件上的电极的焊接区长期可靠性降低的问题。在批评中所提出的问题是:电极材料,即铝与金相互扩散而生成金属间的化合物,由于产生空隙,在接合区出现剥离和导电不良等现象。并且,为了抑制金属间化合物的生成,特开平2-215149号公报发表了在金合金细线中添加Mn的技术。
在这种状况下,迫切希望在金合金细线与铝电极的焊接中,有能在高温环境中具备焊接接合可靠性高的金合金细线。
本发明者等人对高温环境中焊接接合区的可靠性进行了调查研究结果发现与众所周知的技术认识相反,我们确认了金属间化合物的成长可以提高焊接区界面的强度,但是,经过树脂封装的半导体元件,由于焊接接合区持续处于高温状态,这种金属间化合物受到了树脂中的卤素成份的腐蚀。
在本发明者等人进一步详细调查上述焊接接合区时,发现在该焊接接合区生成的金属间化合物几乎全是Au5Al2相,随着Au与Al的互相扩散,该化合物变为Au4Al相。
并且,该Au4Al相与封装树脂中含有的卤素成分发生反应,产生腐蚀现象,从而使焊接接合区的电阻增大,有时会增大到导电不良的程度。
根据本发明者等人的研究,证明在Au-Al系的多种化合物中,只有上述Au4Al相会受腐蚀。
根据上述结果,为了在高温下提高焊接强度,必须积极地成金属间化合物,使其成长为Au5Al2相,同时,阻止从该相向受腐蚀相,即Au4Al相,的相变化。
本发明者等人根据上述研究成果,进行了提高高温下焊接接合可靠性的金合金细线的开发研究工作。结果如下所列:
(a)通过在Au中添加50-3000重量ppm的Mn,发现在高温环境下可以显著减少在经过树脂封装的焊接接合区的金属间化合物的腐蚀现象。即,添加Mn可以抑制金属间化合物由Au5Al2相向Au4Al相的变化。现举例子说明如下;将含有1000重量ppm的Mn的金合金细线与铝电极的焊接接合区用树脂封装,在200℃加热300小时,并将这样得到的试料进行X射线衍射。其结果示于图1。在图1中,经过确认的化合物只有Au5Al2。
按照上述加热条件,在旧有的金合金细线中,使Au5Al相向Au4Al相的变化结束,并且出现了腐蚀现象,但是,在添加了Mn的金合金细线中,如图1所示,却抑制了向Au4Al相转化的相变化,观察不到有腐蚀现象。
另外,当Mn的含量处于小于100重量ppm的微量范围内时,虽然会生成若干Au4Al相,但是,却可以充分抑制了腐蚀作用,实用上并不存在问题,并且还具有可以进一步提高在细线的线头形成的小球部的圆度的效果。
在图2中,示出了敷设Mn含量分别为0.1%(1000ppm)、0.01%(100pp)、0%的3种金合金细线,并进行焊接,以及用树脂封装该焊接接合区的半导体元件,在200℃的温度下热处理300小时和1000小时,然后测量各细线电阻的结果。电阻随着腐蚀的增强而增大。添加100ppm的Mn的细线经过300小时热处理,电阻略有增加,但是,这种程度的增加不成问题。另外,即使在200℃的温度下保温1000小时,与Mn含量为0%的情况相比,电阻也大约小于其1/2,证明在高温下的耐腐蚀性是足够好的。
图中,添加1000ppm的Mn进行200℃×300小时的热处理的情况,与热处理前的材料所具有的电阻几乎没有什么变化。证明图1的结果是正确的。
这样,按照本发明,其特征在于抑制由Au5Al2相向Au4Al相转化的变化程度,所以,既可以防止焊接接合区受腐蚀,又可以提高焊接强度,效果很好。
另外,还进行控制上述细线的长尺度化、拱曲形状及最高高度等方面的研究工作,结果表明,通过进一步使下述第1组、第2组、第3组元素与Mn元素的共存,可以获得如下知识。
(b)将Be,B的1种或2种(第一组)取总重量在1-20ppm的范围内添加,对于提高细线的常温强度是有效的,所以,与单独添加Mn元素的金合金相比,细线的拉拔工艺比较容易。
(c)将Ca、Sr,稀土类元素(这类元素中含有Y)的1种或2种以上(第2组)取总重量在1-30ppm的范围内添加,可以提高细线的机械强度,特别是高温强度,并且可以抑制小球部附近的热影响区结晶粒的粗化,提高小球部附近的缩颈部位的强度。
(d)利用第1和第2元素组的共存,增加细线的机械强度,提高焊后的细线直线性(减小拱曲弯曲),针对焊接间距的长跨度化,并且,随着细线的再结晶开始温度的上升,可以提高高温强度,减少树脂封装时的细线位移。
(e)除了第2元素组以外,通过将In,Tl的1种或2种(第3组)取总重量在1-50ppm的范围内添加,扩大小球部附近的热影响区的再结晶长度,可以得到能提高拱曲高度的金合金细线。
(f)利用第1、第2和第3元素组的共存,可以制成兼具上述元素组的添加效果的金合金细线,即,在长尺度化布线中,细线不会与Si芯片的边缘接触,进而通过减少拱曲弯曲和树脂封装时引线位移,可以实现相邻的细线布线间隔窄的高密度装配。
即,本发明根据上述知识,主要采用如下的结构。即,
(1)含有50-3000重量ppm、特别是50-100重量ppm范围内的Mn、而其余部分由金和不可避免的杂质构成的、在高温区使用的半导体元件用金合金细线;
(2)在上述(1)的成分中再加入总共含有1-20重量ppm范围内的Be,B的1种或2种的半导体元件用金合金细线;
(3)在上述(1)的成分中再加入总共含1-30重量ppm范围内的Ca,Sr,稀土类元素的1种或2种以上的半导体元件用金合金细线;
(4)在上述(2)的成分中再加入总共含有1-30重量ppm范围内的Ca,Sr,稀土类元素的1种或2种以上的半导体元件用金合金细线;
(5)在上述(3)的成分中再加入总共含有1-50重量ppm范围内的In,Tl的1种或2种的半导体元件用金合金细线;
(6)在上述(4)的成分中再加入总共含有1-50重量ppm范围内的In,Tl的1种或2种的半导体元件用金合金细线。
图1是将本发明的细线(在Au中添加1000重量百分比的Mn的细线)进行200℃×300小时的热处理后将该材料进行X射线衍射的结果。
图2是Mn的添加量与热处理时间和电阻的关系图。
下面,说明用于实施本发明的最佳形态。
本发明所使用的高纯度金,是纯度至少含有大于99.995重量百比分的金,其余部分电不可避免的杂质构成。
金小球焊接接合区处于高温环境时,在焊接界面上,随着金与铝的相互扩散,生成几种金属间化合物,在这些金/铝化合物中,特定的化合物相,即Au4Al相,容易与封装树脂中的卤素元素发生反应,从而成为使焊接接合区的电阻增大的原因。
为了去除这个原因,添加Mn是非常有效的。即,特Mn添加到金中时,通过Mn在金中扩散,在面附近浓度升高,可以抑制易腐蚀化合物相的成长,从而可以抑制处于高温环境时焊接接合区的电阻增大。Mn的含量定为50-3000重量ppm的理由在于,当Mn的含量小于50重量ppm时,抑制焊接接合区在高温区域金属间化合物的腐蚀的效果小,当超过3000重量ppm时,在形成小球时表示将形成氧化膜,从而降低焊接牢度(剪切强度降低)。当Mn的含量达到100重量ppm时,在细线尖端形成的小球部的圆度提高,很容易制作用于与半导体元件上的电极间距离的短间距化相适应的直径很小的小球。Mn的含量在上述范围内时,可以充分获得提高可靠性的效果。
另外,已知Mn在金中的固溶度大,对机械强度的影响小。不能期望用上述含量的Mn获得控制拱曲形状的效果。因此,通过使Mn以外的元素共存,可以进一步提高细线的基本特性,从而可使细线特性适应多样化的需要。在理想的情况下,可以确认上述含量的Mn,对其他元素形成的特性几乎没有影响。
第1组元素添加Be,B的目的是可以提高细线的常温强度,同时,通过使细线的拉拔工艺变得容易,在工业上能以很容易制造含有Mn的金合金细线。单独添加Mn元素,几乎不可能期望提高断裂强度,拉拔工艺中的加工硬化也很小,所以,当使细线的拉拔速度加快时,就会成为断线的原因。若含有适量的Be或B,通过促进细线拉拔工艺中的加工硬化,可以实现提高生产效率和拉拔工艺的高速化。Be,B的含量小于1重量ppm时,机械强度的变化非常小,如果含量超过20重量ppm,由于小球部位的硬度提高,从而难于获得足够的焊接强度,或者焊接时将会损伤半导体元件。因此,将Be,B的含量定在1-20重量ppm的范围内。
添加Ca,Sr,稀土类元素的第2组元素,不仅可以提高细线的常温强度,而且可以提高高温强度,所以,可以减小形成拱曲时细线的位移以及垂度。在进行树脂封装时,受高温加热的树脂在保持高粘度高速度的状态下流入金属模内,所以,焊后的细线会由于发生形变而产生位移,但是,通过添加微量的Ca,Sr和稀土类元素,提高细线的高温强度,便可减小树脂封装时的细线位移。另外,在小球部位附近,若由于热影响部使结晶粒粗大,则形成拱曲时,缩颈部分将产生龟裂等损伤,但是,通过添加Ca,Sr和稀土类元素,抑制热影响部的再结晶,使结晶粒微细化,可以提高缩颈部分的强度。Ca,Sr和稀土类元素的含量小于1重量ppm时,高温强度的提高不大,当含量超过30重量ppm时,在小球顶部将形成收缩孔,从而会降低小球焊后的焊接强度。因此,将Ca,Sr和稀土类元素的1种或2种以上的总含量定在1-30重量ppm的范围。
利用第1和第2组元素的共存,由于提高了细线的机械强度,从而可以提高焊后细线的直线性,另外,由于提高了高温度强度和缩颈部分的断裂强度,所以,可以减小树脂封装时细线的位移,从而可以适用于焊接间距的长跨度化(长尺度化)。为了提高与上述长尺度化相对应的细线的机械强度,添加第2组元素的效果很大,但是,单独添加第2组元素,若为了提高细线的机械强度而增加含量时,又担心会在小球顶部形成收缩孔而引起焊接强度降低,所以,通过使其第1组元素共存,提高强度,特别是断裂强度,焊接强度也不会降低,从而可以实现长尺度化。关于它们各自的添加量,根据前面所述的理由,将Be,B的1种或2种的总含量在1-20重量ppm的范围,将Ca,Sr,稀土类元素的1种或2种以上的总含量定在1-30重量ppm的范围。
添加第3组元素In,Tl,发现可以扩大形成小球时受热影响的再结晶区的长度。该再结晶区的长度是影响拱曲高度的重要原因,再结晶末端部,即机械强度发生显著变化的部分相当于拱曲最高部位。但是,单独添加第3组元素,细线的机械强度不够大,拱曲形状的差别会增大。
因此,通过使第2和第3组元素共存,利用第3组元素可以实现上述高拱曲化,利用第2组元素可以提高细线的机械强度,从而可以减小拱曲高度的差别。当In,Tl的含量小于1重量ppm时,添加效果不大,当含量超过50重量ppm时,小球部分就不会形成圆球,难于进行电极间隔短的窄间距焊接。因此,将In,Tl的1种或2种的含量定在1-50重量ppm的范围。另外,关于第2组元素,即Ca,Sr,稀土类元素的含量,根据前面所述的理由,将其1种或2种以上元素的总含量定为1-30重量ppm。
使细线长尺度化时,通常在焊接之后,细线将产生垂度或弯曲,在进行树脂封装时,细线发生位移的趋势很大。为了同时满足长尺度化和抑制细线的垂度及弯曲这两个条件,要求能严格控制拱曲的细线。因此,利用第1,第2和第3组元素的共存,可以得到兼具各元素组的添加效果的金合金细线。利用添加第2组元素提高细线的机械强度,可以提高拱曲的直线性,特别是很高的高温强度对于抑制树脂封装时细线的位移是有效的,利用添加第1组元素提高常温强度,可以得到差别很小的稳定的拱曲形状。另外,利用第2组元素提高缩颈部分的强度,可以减小垂度,利用添加第3组元素实现高拱曲化,不仅在焊后,而且在进行树脂封装时细线也不会与Si芯片边缘接触的现象,容易适应长尺度化。利用上述元素组的共存,可以得到更好的效果,并且各元素组的添加效果基本上是互不依赖的,所以,各元素组的含量也分别在如前面所述的范围。
下面,说明实施例。
使用金纯度大于约99.995重量百分比的电解金,使用高频真空熔化炉在1200±20℃的温度范围内熔化铸造含有上述添加元素组的表1和表3所示的化学成分的金合金,将该铸块加压延展后在常温下进行拉拔加工,使最后线径达到25μm的金合金细线后,在大气中于200-500℃的温度范围内连续退火,调整其延伸值至约4%。
所得到的金合金细线,对小球形状、拉拔工序中的断线强度、细线的机械特性、焊接强度、拱曲高度、细线曲度和封装后的细线位移量以及小球焊接接合区金属间化合物的腐蚀等情况进行了研究,结果示于表2。
拉拨工序的断线程度,是将调整为指定成分的金合金的铸块2kg在从线径500μm拉拔到最后线径为25μm的金合金细线的工艺中,调查断线次数,0次用◎表示,1-5次用○表示,超过5次用△表示。
对于细线的机械强度,使用线径为25μm的金合金细线,分别测量在常温下的拉伸断裂强度和使细线在设定为约250度的立式炉中保持约25秒种后进行拉伸试验的断裂强度即高温强度,并示出常温强度与高温强度的强度差。细线的机械强度在拉伸工序及中间退火过程中容易受影响,并且由最后线径的调质退火引起的变化很大,由于形成小球时受热影响的缩颈部附近与母线部分两者之间的机械特性差,对拱曲形状影响很大,可以利用常温强度与高温强度的强度之差来调整这项特性。
对于小球形状,使用扫描电子显微镜观察用高速自动焊接器利用电焊枪产生的电弧放电制作的金合金小球。当小球形状异常时,如果确认由于在小球顶部发生收缩孔,因而不能与半导体元件上的电极进行良好焊接者,用X符号表示,如果虽然圆球度差,但不致影响焊接者,用△符号表示,小球良好者,用○符号表示。
对于焊接强度,是在高速自动焊接后,将引线框与待测的半导体元件用夹具夹住,然后对焊后金合金细线的中部进行拉伸,用测量的100根细线的抗拉强度的平均值表示该细线断裂时的抗拉强度。另外,将夹具平行地上移使其移到与该固定的半导体元件的电极相距3μm的位置上,剪断焊接的小球,利用测量的100根细线的剪切强度表示断裂时的荷重。
对于拱曲高度,是在将半导体元件上的电极与外部引线之间焊接后,用光学显微镜测量100根细线的所形成的各拱曲顶高与该半导体元件的电极面,利用与两者的高度差,即拱曲高度的差别进行评价。
对于细线的曲度(直线性),是从半导体元件的垂直上方观察细线两端的焊接距离(跨距)为2.5mm的焊后细线,使用投影仪从细线中心测量连接细线的两端焊点之间的直线与细线的曲度最大部分之间的垂线距离,取测量的80根细线的平均值表示。
关于检测树脂封装后细线的位移的方法,是将细线按4.5mm的跨距通过焊接将半导体元件装配在引线框架上之后,装入塑模,再用环氧树脂封装,然后利用软X射线无损检验装置向树脂封装半导体元件内部照射X射线,按照和上述检测细线曲度相同的顺序,测量细线位移最大的部分的位移量,测量80根细线,以其测量平均值除以细线的跨距长度算出的数值(百分比),定义为封装后的细线位移量。
在金合金细线的线头形成的小球与铝电极焊接,并用环氧树脂封装后,将半导体元件在氮气中于200℃下加热处理300小时,将半导体元件进行垂直研磨,直磨到贯穿小球焊接接合区中心的断面,对焊接界面上成长的金与铝的金属间化合物层的腐蚀状态进行观察。金属间化合物层呈灰色,腐蚀过的化合物层为褐色,很容易识别,利用这一点对小球焊接接合区的金属间化合物的腐蚀情况进行研究。对于金属间化合物的腐蚀状况,是用在小球焊接接合区的研磨断面上的腐蚀区域的长度(b)占金属间化合物层成长长度(a)的比例进行评价,30个小球焊接接合区计算的遭受腐蚀的部分所占的比例(b/a)的平均值若小于5%,判为腐蚀的抑制效果显著,用○符号表示,大于40%时,判为腐蚀严重,用×符号表示,介于两者之间时,即处于5-40%范围内时,用△符号表示。
表1-4是本发明的结构成分和用该成分制造金合金细线的评价结果,表5和表6是含有偏离本发明结构成分添加量的成分和用该成分制造的金合金细线的评价结果。
如表2和表4所示,通过添加Mn,都可以抑制焊接接合区的化合物层腐蚀,从而可以提高长期可靠性。另一方面,表6所示的对比示例1-3中Mn的添加量小于本发明的添加范围,抑制腐蚀的效果很小,对比示例6,7中含有过量的Mn,小球的形状不够理想。
对于小球形状的评价,按照本发明范围内的成分,都可以形成正常的小球(参见表2和表4),但是,按照表5的成分超过本发明的范围而含量过剩时,则如表6所示,小球形状不会成为圆球,并且,在小球顶部还会形成收缩孔等。
金合金细线通常为25μm,若其剪切强度大于50gf,就不会有问题。表2和表4的情况都满足大于50gf的值,但是,表6的结果有的小于50gf,这样的金合金细线不足以作为焊接引线之用。
在进行拉力试验后观察细线,根据各种金合金细线都在小球正上方的缩颈部分断裂的事实可知,抗拉强度是反映缩颈强度的数值,使用添加适量第2组元素的金合金细线,可以提高缩颈部分的强度。
使用含有适量第1组元素的金合金细线,没有观察到在拉伸过程中发生断裂,复合添加其他元素组时,还可以提高机械强度,并且拉伸也容易进行。
使用含有适量第2组元素的金合金细线,可使高温强度与常温强度的强度差小到约1gf,耐热性极好,并且可以减小树脂封装后细线的位移。
引线的曲度都不大,结果良好,但是,其中权利要求4和6所述的本发明的金合金细线,线径小,进一步提高了焊后细线的直线性。
对于拱曲高度,权利要求5和6所述本发明金合金细线的拱曲高度超过200μm,并且差别很小,所以,可以很容易实现稳定的高拱曲度化。
单独添加适量Mn,强度及拱曲形状等特性的变化不大,但是,如上所述,若进而添加本发明的各元素组,就会发现其机械特性和焊接等各种特性都可以获得更优异的特性。但是,从表6的结果可以确认,小于本发明结构成分的下限时,对上述特性产生的效果不大,超过本发明结构成分的上限时,小球形状难于稳定保持为圆球形,并且在小球顶部还会形成收缩孔。
以上说明的是使用本发明的金合金细线在与半导体元件上的电极焊接后,以树脂封装状态在高温条件下由于抑制了焊接接合区中金属间化合物的腐蚀程度,焊接接合区仍具有很高的可靠性,另外,由于同时实现了减小引线曲度和树脂封装时引线的位移量以及高拱曲化等,从而提供适用于半导体高密度装配用的金合金细线。
表1 成分组成(重量ppm) Mn Be B Ca Sr Y La Ce Nd Dy In Tl Aμ 杂质本发明金合金细线 1 55 - - - - - - - - - - - 剩余量 2 70 - - - - - - - - - - - 剩余量 3 98 - - - - - - - - - - - 剩余量 4 130 - - - - - - - - - - - 剩余量 5 200 - - - - - - - - - - - 剩余量 6 1000 - - - - - - - - - - - 剩余量 7 2950 - - - - - - - - - - - 剩余量 8 70 2 - - - - - - - - - - 剩余量 9 70 18 - - - - - - - - - - 剩余量 10 70 - 3 - - - - - - - - - 剩余量 11 70 - 17 - - - - - - - - - 剩余量 12 70 8 8 - - - - - - - - - 剩余量 13 70 - - 3 - - - - - - - - 剩余量 14 70 - - 27 - - - - - - - - 剩余量 15 70 - - - 5 - - - - - - - 剩余量 16 70 - - - 25 - - - - - - - 剩余量 17 70 - - - - 4 - - - - - - 剩余量 18 70 - - - - 29 - - - - - - 剩余量 19 70 - - - - - 3 - - - - - 剩余量 20 70 - - - - - 27 - - - - - 剩余量 21 70 - - - - - - 2 - - - - 剩余量 22 70 - - - - - - 28 - - - - 剩余量 23 70 - - - - - - - 3 - - - 剩余量 24 70 - - - - - - - 27 - - - 剩余量 25 200 18 - - - - - - - - - - 剩余量 26 500 - - - - - 27 - - - - - 剩余量 27 1000 - - - 15 - - - - - - - 剩余量
表2 细线 种类 小球 形状 拉拔过 程中断 线程度 引线 曲度 (μm) 引线强 度差 (gf) 剪切 强度 (gf) 抗拉 强度 (gf) 拱曲高度 (μm) 封装 后引 线拉 移 (%) 化合 物的 腐蚀 度 平均值 б 本 发 明 金 合 金 细 线 1 ○ ○ 36.5 3.8 70.4 5.8 171.3 6.6 4.8 ○ 2 ○ ○ 34.3 3.7 72.5 5.8 175.5 6.2 4.7 ○ 3 ○ ○ 33.6 3.7 73.5 6.1 176.5 5.5 4.7 ○ 4 △ ○ 33.5 3.6 71.1 6.1 178.3 5.5 4.6 ○ 5 △ ○ 32.1 3.6 72.5 6.2 177.2 5.5 4.4 ○ 6 △ ○ 33.1 3.8 74.5 6.3 177.5 5.5 5.1 ○ 7 △ ○ 32.9 3.9 73.2 6.5 180.2 5.3 5.2 ○ 8 ○ ◎ 30.3 2.9 75.4 6.0 174.5 6.3 4.4 ○ 9 ○ ◎ 26.5 2.6 69.2 8.2 183.3 5.1 4.6 ○ 10 ○ ◎ 29.4 3.0 77.3 5.8 172.6 5.2 4.5 ○ 11 ○ ◎ 28.8 2.5 67.8 6.0 179.7 5.5 4.1 ○ 12 ○ ◎ 29.9 2.6 70.5 6.3 178.9 4.5 4.2 ○ 13 ○ ○ 31.2 1.4 74.5 7.0 185.4 5.1 4.4 ○ 14 ○ ○ 29.4 0.7 64.3 7.8 178.3 4.6 3.6 ○ 15 ○ ○ 33.4 1.5 72.3 6.5 184.7 5.3 4.5 ○ 16 ○ ○ 26.5 0.9 68.9 7.6 180.5 4.1 3.9 ○ 17 ○ ○ 29.6 1.7 71.9 6.5 183.2 4.9 4.5 ○ 18 ○ ○ 27.7 1.0 69.5 7.4 181.8 4.5 4.1 ○ 19 ○ ○ 31.0 1.8 73.2 6.9 184.3 5.4 4.7 ○ 20 ○ ○ 28.7 1.2 71.4 7.7 180.5 5.0 4.0 ○ 21 ○ ○ 29.8 1.6 71.1 6.6 181.2 5.0 4.6 ○ 22 ○ ○ 24.3 0.9 69.5 7.6 178.9 4.9 3.8 ○ 23 ○ ○ 28.9 1.5 75.6 6.3 179.5 4.8 4.5 ○ 24 ○ ○ 26.5 1.0 70.3 7.4 178.5 4.5 3.9 ○ 25 ○ ◎ 26.6 2.8 71.2 6.1 184.2 5.2 4.8 ○ 26 ○ ○ 28.9 1.3 72.4 7.5 182.5 5.0 4.0 ○ 27 ○ ○ 26.4 0.9 69.2 7.8 186.2 4.2 3.9 ○
表3 细线 种类 成分组成(重量ppm ) Mn Be B Ca Sr Y La Ce Nd Dy In Tl Aμ 杂质 本 发 明 金 合 金 细 线 28 70 3 剩余量 29 70 27 剩余量 30 70 15 8 剩余量 31 70 5 5 7 7 7 剩余量 32 70 5 7 剩余量 33 70 8 5 7 剩余量 34 70 5 8 8 15 7 剩余量 35 70 10 剩余量 36 70 5 7 7 5 剩余量 37 70 10 5 5 5 5 剩余量 38 70 15 8 3 剩余量 39 70 8 12 27 剩余量 40 70 15 8 4 剩余量 41 70 10 8 8 28 剩余量 42 70 5 8 10 10 剩余量 43 70 10 15 8 15 剩余量 44 70 10 5 5 7 15 剩余量 45 70 10 7 7 5 15 剩余量 46 70 10 15 8 7 15 剩余量 47 70 10 5 5 7 5 15 剩余量 48 200 10 15 7 剩余量 49 500 5 9 10 10 剩余量 50 1000 11 6 8 5 15 剩余量
表4 细线 种类 小球 形状 拉拔过 程中断 线程度 引线 曲度 (μm) 引线强 度差 (gf) 剪切 强度 (gf) 抗拉 强度 (gf) 拱曲高度 (μm) 封装 后引 线拉 移 (%) 化合 物的 腐蚀 度 平均值 б本发明金合金细线 28 ○ ○ 32.1 1.8 74.3 6.1 174.2 4.7 4.6 ○ 29 ○ ○ 30.8 1.0 71.5 7.5 178.5 4.5 3.8 ○ 30 ○ ○ 25.5 0.8 70.6 7.7 175.6 4.9 3.6 ○ 31 ○ ○ 28.2 1.1 68.4 7.6 173.2 4.5 3.4 ○ 32 ○ ○ 28.7 0.8 67.5 7.4 178.2 4.6 3.5 ○ 33 ○ ○ 29.4 0.9 64.3 7.7 175.6 4.4 3.7 ○ 34 ○ ◎ 13.0 1.3 66.5 8.1 178.2 4.7 2.9 ○ 35 ○ ◎ 15.2 1.2 68.5 8.4 178.9 4.5 2.7 ○ 36 ○ ◎ 16.5 1.1 69.4 8.1 176.9 4.8 2.8 ○ 37 ○ ◎ 14.3 0.9 71.3 8.2 177.5 4.2 2.6 ○ 38 ○ ○ 24.1 1.1 72.4 7.7 193.4 3.2 4.0 ○ 39 ○ ○ 28.3 1.2 73.2 7.8 202.3 3.3 4.1 ○ 40 ○ ○ 21.2 1.1 69.4 7.6 186.2 3.1 4.4 ○ 41 ○ ○ 20.5 0.9 71.5 7.8 205.6 3.6 4.4 ○ 42 ○ ○ 22.3 1.1 70.2 8.0 200.4 3.4 4.3 ○ 43 ○ ◎ 11.8 0.9 88.5 8.5 205.4 3.0 2.6 ○ 44 ○ ◎ 12.4 1.1 74.3 8.6 207.3 2.8 2.5 ○ 45 ○ ◎ 10.6 1.0 74.3 8.6 203.4 3.1 2.7 ○ 46 ○ ◎ 10.1 0.7 69.8 8.8 209.2 2.9 2.4 ○ 47 ○ ◎ 10.5 1.0 71.2 8.7 203.8 3.0 2.4 ○ 48 ○ ◎ 15.3 1.2 69.2 8.6 178.9 4.8 2.6 ○ 49 ○ ○ 22.4 1.2 71.2 8.0 205.2 3.2 4.2 ○ 50 ○ ◎ 10.2 1.0 75.1 8.7 213.4 3.3 2.5 ○
表5 细线 种类 成分组成(重量ppm ) Mn Be B Ca Sr Y La Ce Nd Dy In TlAμ杂质比较例1 0.5 - - - - - - - - - - -剩余量2 20 - - - - - - - - - - -剩余量3 45 - - - - - - - - - - -剩余量4 130 - - - - - - - - - - -剩余量5 200 - - - - - - - - - - -剩余量6 3100 - - - - - - - - - - -剩余量7 5000 - - - - - - - - - - -剩余量8 70 0.3 0.3 - - - - - - - - -剩余量9 70 - - 0.2 - 0.2 - 0.2 - - - -剩余量10 70 - - - 0.2 - 0.2 - 0.2 0.2 - -剩余量11 70 - - - - - - - - - 15 15剩余量12 70 25 - - - - - - - - - -剩余量13 70 - 27 - - - - - - - - -剩余量14 70 - - 33 - - - - - - - -剩余量15 70 - - - - 35 - - - - - -剩余量16 70 - - - - - - - 35 - - -剩余量17 70 - - 20 10 - 10 - - - - -剩余量18 70 - - - - 10 - 20 - 10 - -剩余量19 70 20 - 5 5 5 5 5 5 5 - -剩余量20 70 25 - 10 10 10 10 10 - - - -剩余量21 70 - - 5 5 5 5 - - - 55 -剩余量22 70 - - 5 - - - 5 5 5 58 -剩余量23 70 - - 5 5 5 5 - - - - 55剩余量24 70 20 20 7 7 7 7 7 7 7 30 30剩余量
表6 细线 种类 小球 形状 拉拔过 程中断 线程度 引线 曲度 (μm) 引线强 度差 (gf) 剪切 强度 (gf) 抗拉 强度 (gf) 拱曲高度 (μm) 封装 后引 线拉 移 (%) 化合 物的 腐蚀 度 平均值 б本发明金合金细线 1 ○ ○ 45.4 3.9 73.5 5.1 166.3 7.4 5.2 × 2 ○ ○ 40.1 3.8 74.4 5.4 166.8 6.4 4.6 △ 3 ○ ○ 38.0 3.5 72.3 5.6 169.4 6.0 4.7 △ 4 △ ○ 33.5 3.6 71.1 6.1 178.3 5.5 4.6 ○ 5 △ ○ 32.1 3.6 72.5 6.2 177.2 5.5 4.4 ○ 6 △ ○ 30.5 3.5 57.5 6.8 180.5 5.5 4.2 ○ 7 △ ○ 30.0 3.3 51.0 7.0 180.4 6.0 4.0 ○ 8 ○ ○ 33.1 3.3 75.0 5.9 173.0 5.6 4.4 ○ 9 ○ ○ 32.8 2.0 74.3 6.0 172.8 5.7 4.2 ○ 10 ○ ○ 33.6 2.0 73.6 5.9 174.0 5.5 4.3 ○ 11 ○ ○ 33.9 2.6 72.8 6.3 196.4 9.0 4.5 ○ 12 △ ◎ 29.0 2.3 56.4 6.4 180.0 6.0 5.0 ○ 13 △ ◎ 30.1 2.5 59.2 6.6 183.4 5.8 4.4 ○ 14 △ ○ 25.4 0.8 50.8 8.1 181.6 5.6 3.1 ○ 15 △ ○ 28.2 0.8 52.4 7.7 182.1 5.4 3.3 ○ 16 △ ○ 25.6 0.9 53.5 7.8 183.1 5.5 3.4 ○ 17 △ ○ 23.8 0.7 51.5 8.2 182.3 5.3 3.4 ○ 18 △ ○ 23.2 0.7 55.1 8.1 183.5 5.2 3.3 ○ 19 △ ◎ 13.2 0.9 63.5 8.5 184.5 5.5 2.8 ○ 20 △ ◎ 12.1 0.6 49.0 9.0 184.8 5.6 2.4 ○ 21 △ ○ 22.2 1.2 52.0 8.2 215.6 3.0 3.4 ○ 22 △ ○ 21.9 1.0 50.9 8.4 221.4 3.0 3.3 ○ 23 △ ○ 20.9 1.1 51.5 8.5 218.3 3.3 3.2 ○ 24 △ ◎ 9.9 0.7 46.5 9.5 231.4 5.0 2.0 ○
权利要求书
按照条约第19条的修改
1.一种在高温领域中使用的树脂封装半导体元件的金合金细线,该半导体元件所用金合金细线的特征是:该金合金细线的成分为:
Mn:50-100重量ppm
其余成分:金和不可避免的杂质,由上述成分构成耐腐蚀优良的半导体元件用金合金细线。
2.(删除)。
3.权利要求1所述的金合金细线,其特征为:再加入含有从Be和B的元素组中选定的至少1种元素,其总含量1-20重量ppm的范围内。
4.权利要求1所述的金合金细线,其特征为:再加入含有从Ca,Sr和含有Y的稀土类元素的元素组中选定的至少1种元素,其总含量在1-30重量ppm的范围内。
5.权利要求2所述金合金细线,其特征为:再加入还含有从Ca,Sr和含有Y的稀土类元素的元素组中选定的至少1种元素,其总含量在1-30重量ppm的范围内。
6.权利要求3所述的金合金细线,其特征为:再加入还含有从In和Tl的元素组中选定的至少1种元素,其总含量在1-50重量ppm的范围内。
7.权利要求4所述的金合金细线,其特征为:再加入还含有从In和Tl的元素组中选定的至少1种元素,其总含量在1-50重量ppm的范围内。