压控振荡器、以及使用其的锁相环电路和无线通信设备.pdf

上传人:32 文档编号:826272 上传时间:2018-03-14 格式:PDF 页数:31 大小:939.25KB
返回 下载 相关 举报
摘要
申请专利号:

CN200980000389.7

申请日:

2009.03.17

公开号:

CN101682293A

公开日:

2010.03.24

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):H03B 5/08申请日:20090317|||公开

IPC分类号:

H03B5/08; H03B5/12

主分类号:

H03B5/08

申请人:

松下电器产业株式会社

发明人:

築泽贵行

地址:

日本大阪府

优先权:

2008.3.28 JP 086655/2008

专利代理机构:

北京市柳沈律师事务所

代理人:

陆 军

PDF下载: PDF下载
内容摘要

包括第1可变电容电路120和第2可变电容电路130、以及第1电容开关电路140和第2电容开关电路150;第1可变电容电路120被固定地施加控制电位Vt,第1电容开关电路140被固定地施加控制信号Fsel2,第2电容开关电路150被固定地施加控制信号Fsel3;第2可变电容电路130,在控制信号Fsel2及Fsel3都为低电平的情况下被施加控制信号Fsel1,在此外的情况下被施加控制电位Vt;通过该控制,高频的可变范围被分离为以上方频率为基准的可变范围和以下方频率为基准的可变范围这两个部分,从而能够不使高频的可变范围变窄而抑制频率灵敏度。

权利要求书

1.  一种压控振荡器,其特征在于,包括:
电感电路,具有电感器;
多个可变电容电路,分别具有可变电容元件;
至少1个电容开关电路;
负电阻电路;以及
频率灵敏度控制单元,对所述多个可变电容电路及所述至少1个电容开关电路施加控制电位及控制信号,
所述电感电路、所述多个可变电容电路、所述至少1个电容开关电路及所述负电阻电路并联连接,
所述频率灵敏度控制单元,将用于对振荡频率进行反馈控制的控制电位固定地施加到所述多个可变电容电路中的至少1个;并基于对所述至少1个电容开关电路所施加的至少1个控制信号,来切换所述控制电位及控制信号中的任1个,以施加到所述多个可变电容电路中的其他的至少1个。

2.
  如权利要求1所述的压控振荡器,其特征在于,所述频率灵敏度控制单元,在所述至少1个电容开关电路全都被施加不能使开关接通的低电平的控制信号的情况下,对所述多个可变电容电路中的其他的至少1个施加所述控制信号。

3.
  如权利要求1所述的压控振荡器,其特征在于,所述频率灵敏度控制单元,在所述至少1个电容开关电路全都被施加能使开关接通的高电平的控制信号的情况下,对所有所述多个可变电容电路施加所述控制电位。

4.
  如权利要求2所述的压控振荡器,其特征在于,对所述多个可变电容电路中的其他的至少1个施加的所述控制信号,是低电平和高电平这两种电位。

5.
  如权利要求1所述的压控振荡器,其特征在于,所述多个可变电容电路的可变电容元件中的至少1个由反转型金属氧化物半导体或积累型金属氧化物半导体构成。

6.
  一种具备权利要求1所述的压控振荡器的锁相环电路。

7.
  一种具备权利要求1所述的压控振荡器的无线通信设备。

说明书

压控振荡器、以及使用其的锁相环电路和无线通信设备
技术领域
本发明涉及一种用于无线通信设备的本振信号(Local oscillatorsignals)的生成等的压控振荡器、以及使用其的锁相环(以下称PLL)电路和无线通信设备。
背景技术
压控振荡器作为一种生成无线通信设备的本振信号的手段,得到了广泛的应用。在该压控振荡器被制造成高频IC的场合,为了消除半导体制造工艺中所产生的构成元件的偏差,需要扩大振荡频率的范围。另外,近年来为了对应使用不同频带的通信系统,需要能够在较广的频率范围调整压控振荡器的振荡频率。
图13是表示扩大了振荡频率的范围的现有技术(例如,专利文献1)的压控振荡器1d的结构例的图。在图13中,现有技术的压控振荡器1d包括:由电感器3构成的电感电路、由可变电容元件4构成的第1可变电容电路、由可变电容元件5构成的第2可变电容电路、由可变电容元件6构成的第3可变电容电路、由晶体管9构成的负电阻电路、偏置电路16、及开关54和55。电感电路、第1~第3可变电容电路及负电阻电路相互并联连接而构成振荡电路。
该现有技术的压控振荡器1d,在并联设置的2个可变电容元件5和6之中,至少一方的电容值控制端子的连接对象由开关54或55进行切换。由此,根据切换到的连接对象而覆盖不同的振荡频率范围,从而得到将频率灵敏度抑制得较低的多个种类的振荡频率特性,其中,频率灵敏度表示振荡频率相对于频率控制电位的变化率。
然而,上述现有技术的压控振荡器1d,为了覆盖较广的振荡频率范围而将开关54及55进行切换来控制的对象全都是可变电容元件5及6。因此,存在以下问题。
第1,在将可变电容元件作为固定电容来使用的情况下,即便是使施加到可变电容元件5及6的电压成为0V或Vdd,也会因共振侧的振荡振幅而使可变电容元件的两端电位差到达电容产生变化的区域。因此,若电源电压、控制电位中加进了噪音,则会出现相位噪音特性恶化这样的问题。因而,最好是尽可能地减少作为固定电容来使用的可变电容元件的数目。
第2,如图14所示那样,使用了金属氧化物半导体(以下称MOS)晶体管的可变电容元件(图中的虚线)与电容开关电路(图中的实线)相比,电容的变化比较小。因此,全部使用了可变电容元件的压控振荡器与包含有电容开关电路的压控振荡器相比,存在频率可变范围变窄这样的问题。因而,较为理想的是有效地使用电容开关电路。
【专利文献1】日本特开2007-104152号公报
发明内容
故而,本发明的目的在于,提供一种既能抑制相位噪音特性的恶化,又能在保持较低的频率灵敏度的情况下,在较广的范围对振荡频率进行可变控制的压控振荡器、以及使用了该压控振荡器的PLL电路和无线通信设备。
本发明针对压控振荡器、以及使用了该压控振荡器的PLL电路和无线通信设备。为了达到上述目的,本发明的压控振荡器包括:具有电感器的电感电路、分别具有可变电容元件的多个可变电容电路、至少1个电容开关电路、负电阻电路、以及对多个可变电容电路和至少1个电容开关电路施加控制电位及控制信号的频率灵敏度控制单元。该电感电路、多个可变电容电路、至少1个电容开关电路及负电阻电路并联连接。频率灵敏度控制单元,将用于对振荡频率进行反馈控制的控制电位固定地施加到多个可变电容电路中的至少1个,并基于对至少1个电容开关电路所施加的至少1个控制信号,来切换控制电位及控制信号中的任1个,以施加到多个可变电容电路中的其他的至少1个。
较佳的是,在该结构中,频率灵敏度控制单元,在至少1个电容开关电路全都被施加不能使开关接通的低电平的控制信号的情况下,对多个可变电容电路中的其他的至少1个施加控制信号。另外,较佳的是,频率灵敏度控制单元,在至少1个电容开关电路全都被施加能使开关接通的高电平的控制信号的情况下,对所有多个可变电容电路施加控制电位。其中,对多个可变电容电路中的其他至少1个所施加的控制信号,是低电平和高电平这两种电位。并且,较佳的是,n个可变电容电路的可变电容元件中的至少1个由反转型(Inversion)MOS或积累(Accumulation)型MOS构成。
发明效果:根据本发明,既能抑制相位噪音特性的恶化,又能在保持较低的频率灵敏度的情况下,在较广的范围对振荡频率进行可变控制。
附图说明
图1是表示本发明的第一实施方式所涉及的压控振荡器101的结构例的图。
图2A是说明现有技术的压控振荡器的频率特性的图。
图2B是说明现有技术的压控振荡器的频率灵敏度特性的图。
图3A是说明第一实施方式的压控振荡器101的频率特性的图。
图3B是说明第一实施方式的压控振荡器101的频率灵敏度特性的图。
图4是表示第一实施方式中的频率灵敏度控制单元180的详细结构的图。
图5是表示本发明的第二实施方式所涉及的压控振荡器102的结构例的图。
图6A是说明第二实施方式的压控振荡器102的频率特性的图。
图6B是说明第二实施方式的压控振荡器102的频率灵敏度特性的图。
图7是表示第二实施方式中的频率灵敏度控制单元180的详细结构的图。
图8A是表示本发明的第三实施方式所涉及的压控振荡器103的结构的图。
图8B是表示图8A的频率灵敏度控制单元180内部的详细连接的图。
图8C是表示图8A的频率灵敏度控制单元180内部的其他详细连接的图。
图9A是说明第三实施方式的压控振荡器103的频率特性的图。
图9B是说明第三实施方式的压控振荡器103的频率灵敏度特性的图。
图10A是说明能够用于本发明的压控振荡器的其他可变电容电路的图。
图10B是说明能够用于本发明的压控振荡器的其他可变电容电路的图。
图10C是说明能够用于本发明的压控振荡器的其他可变电容电路的图。
图10D是说明能够用于本发明的压控振荡器的其他可变电容电路的图。
图10E是说明能够用于本发明的压控振荡器的其他电容开关电路的图。
图11是表示使用了本发明的压控振荡器的PLL电路300的结构的图。
图12是表示使用了图11的PLL电路的无线通信设备的结构的图。
图13是表示现有技术的压控振荡器1d的结构的图。
图14是用于说明现有技术的压控振荡器1d所存在的问题的图。
附图标记说明
101~103、303压控振荡器
110电感电路
111、112电感器
120、130、135可变电容电路
121、122、131、132、136、137可变电容元件
140、150电容开关电路
141、142、151、152电容
143、153、161、162晶体管
160负电阻电路
170电流源
180频率灵敏度控制单元
300PLL电路
301相位比较器
302环路滤波器
304分频器
400无线通信设备
401天线
402功率放大器
403调制器
404开关
405低噪音放大器
406解调器
具体实施方式
(第一实施方式)
图1是表示本发明的第一实施方式所涉及的压控振荡器101的结构例的图。其中省略了偏置电路(Biasing circuit)等。在图1中,第一实施方式的压控振荡器101包括:电感电路110、第1可变电容电路120、第2可变电容电路130、第1电容开关电路140、第2电容开关电路150、负电阻电路160、电流源170、及频率灵敏度控制单元180。电感电路110、第1可变电容电路120、第2可变电容电路130、第1电容开关电路140、第2电容开关电路150及负电阻电路160相互并联连接而构成振荡电路。
电感电路110由串联连接着的电感器111和112构成,电源电位Vdd被施加到电感器111与电感器112之间的连接点。负电阻电路160由2个晶体管161和162相互交叉耦合(Cross coupling)而构成。MOS晶体管或双极型晶体管适合用作该晶体管161和162。
第1可变电容电路120由串联连接着的可变电容元件121和122构成,用于对振荡频率进行反馈控制的控制电位Vt被施加到可变电容元件121与可变电容元件122之间的连接点A。第2可变电容电路130由串联连接着的可变电容元件131和132构成,控制电位Vt或控制信号Fsel1经由频率灵敏度控制单元180被施加到可变电容元件131与可变电容元件132之间的连接点B。可变电容元件121、122、131及132是利用了CMOS(互补金属氧化物半导体)工艺中所使用的栅电容的可变电容元件。
第1电容开关电路140由MOS晶体管143、MOS晶体管143的漏极及源极上分别连接的电容141及142构成,MOS晶体管143的栅极上被施加了控制信号Fsel2。第2电容开关电路150由MOS晶体管153、MOS晶体管153的漏极及源极上分别连接的电容151及152构成,MOS晶体管153的栅极上被施加了控制信号Fsel3。第1及第2电容开关电路140及150构成频带切换电路。
下面,进一步用图2A~图9B来说明如上所述那样构成的第一实施方式所涉及的压控振荡器101的具体动作的一例。
首先,考虑对第1可变电容电路120的连接点A和第2可变电容电路130的连接点B的两方都固定地施加控制电位Vt的情况。此时,压控振荡器101的频率可变范围,根据将施加到第1电容开关电路140的控制信号Fsel2的高电平(逻辑值1)·低电平(逻辑值0)与施加到第2电容开关电路150的控制信号Fsel3的高电平(逻辑值1)·低电平(逻辑值0)进行组合而得到的4个频率范围a(逻辑值00)、b(逻辑值01)、c(逻辑值10)及d(逻辑值11)来决定(图2A)。适合用电源电压(=Vdd)和接地电压(=0V)来作为该高电平和低电平。
然而,在此情况下,会出现压控振荡器101的频率灵敏度在低频范围灵敏度变低,而在高频范围灵敏度变高这样的技术问题(图2B)。也就是说,压控振荡器101的振荡频率(f),可用电感电路110的电感值L、可变电容电路120及130的可变电容值Cv、电容开关电路140及150的电容、负电阻电路160等所产生的寄生电容(Parrasiticcapacity)的固定电容值Cc,由下式来表示。
f=12π×L×(CV+CC)]]>
在此,电感值L为一定值。此外,固定电容值Cc在4个频率范围a~d中各自不同,在振荡频率最高的频率范围a为最小,在振荡频率最低的频率范围d为最大。另外,若控制电位Vt为一定,则即使频率范围a~d发生变化,可变电容值Cv也全都为相同的值。因此,上式中,在振荡频率(f)最低的频率范围d,可变电容值Cv与总电容值(Cc+Cv)之间的电容值比率Cv/(Cc+Cv)成为最小,而使频率灵敏度降低。另一方面,在振荡频率(f)最高的频率范围a,电容值比率Cv/(Cc+Cv)成为最大,而使频率灵敏度升高。
于是,本发明通过频率灵敏度控制单元180,在第1及第2电容开关电路140及150所选择的频率范围较高时,将施加到第2可变电容电路130的连接点B的控制电位Vt切换为控制信号Fsel1,即,使第2可变电容电路130作为固定电容电路来发挥作用,从而将第2可变电容电路130作为频带切换电路来使用。
在控制信号Fsel2及Fsel3都成为低电平的高频范围a的情况下,频率灵敏度控制单元180将控制信号Fsel1施加到第2可变电容电路130的连接点B,以进行高电平与低电平的切换。通过该控制,高频的可变范围a被分离为以上方频率为基准的可变范围ah(逻辑值000)和以下方频率为基准的可变范围al(逻辑值001)的两个部分(图3A)。由此,能够不使高频的可变范围a变窄而抑制频率灵敏度(图3B)。用于实现该实施例的频率灵敏度控制单元180的具体电路例如图4所示。其中,图3A及图4中标记的“*”表示逻辑值可为1或0中任一。
(第二实施方式)
图5是表示本发明的第二实施方式所涉及的压控振荡器102的结构例的图。其中省略了偏置电路等。在图5中,第二实施方式的压控振荡器102,是在上述第一实施方式的压控振荡器101中增加了第3可变电容电路135而构成的。
第3可变电容电路135由串联连接着的可变电容元件136及137构成,控制电位Vt或控制信号Fsel1经由频率灵敏度控制单元180被施加到可变电容元件136与可变电容元件137之间的连接点C。该第二实施方式通过频率灵敏度控制单元180,将控制电位Vt或控制信号Fsel1施加到第3可变电容电路135的连接点C,从而使第3可变电容电路135不仅作为可变电容电路,而且还可以作为频带切换电路来使用。
在控制信号Fsel2及Fsel3都成为低电平的高频范围a的情况下,频率灵敏度控制单元180将控制信号Fsel1施加到第2可变电容电路130的连接点B,以进行高电平与低电平的切换。此时,第3可变电容电路135的连接点C被施加控制信号Fsel1。另外,在控制信号Fsel2成为高电平且Fsel3成为低电平的高频范围b的情况下,频率灵敏度控制单元180将控制信号Fsel1施加到第3可变电容电路135的连接点C,以进行高电平与低电平的切换。此时,第2可变电容电路130的连接点B被施加控制电位Vt。通过该控制,频率可变范围a被分离为以上方频率为基准的可变范围ah(逻辑值000)和以下方频率为基准的可变范围al(逻辑值001)的两个部分,并且频率可变范围b被分离为以上方频率为基准的可变范围bh(逻辑值010)和以下方频率为基准的可变范围bl(逻辑值011)的两个部分(图6A)。由此,能够不使高频的可变范围a及b变窄而抑制频率灵敏度(图6B)。用于实现该实施例的频率灵敏度控制单元180的具体电路例如图7所示。其中,图6A及图7中标记的“*”表示逻辑值可为1或0中任一。
(第三实施方式)
在此,图1和图5所示的压控振荡器101和102的结构只不过是一个例子而已。本发明的压控振荡器只要是包括两个以上的可变电容电路和至少1个电容开关电路的结构即可,例如,若采用图8A~图8C所示的结构,则还能实现以下控制。
在使用1个压控振荡器来输出不同频率(高频带、低频带)的信号的场合,通常是将从压控振荡器输出的高频带信号经由l/n分频器而变换成低频带信号。此时,较佳的是使从l/n分频器输出的低频带信号的频率灵敏度与从压控振荡器输出的高频带信号的频率灵敏度相一致。为此,对于低频带信号,有必要在其从压控振荡器输出的时刻,便使频率灵敏度成为高频带信号的n倍。
n=2时的具体的压控振荡器103的结构例如图8A所示,频率灵敏度控制单元180内部的具体连接如图8B及图8C所示。如这些图所示那样,将7个可变电容电路mosv0~mosv6与1个电容开关电路sw组合,便可将高频带分为6个频率范围,将低频带分为3个频率范围,并使高频带的频率灵敏度成为低频带的约1/2(图9A及图9B)。
另外,本发明的压控振荡器的可变电容电路除了图1等所示的结构之外,还可以采用使用了反转(Inversion)型、积累(Accuumulation)型的MOS晶体管、C耦合的结构(图10A~图10D)。此外,本发明的压控振荡器的电容开关电路也是除了图1等所示的结构之外,还可以采用图10E所示的结构。
(使用了压控振荡器的结构例)
图11是表示使用了本发明的第一~第三实施方式所涉及的压控振荡器101~103的PLL电路300的结构例的图。在图11中,PLL电路300包括相位比较器301、环路滤波器302、本发明的压控振荡器303、及分频器304。
相位比较器301,将所输入的参考信号与用分频器304将压控振荡器303的输出信号分频后的信号进行比较。从相位比较器301输出的信号,经由环路滤波器302,作为控制电位Vt输入到压控振荡器303。压控振荡器303基于控制电位Vt来输出所期频率的信号。通过该结构,PLL电路300将所期的频率固定(锁定)。其中,可用混频器来代替分频器304,也可以将分频器304与混频器并用。
此外,图12是表示使用了上述PLL电路300的无线通信设备400的结构例的图。在图12中,无线通信设备400包括天线401、功率放大器402、调制器403、开关404、低噪音放大器405、解调器406及PLL电路300。
在发送无线信号时,调制器403将从PLL电路300输出的所期的高频信号用基带调制信号进行调制后输出。从调制器403输出的高频调制信号,由功率放大器402放大,并经由开关404而从天线401发射出去。在接收无线信号时,从天线401接收到的高频调制信号经由开关404被输入到低噪音放大器405,经放大后被输入到解调器406。解调器406通过从PLL电路300输出的高频信号,将所输入的高频调制信号解调为基带调制信号。另外,也可以在发送侧及接收侧分别使用PLL电路300。此外,PLL电路300也可以兼具调制器的功能。
如上所述,根据本发明的压控振荡器、以及使用了该压控振荡器的PLL电路和无线通信设备,既能抑制相位噪音特性的恶化,又能在保持较低的频率灵敏度的情况下,在较广的范围对振荡频率进行可变控制。
工业实用性
本发明的压控振荡器,能够应用于无线通信设备的本振信号的生成等,特别是有效于既要抑制相位噪音特性的恶化,又要在保持较低的频率灵敏度的情况下,在较广的范围对振荡频率进行可变控制的场合等。
权利要求书(按照条约第19条的修改)
1一种压控振荡器,其特征在于,包括:
电感电路,具有电感器;
多个可变电容电路,分别具有可变电容元件;
至少1个电容开关电路;
负电阻电路;以及
频率灵敏度控制单元,对所述多个可变电容电路及所述至少1个电容开关电路施加控制电位及控制信号,
所述电感电路、所述多个可变电容电路、所述至少1个电容开关电路及所述负电阻电路并联连接,
所述频率灵敏度控制单元,连接于所述多个可变电容电路中的差动信号的虚拟接地点,将用于对振荡频率进行反馈控制的控制电位固定地施加到所述多个可变电容电路中的至少1个;并基于对所述至少1个电容开关电路所施加的至少1个控制信号,来切换所述控制电位及控制信号中的任1个,以施加到所述多个可变电容电路中的其他的至少1个。
2.如权利要求1所述的压控振荡器,其特征在于,所述频率灵敏度控制单元,在所述至少1个电容开关电路全都被施加不能使开关接通的低电平的控制信号的情况下,对所述多个可变电容电路中的其他的至少1个施加所述控制信号。
3.如权利要求1所述的压控振荡器,其特征在于,所述频率灵敏度控制单元,在所述至少1个电容开关电路全都被施加能使开关接通的高电平的控制信号的情况下,对所有所述多个可变电容电路施加所述控制电位。
4.如权利要求2所述的压控振荡器,其特征在于,对所述多个可变电容电路中的其他的至少1个施加的所述控制信号,是低电平和高电平这两种电位。
5.如权利要求1所述的压控振荡器,其特征在于,所述多个可变电容电路的可变电容元件中的至少1个由反转型金属氧化物半导体或积累型金属氧化物半导体构成。
6.一种具备权利要求1所述的压控振荡器的锁相环电路。
7.一种具备权利要求1所述的压控振荡器的无线通信设备。

压控振荡器、以及使用其的锁相环电路和无线通信设备.pdf_第1页
第1页 / 共31页
压控振荡器、以及使用其的锁相环电路和无线通信设备.pdf_第2页
第2页 / 共31页
压控振荡器、以及使用其的锁相环电路和无线通信设备.pdf_第3页
第3页 / 共31页
点击查看更多>>
资源描述

《压控振荡器、以及使用其的锁相环电路和无线通信设备.pdf》由会员分享,可在线阅读,更多相关《压控振荡器、以及使用其的锁相环电路和无线通信设备.pdf(31页珍藏版)》请在专利查询网上搜索。

包括第1可变电容电路120和第2可变电容电路130、以及第1电容开关电路140和第2电容开关电路150;第1可变电容电路120被固定地施加控制电位Vt,第1电容开关电路140被固定地施加控制信号Fsel2,第2电容开关电路150被固定地施加控制信号Fsel3;第2可变电容电路130,在控制信号Fsel2及Fsel3都为低电平的情况下被施加控制信号Fsel1,在此外的情况下被施加控制电位Vt;通过该。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电子电路


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1