技术领域
本发明涉及电生理学,且更具体涉及评估心脏的电激动模式。
背景技术
心脏的跳动受控于窦房结、位于上静脉腔入口附近右心房内的一组传导细 胞的控制。由窦房结产生的去极化信号来激动房室结。房室结简要地延迟去极 化信号的传播,在去极化信号传递到心脏的心室之前允许心房进行引流。两心 室的协调收缩驱动血液流过患者躯干。在特定情况下,去极化信号从房室结到 左右心室的传导可被中断或减慢。这可致使左右心室收缩不同步,并最终致使 心力衰竭或死亡。
心脏再同步治疗(CRT)可通过向一个或两个心室或心房提供起搏治疗, 例如通过提供起搏来鼓励左心室或右心室的较早激动来纠正电不同步的症状。 通过起搏心室的收缩,心室可被控制,从而使心室收缩同步。经受CRT的某 些患者经历了改进的射血分数、增加锻炼能力、并改进健康感觉。
向患者提供CRT可包括在植入心律设备之前确定患者是否会受益于 CRT、确定放置一个或多个心室起搏引线的最佳部位、以及对设备参数编程, 诸如多极右心室或左心室引线上电极的选择、以及递送到电极的起搏脉冲的时 序的选择,诸如房室(A-V)和心室内(V-V)延迟。用于这些目的的电不同 步的评定通常涉及临床地评定QRS持续期间。尽管通常对具有宽QRS期间的 患者推荐CRT,但据报道在窄QRS心力衰竭患者中通过CRT有血流动力学改 善。因此,基于目前的电不同步评估技术,可能受益于CRT的某些患者可能 不被处方进行CRT。
发明内容
一般而言,本公开涉及用于评估患者心脏的电不同步的技术。电不同步的 评估可便于CRT的患者选择。电不同步的评估还便于放置可植入引线(例如 一根或多根左心室引线的)、以及在植入手术期间对CRT的设备参数进行编 程、或者随访期间对CRT的设备参数进行重新编程。
一组电极可围绕患者的躯干空间地分布。各电极可各自感测体表电势信 号,更具体地是躯干表面电势信号,该信号指示在信号传播通过患者躯干后患 者心脏的去极化信号。由于各电极的空间分布,由各电极记录的躯干表面电势 信号可指示心脏的不同空间区域的去极化。
在某些示例中,对于每个躯干表面电势信号,即对该组的每个电极来确定 激动时间。可分析或呈现这些激动时间的离差或顺序以提供患者心脏电不同步 的各种指示。例如,可将示出激动时间的躯干表面的等时线或其它激动图呈现 给用户以示出心脏的电不同步。在某些示例中,可确定指示激动时间的时间和 /或空间分布的一个或多个统计指标的值。基于躯干表面激动时间所确定的不同 步的这样的图和指标、或其它指示,可向用户指示心脏的电不同步,并帮助为 CRT进行患者评估、以及对患者配置CRT。
在某些示例中,可将全部电极或电极的子集的位置、以及因此在此处感测 躯干表面电势信号的位置投影到包括模型心脏的模型躯干的表面上。可求解心 电图的逆问题以基于从患者感测的躯干表面电势信号确定模型心脏的各区域 的电激动时间。以此方式,可估算患者心脏的电活动。可基于在患者躯干的表 面上感测到的躯干表面电势信号生成模型心脏的表面的各等时线或其它激动 时间图。进一步,可确定指示模型心脏上的激动时间的时间和/或空间分布的一 个或多个指标的值。电不同步的这些测量和表示可用于评估患者对CRT的适 合性、在植入期间调整CRT引线的定位、并确定应该使用一根或多根多级引 线中哪些电极递送CRT、以及起搏脉冲的时序,诸如CRT递送到患者的房室 (A-V)和心室内(V-V)延迟。
例如,可基于在本征传导期间或CRT期间收集的数据来确定或生成不同 步的一个或多个指示。可比较本征传导期间和CRT期间的不同步程度,例如 以确定患者是否适合CRT。类似地,可基于在具有不同引线位置、不同电极配 置、和/或例如A-V或V-V延迟的不同CRT参数的CRT期间所收集的数据来 确定或生成不同步的一个或多个指示。可评估归于这些不同引线位置、不同电 极配置、和/或不同CRT参数的不同步的变化。
在一示例中,一种方法,包括用处理单元从分布在患者躯干上多个电极中 的每个电极处接收躯干表面电势信号。该方法还包括对于多个电极的至少一个 子集,用该处理单元基于从电极感测到的信号来计算躯干表面激动时间;以及 通过该处理单元,经由显示器向用户呈现躯干表面激动时间的不同步程度的指 示。
在另一示例中,一种系统,包括分布在患者躯干上的多个电极,和处理单 元。该处理单元配置成从多个电极中的每个电极处接收躯干表面电势信号,并 对多个电极中的至少一个子集基于从电极感测到的信号计算躯干表面激动时 间,并经由显示器向用户呈现躯干表面激动时间的不同步程度的指示。
在另一示例中,计算机可读存储介质包括指令,这些指令在执行时使处理 器从分布在患者躯干上多个电极中的每个电极处接收躯干电势信号,并对于多 个电极的至少一个子集基于从电极感测到的信号计算躯干表面激动时间;以及 经由显示器向用户呈现躯干表面激动时间的不同步程度的指示。
在以下的附图和说明中阐述本公开的一个或多个方面的细节。从说明书和 附图以及权利要求书中可显示出其它特征、目标和优点。
附图说明
图1是示出可用于向患者的心脏提供CRT的示例系统的概念示意图。
图2是示出两次健康心脏跳动的示例ECG轨迹的时序图。
图3是示出患左束支阻滞的患者的示例ECG轨迹的时序图。
图4A和4B是示出用于测量躯干表面电势的示例系统的概念图。
图5是示出用于测量躯干表面电势的示例系统的框图。
图6是典型的左束支阻滞本征节律和CRT起搏的躯干表面激动时间的一 系列模拟的等时线图。
图7是示出系统的示例操作以基于躯干表面激动时间提供患者的心脏电 不同步的指示的流程图。
图8是示出基于经由躯干表面激动时间对患者的心脏电不同步评定来处 方和配置CRT的示例技术的流程图。
图9是使用来自同一患者的体表ECG数据用两个不同的心脏-躯干模型构 造的心脏激动时间的一系列等时线图。
图10是示出经由心脏激动时间来测量患者的心脏电不同步的系统的示例 操作的流程图。
图11是示出基于经由心脏激动时间的对于患者的心脏电不同步评定来配 置CRT的示例技术的流程图。
具体实施方式
图1是示出可用于向患者1的心脏10提供CRT的示例系统的概念图。该 系统可包括可植入医疗设备(IMD)100。IMD100可以是CRT起搏器或CRT 除颤器。IMD100可装备有一根或多根引线;引线102、104和106,这些引线 插入心脏10的左心室12、右心室14、或右心房16内或表面上。引线102、104 和106可装备有一个或多个电极108、110和112。
心脏10可经受电不同步。当启动心室12和14的收缩的去极化信号未以 协调方式到达心室时可发生电不同步,并导致心脏10的低效泵血动作。患者1 可经受心力衰竭的症状。电不同步可能是由心脏10的电系统的损坏造成的, 例如束支阻滞或心脏10肌束的损伤。可选的传导路径可形成于心脏10内,但 这些路径可减缓电去极化信号的进度并导致心室12和14的不同步收缩。
IMD100可向患者1的心脏10提供CRT刺激。IMD100示出为配置成向 心脏10的右心房16、右心室14、和左心室12递送刺激。在其它示例中,IMD100 可配置成取决于患者1的情况向心脏10的其它部分递送刺激。IMD可与外部 编程器(未示出)交互以调节由IMD100递送的治疗的操作特性,诸如A V和 V-V延迟。在某些示例中,IMD100还可配置成通过在一根或多根引线102、 104和106上的电极来感测心脏10的电活动。
如图1所示,引线102、104、106可延伸到患者1的心脏10内以向心脏 10递送电刺激并使心室12和14的收缩同步。右心室引线106延伸穿过一个或 多个静脉(未示出)、上腔静脉(未示出)、以及右心房16、并进入右心室 14。左心室冠状窦引线102延伸穿过一个或多个静脉、腔静脉、右心房16、并 进入冠状窦(未示出)、到达与心脏10的左心室12的自由壁相邻的区域。右 心房引线104延伸穿过一个或多个静脉和静脉腔、并进入心脏10的右心房16。
在其它配置中,取决于为患者1提供的治疗的要求,IMD100可装备有更 多或更少的引线。例如,IMD100可装备有延伸到心脏10的更多或更少腔室的 引线。在某些示例中,IMD100可装备有延伸到心脏的公共腔室的多根引线, 例如延伸到左心室12的多根引线。IMD100还可装备有通过提供通路到心脏组 织的其它方式而放置在心脏上的一根或多跟引线,其它方式诸如外科心外膜引 线放置或其它心包通路方法。在某些示例中,IMD100可装备有被心脏内地放 置在心脏上的左心室引线。此外,尽管在图1中示出为植入在患者1的右侧上, 但在其它示例中,IMD100可植入在患者胸肌区域的左侧上、或在患者的腹部 内。
电极108、110和112可附连到心脏10的各部分以提供电刺激或感测心脏 10的电去极化和复极化信号。右心室14内的电极108可经由基于螺钉的机构 固定到心脏10的壁。电极110可包括安装在同一引线上的多个电极,允许引 线102传送治疗冲击以及由电极110检测到的电感测数据。电极110和112可 经由胶粘、倒钩、或其它永久性或半永久性附连机构附连到心脏10的表面。
图2是示出与机械心脏循环的某些时段或阶段结合的示例ECG轨迹200 的时序图。图2的图示和相关描述在该意义上被总结为,电和机械事件的时序 之间的关系并不一定对于所有的对象或对任何给定对象的所有时间都是如所 述那样。
ECG轨迹200示出两个示例健康心脏循环的电信号。健康心脏的电信号 包括一系列5个特征波:P-波、Q-波、R-波、S-波、和T-波。这些波中的每个 以及它们之间的间隔,对应于健康心脏起作用时的离散事件。
一般而言,在从P-波的峰值到随后R-波峰值伸展的时段202期间的某点 处,发生心房收缩,这是驱动血液从心房进入心室的心房的收缩。从R-波的峰 值到主动脉瓣膜打开的时段204,通常标志着等容收缩时段。房室和主动脉瓣 膜关闭,防止血液流动并导致心室内但不是主动脉内的压力增加。由主动脉瓣 膜打开和关闭所界定的时段206,通常是心脏循环期间发生射血的时间。在射 血时段206期间,心室收缩和血液排空驱动血液进入心血管系统。当心室的收 缩完成时,心血管系统内血液的压力关闭该主动脉瓣膜。由主动脉瓣膜的关闭 和房室瓣膜的打开所界定的时段208是心室的等容舒张。时段210和212统称 为晚期心脏舒张,其中整个心脏舒张且心房充满血液。时段210对应于血液的 快速流入,而时段212对应于心休息期,是再次发生心房收缩202之前较慢的 血液流入心房的时段。
P-波标记心房刺激和心脏循环的开始。心房在该刺激下收缩,迫使血液进 入心室。PR段标记当去极化信号从房室结行进到浦肯野纤维时的延迟。Q-波 将室间隔膜的去极化标记为心室去极化的初始部分。R-波跟随Q-波并表示心 室的去极化。S-波跟随R-波并表示心室的晚期去极化。T-波标记准备下一次心 脏跳动的心室的恢复和复极化。
从Q-波开始跨越到S-波结束的QRS波群表示心肌的电激动。左心室和右 心室的心室收缩响应于电激动。QRS波群通常持续80至120ms。QRS波群的 相对大的幅值是由于心室的大肌肉质量。可能在QRS波群的变形中展示出影 响心室收缩的同步性的问题。例如,心室收缩的电不同步性可加宽R-波或产生 两个R-波峰值,通常标以对应于每个心室的去极化的r-波和R’-波。S-波和T- 波可能是与健康心脏的ECG轨迹不同的形态。
图3是示出ECG轨迹300的时序图。ECG轨迹300示出患有左束支阻滞 的患者的电信号。该病况的标志是存在rS波群相对典型的QRS波群,但Q、 R和S波的其它变型形成可出现在患有左束支阻滞、右束支阻滞、或其它心 室传导病况的患者内的组合。rS波群的延长时段指示可能由于电不同步造成 的延长的心室收缩时间。
一般,左或右束支阻滞或心脏电不同步的诊断通常涉及测量QRS波群 的时段(或标记心室去极化的其它波群)。持续100ms或更久的QRS波群 可指示局部束支阻滞,且120ms或更久则指示完全束支阻滞。在图3中,初 始Q-波是不可见的,而是该轨迹显示对应于右心室的初始去极化的初始r-波、 且后跟标记在心脏信号行进穿过心脏的心肌而不是穿过束支之后到达左心室 之后两心室快速去极化的S-波。因为心肌比束支更慢地导电,所以整个波群在 较长时段内展开。
在没有束支阻滞的情况下-诸如图3中所示的病况-或其它病况,诊断可能 更具挑战。可能存在隐藏的不同步,而这种不同步在响应于CRT可能不易于 从典型的12-导联ECG检查中标识出。这些隐藏的不同步可能体现在由心脏产 生并在躯干表面上测得的电信号中,且通过可选的分析手段(诸如通过根据本 文所述技术在多个空间地分布的位置处确定心脏激动时间)可能是可诊断的。
图4A和4B是示出用于测量体表电势、且更具体是躯干表面电势的示例 系统的概念图。在图4A所示一示例中,包括一组电极404A-F(统称“电极404”) 和条带408的感测装置400A围绕患者1的躯干缠绕,使得电极围绕心脏10。 如图4A所示,电极404可围绕患者1的外周定位,包括患者1躯干的后表面、 侧表面、和前表面。在其它示例中,各电极404可定位在躯干的后表面、侧表 面和前表面中的任一个或多个上。各电极404可经由有线连接406电连接到处 理单元500。某些配置可使用无线连接、例如数据通道来将由电极404所感测 到的信号传送到处理单元500.
尽管在图4A的示例中,感测装置400A包括条带408,但在其它示例例 中,可采用例如带或粘结剂的各种机构中的任一种来辅助电极404的间隔和放 置。在某些示例中,条带408可包括弹性带、带条、或布。在某些示例中,各 电极404可分别放置在患者1的躯干上。
各电极404可围绕患者1的心脏10,并在信号传播穿过患者1的躯干之 后记录与心脏10的去极化和复极化相关联的电信号。每个电极404可被用在 单极构造中来感测反映心脏信号的躯干表面电势。处理单元500还可耦合到可 与用于单极感测的每个电极404组合使用的返回或无关电极(未示出)。在某 些示例中,可能有围绕患者1的躯干空间分布的12至16个电极404。其它配 置可具有更多或更少的电极404。
处理单元500可记录和分析由各电极404感测的躯干表面电势信号。如本 文所述,处理单元500可配置成向患者提供指示患者1的心脏10内电不同步 的输出。用户可进行诊断、处方CRT、定位例如引线的治疗设备、或基于所指 示的电不同步来调整或选择处理参数。
在某些示例中,处理单元500对躯干表面电势信号的分析可考虑电极404 在患者1躯干表面上的位置。在这样的示例中,处理单元500可通信地耦合到 成像设备501,该成像设备501可提供图像,该图像允许处理单元500确定每 个电极400在患者1的表面上的坐标位置。在成像系统501提供的图像中,各 电极404可以是可见的,或通过包括或去除某些材料或元件而做成透明的。
图4B示出可用于评估患者1的心脏10的电不同步的系统的示例配置。 该系统包括感测设备400B,该感测设备400B可包括背心410和电极404A-ZZ (总称为“电极404”)、处理单元500、以及成像系统501。处理单元500和成 像系统501可基本上如上文参照图4A描述的那样执行。如图4B所示,电极 404被分布患者1的躯干上,包括患者1躯干的前表面、侧表面、和后表面。
感测设备400B可包括织物背心410,具有电极404附连到织物。感测设 备400B可保持各电极404在患者1的躯干上的位置和间隔。感测设备400B 可被标记成辅助确定各电极404在患者1的躯干表面上的位置。在某些示例中, 可有使用感测设备400B围绕患者1的躯干分布的150至256个电极404,但 其它配置可具有更多或更少的电极404。
图5是示出用于测量躯干表面电势并提供电不同步的指示的示例系统的 框图。该示例系统可包括处理单元500和位于感测设备400上(例如示例感测 装置400A或400B中的一个(图4A和图4B))的一组电极404。该系统也可 包括成像系统501。
如图5所示,处理单元500可包括处理器502、信号处理器504、存储器 506、显示器508、和用户输入设备509。处理单元500还可包括电极位置记录 模块524。在所示示例中,处理器502包括多个模块,且更具体地包括投影模 块514、逆问题模块516、激动时间模块518、索引模块520、以及等时线绘制 模块522。存储器506可存储记录的数据510和模型512。
处理单元500可包括一个或多个计算设备,该一个或多个计算设备可共同 定位或分散在各个位置。处理单元500的各模块,例如处理器502、投影模块 514、逆问题模块516、激动时间模块518、统计模块520、等时线绘制模块522、 信号处理器504、电极位置记录模块524、显示器508、存储器506、记录数据 510和躯干模型512可实现在一个或多个计算装置内,该一个或多个计算装置 可共同定位或分散在各个位置。处理器502以及处理器502的各模块可实现在 一个或多个计算设备的例如微处理器的一个或多个处理器内,作为由处理器 (多个)执行的软件模块。在某些示例中,电极位置记录模块524可实现在成 像系统501中。
除了本文所述的各数据之外,存储器506可包括程序指令,当例如处理器 502的可编程处理器执行该程序指令时,使处理器和其任何组件提供归于本文 处理器和处理单元的功能。存储器506可包括任何易失性、非易失性、磁性、 光学、或电介质,诸如硬盘、磁带、随机存取存储器(RAM)、只读存储器 (ROM)、CD-ROM/非易失性RAM(NVRAM)、电可擦除可编程ROM (EEPROM)、闪速存储器、或任何其它数字或模拟介质。存储器506可包 括一个或多个共同定位或分布的存储器。存储器506可包括用作数据和程序指 令的非瞬态存储介质的有形物体。
由感测设备400的电极404感测到的躯干表面电势信号可由处理单元500 的信号处理器504接收。信号处理器504可包括模拟-数字转换器以将躯干-表 面电势信号数字化。信号处理器504还可包括各其它组件来过滤以其它方式处 理由处理器502接收的数字信号。
电极位置记录模块524可从成像系统501接收成像数据。电极位置记录模 块524分析成像数据。特定地,电极记录位置模块524标识图像中经由成像形 态更清楚可见的电极404或与电极共同定位的元件。电极位置记录模块524还 可标识患者表面上和/或三维坐标系内每个电极的位置。在某些示例中,可例如 由用户经由电极记录模块524手动标识或用处理单元500记录各电极404的位 置。
成像数据可包括表示佩戴例如感测设备400的电极404的患者1的一个或 多个图像的数据。在某些示例中,可在医疗手术之前或期间获得各图像,医疗 手术例如植入心律设备或递送CRT的引线系统的外科手术。
在某些示例中,处理器502可将躯干表面电势信号、来自成像系统的成像 数据、来自电极位置记录模块的电极位置数据、或本文揭示的通过由处理器502 处理这些信号和数据导出的任何值作为所记录的数据510存储在存储器506 内。每个所记录的躯干表面电势信号、或从中导出的其它值,可与感测躯干表 面电势信号的电极404的位置关联。以此方式,可将躯干表面电势数据与电极 404在患者1的躯干上或在三维坐标系中的位置相互关联,使数据空间映射到 躯干表面上或坐标系内的特定位置。在某些示例中,本文所述技术的各方面可 在获取躯干表面电势信号和基于记录数据510的位置数据之后的某个时间执 行。
处理器502可配置成基于躯干表面电势信号以及在某些示例中的电极位 置数据,来提供电不同步的一个或多个指示。电不同步的示例指示包括示出围 绕躯干或心脏分布的每个电极/位置、或者位于共同区域内(例如左后区域、左 前区域、右后区域或右前区域内)的一个或多个电极子集的激动时间的指标。 在某些示例中,处理器502可配置成对躯干或心脏的两个或多个不同区域(例 如七个不同区域)提供一组两个或多个不同指示,例如数个不同指示。
不同步的某些指示可包括源自在一个或多个区域内每个电极位置或一个 或多个电极子集的激动时间的统计值或其它指标。基于各电极/位置处的激动时 间可确定的电不同步的其它示例指示包括图形指示,诸如等时线图或其它激动 图,或者电激动的动画。基于各电极/位置的激动时间可确定的电不同步的其它 示例指示包括经由例如文本或颜色(例如红、黄、绿),来标识不同步程度的 预定数量(例如高、中、或低)中的一个。
在某些示例中,一个或多个区域的不同步的各指示可基于在两个或多个不 同时间和/或在两个或多个不同情况下收集的数据来确定。例如,不同步的各指 示可基于在心脏10的本征传导期间收集的躯干电势信号确定,还可基于CRT 期间收集的躯干电势信号确定。以此方式,通过比较源自本征传导和CRT的 不同的值、图形表示或类似物,可评估CRT的潜在的减少不同步的益处。作 为另一个示例,可在多个不同时间中的每个时间基于用不同引线位置、电极配 置、或CRT参数(例如A-V或V-V间隔值)递送CRT期间收集的躯干电势 信号确定不同步的各指示。以此方式,通过比较不同的值、图形表示、或类似 物可对患者评估不同引线位置、电极配置或CRT参数的相对的减少不同步的 益处。
模型512可包括人体躯干和心脏的多个不同模型,例如三维模型。模型躯 干或模型心脏可使用市售软件通过从多个对象(例如不同于患者1的心肌病患 者)先前的获取的医疗图像(CT/MRI)的可用数据库通过手动或半自动图像 分割而构建的。每个模型可使用边界元方法进行离散。可生成多个不同的躯干 模型。不同的模型可表示不同的对象特征,诸如不同性别、疾病状态、体态特 征(例如、大骨架、中骨架、和小骨架)和心脏大小(例如特大、大、中、小)。 通过经由用户输入509提供输入,用户可从可作为模型512存储在存储器506 内的各种模型躯干和模型心脏选择,使得用户可使患者1的实际躯干和心脏10 与模型躯干和模型心脏的尺寸和几何形状更为紧密匹配。在某些示例中,可将 例如CT或MRI图像的患者的医疗图像进行手动或半自动分割、记录、并与从 模型512中选择的模型512比较。此外,单视图或多视图2-D医疗图像(例如 x-射线、荧光)可被分割或测量以确定专用于该患者的大致心脏和躯干尺寸, 从而选择最适合的模型躯干和心脏。
投影模块514可将例如作为记录数据510存储在存储器506内的各电极 404的位置投影到包含在存储器506的模型数据模块512内的适当的(例如用 户选择的)模型躯干上。通过将各电极404的位置投影到模型躯干上,投影模 块514也可将由各电极404感测到的患者1的躯干表面电势信号投影到模型躯 干上。在其它示例中,可内插所测得的电势并在模型给出的电极位置处重新采 样。在某些示例中,将躯干表面电势投影到模型躯干上可允许处理器502,经 由逆问题模块516,来估算在对应于产生测得的躯干表面电势的患者1的心脏 10的模型心脏的各位置或区域处的电活动。
逆问题模块516可配置成基于由电极404所记录的测得的躯干表面电势在 模型躯干上的投影而求解心电图的逆问题。求解心电图的逆问题可涉及基于躯 干与心脏电势之间的关系来估算心脏10内的电势或激动时间。在一示例方法 中,假设在拉普拉斯方程的逆柯西问题模型心脏与模型躯干之间是无源容积导 体(source-less volume conductor),从模型躯干电势中来计算出模型心外膜电 势。在另一示例方法中,假设躯干表面电势与心脏跨膜电势之间有分析关系。 可基于该关系模拟躯干表面电势。在某些示例中,逆问题模块516可利用Ghosh 等人在Annals of Biomedical Engineering2005年9月第9期第33卷的“Accuracy of Quadratic Versus Linear Interpolation in Non-Invasive Electrocardiographic Imaging(ECGI)”或Annals of Biomedical Engineering2009年第5期第37卷的 “Application of the L1-Norm Regularization to Epicardial Potential Solution of the Inverse Electrocardiography Problem”中描述的技术。在其它示例中,逆问题模 块516可采用求解心电图的逆问题的任何已知技术。
激动时间模块518可从测得的躯干表面电势直接地、或通过估算模型跨膜 电势,来计算激动时间。在两种情况下,可将每个电极/位置的激动时间确定为 两次事件之间(诸如在QRS波群开始和感测的躯干电势信号的最小导数(或 最陡负斜率)或估算心外膜电势信号之间)的时段。因此,在一个示例中,从 模型心外膜心电图的最陡负斜率中估算心脏激动时间。在其它配置中,心脏激 动时间(躯干表面电势与心脏跨膜电势之间分析关系中的参数)可基于使测得 的躯干表面电势与模拟的躯干表面电势之间的最小方差最小来计算。心室、心 外膜、或躯干表面激动时间的颜色编码的等时线图可由显示器308示出。在其 它示例中,显示器308可示出跨越模型心脏的表面或躯干表面的激动波阵面传 播的双色动画。
指标模块520可配置成从躯干表面或心脏激动时间计算电不同步的一个 或多个指标。这些指标可辅助确定患者是否是适合CRT、CRT引线放置、以 及CRT参数的选择。例如,LV引线102(图1)可定位在从一个或多个指标 减少不同步的部位,或可选地指标表现的最大电再同步的部位。相同的指标还 可用于在随访期间对A-V和/或V-V延迟进行编程。如上文所指示的,可基于 对所有电极/位置或对一个或多个区域内的一个或多个电极子集的激动时间确 定各指标,例如以便于诸如后部和/或左前或左心室区域的区域的比较和隔离。
电不同步的指标之一可以是被计算作为患者1的躯干表面上某些或所有 电极404的激动时间(SDAT)的标准偏差的标准偏差指标。在某些示例中, 可使用在模型心脏的表面上估算的心脏激动时间来计算SDAT。
电不同步的第二示例指标在可以是可被计算作为例如总体或区域的最大 与最小躯干表面或心脏激动时间之差的激动时间(RAT)的范围。RAT反映激 动时间的跨度,而SDAT给出激动时间与平均值的离差的估算。该SDAT还提 供激动时间的异质性的估算,因为如果激动时间是空间异质的,则各激动时间 将更偏离平均激动时间,这指示心脏10的一个或多个区域已经延迟激动。在 某些示例中,可使用在模型心脏的表面上估算的心脏激动时间来计算RAT。
电不同步的第三示例指标估算定位在躯干或心脏的感兴趣的特定区域内 的电极404的百分比,其相关的激动时间大于测得的QRS波群时段或电极404 的确定激动时间的特定百分位,例如70%。感兴趣的区域可能是例如后部、左 前和/或左心室区域。该指标,晚期激动的百分比(PLAT),提供对较晚激动 的感兴趣区域(例如与心脏10的左心室区域相关联的后部和左前区域)的百 分比的估算。PLAT的较大值可能意味着例如左心室12(图1)的区域的主要 部分的延迟激动,以及通过预激励例如左心室12的晚期区域通过CRT进行电 再同步的潜在益处。在其它示例中,可对其它区域、诸如右前区域内的其它电 极子集确定PLAT以评估右心室内的延迟激动。此外,在某些示例中,可对整 个心脏或对心脏的例如左心室或右心室的特定区域,使用在模型心脏的表面上 的估算的心脏激动时间来计算PLAT。
等时线模块522可配置成生成示出在患者1的躯干或模型心脏的表面上的 激动时间的分布的等时线图。等时线模块522可包含近实时的躯干表面或心脏 激动时间的变化,在用户调节CRT设备或监测患者1以确定CRT是否适当时 这可允许近瞬时的反馈。由等时线模块522生成的等时线图可经由显示器508 呈现给用户。
一般而言,处理器502可基于测得的躯干表面电势、计算的躯干表面或估 算的心脏激动时间、或者电不同步变化的程度,来生成用于经由显示器508向 用户显示的各种图像或信号。例如,反映双心室起搏或单心室融合起搏期间 LV引线102的特定位置的功效的级别响应可以红、黄、绿信号提供给医师。 如果CRT起搏期间电不同步的减少与本征节律相比为负(电不同步增加)或 最小,例如小于5%,则可示出红色信号。如果与本征节律相比CRT起搏期间 存在电不同步的某种程度的减小,例如5%至15%之间,则可能触发黄色信号, 但可能存在引线放置的潜在更好的部位。如果CRT起搏期间电不同步的减小 与本征节律相比是显著的,例如大于15%,则可触发绿色信号,向医师指示该 部位提供同步的有效变化。来自该系统的反馈与其它标准(像起搏阈值大小、 阻抗、电池寿命、膈神经刺激)组合也可用来选择一个或多个多极引线的最佳 起搏矢量。来自该系统的反馈也可用于选择影响用来自单个或多个心室部位的 起搏激动的本征激动的融合程度的最佳装置时序(A-V延迟、V-V延迟等)、 或辨别单个部位融合起搏相对多部位起搏和选择适当起搏类型的敏锐益处。
显示器508还可显示患者1的躯干表面上或模型心脏上电活动的三维图。 这些图可以是将同步电活动的区域示出为行进通过患者1的心脏10的去极化 的等时线图。这样的信息可用于参与者诊断电不同步点活动并制定适当的治 疗、以及评估治疗的有效性。
图6是在用CRT设备治疗之前和期间患有左心室电不同步的患者躯干上 的躯干表面激动时间的一系列模拟的等时线图600。治疗之前(本征)和之后 的等时线图分成两个视图:前部和后部。线602表示电极404的子集、例如感 测设备400B的电极404的子集的位置,其可用于计算电不同步的一个或多个 指标。在某些示例中,线602可表示感测设备400A上的各电极404。
可使用例如用例如感测设备400B在患者躯干的表面上分布的多个电极 404来生成天然或CRT辅助的躯干表面激动时间的等时线图600。等时线图600 的生成可包括确定各电极404的位置,并用各电极感测躯干表面电势信号。等 时线图600的生成还可包括通过确定与最大负斜率对应的由电极感测的信号的 所记录的QRS波群中的点,来计算每个电极或电极位置的躯干表面激动时间。 在其他示例中,可通过标识QRS波群的最小导数来确定躯干表面激动时间。 然后可将测得的躯干表面激动时间标准化并生成患者躯干表面的等时线图。
由于电不同步引起的与电极404中的某些相关联的某些位置的延迟激动 在本征躯干表面激动时间的后视图中较为明显。各区域604指示下面心脏激动 的增加的延迟。用CRT设备治疗期间相应的后部视图指示区域606,与本征躯 干表面激动时间图上区域604相同的位置,呈现电心室活动的增加的同步性。 CRT图呈现躯干表面激动时间的减小的范围和较低的标准偏差。此外,后部区 域不再呈现延迟的激动时间。本征和CRT起搏期间躯干表面激动时间以及从 本征到CRT起搏的激动时间分布的变化的等时线图可用于诊断目的或调整 CRT设备。
电不同步的一个或多个指标还可从用于生成等时线图600的躯干表面激 动时间计算得到。例如,使用完整电极404集合对患者的本征心脏节律的 SDAT,指示激动时间传播,为64。使用线602标记的减少的引线组导致为62 的SDAT。用于本征心脏节律和完整引线组的RAT为166.5,而减少的引线组 具有160的RAT。使用减少和完整引线组的本征心脏节律的PLAT分别为 56.15%和66.67%。这表示使用环绕患者心脏的减少引线组、例如感测设备400A 和相关电极404可与使用诸如感测电极400B的覆盖患者躯干的电极组相比可 提供电不同步的相当的指标。
电不同步的指标还提供CRT设备的有效性的指示,对于减少的电极组, SDAT下降到24,RAT下降到70,且PLAT下降到36%。这表示CRT治疗期 间躯干表面激动时间比在正常心脏节律下更窄地分布且在更小范围内,且位于 患者躯干左前表面上的电极404的百分比记录了延迟激动时间显著下降。
图7是示出经由躯干表面激动时间评估患者的心脏电不同步的系统的示 例操作的流程图。可确定分布在患者躯干表面上例如电极404(图4A和4B) 的各电极的位置(700)。例如去极化的心脏事件可生成传播通过例如患者1 (图1)的患者躯干的电信号并记录在各电极上。由各电极感测的信号可通过 例如处理单元500(图5)接收(702)。该处理单元可计算躯干表面激动时间 (704)。在某些示例中,处理单元还可构建躯干表面激动时间等时线图(706)。 处理单元害可计算心脏电不同步的至少一个指标(708)。这些指标可包括SDAT (710)、RAT(712)、和PLAT(714)中的一个或多个。
诸如去极化之类的心脏事件生成传播通过躯干的电信号。电信号可包括 QRS波群、或由诸如左束支阻滞或右束支阻滞的心脏相关病况引起的变化。由 于躯干和心脏内导电率的变化,电信号可能无法均匀地传播穿过患者的躯干。 这些延迟可表现在分布在患者躯干表面上的各电极中,这些电极及时记录不同 位置处的相同电信号。
由心脏事件生成的电信号可记录在分布在患者躯干表面上的多个电极上。 各电极可分布在躯干的前表面、侧表面和/或后表面上,允许生成发生在躯干内 电活动的三维图片。在某些示例中,各电极可放置成通过使用感测设备400B (图4B)提供心脏上方和下方的广泛覆盖。在其它示例中,减少的电极组可 例如使用感测设备400A(图4A)围绕躯干的周围布置,包围患者的心脏。各 电极可接收由心脏事件生成的电信号的完整波形并将信号传送到处理单元。
可确定分布在患者躯干表面上各电极的位置(700)。可通过例如处理单 元500的成像系统501和电极位置记录模块524(图5)自动进行各电极的定 位。可通过分析患者躯干的一个或多个图像并进行图案匹配例程、例如识别抵 靠患者躯干的电极的形状并将电极在患者躯干上的位置存储在处理单元存储 器内来进行定位各电极。在其它示例中,可确定感测设备400A或400B的位 置,并基于感测设备的位置来确定各电极的位置,例如电极在患者身上的位置 基于电极在感测装置上的已知位置。在另一示例中,可手动测量各电极的位置。
处理单元可从各电极接收电信号并将输出记录在存储器内(702)。处理 单元可记录原始输出、例如来自每个电极的原始ECG轨迹以及各电极的位置 数据,允许由各电极探测的电信号映射到患者躯干表面上。
该处理单元可计算躯干表面激动时间(704)。例如处理单元500的处理 器502(图5)的处理器可取回存储在处理单元存储器内存储的ECG轨迹数据, 并分析该轨迹以检测心脏心室的极化,通常在轨迹中用QRS波群标记。在某 些示例中,该处理器可通过确定相对于QRS波群开始时测得的QRS波群内的 最小导数(或最陡负斜率)的时间来检测心室去极化。可对每个电极进行激动 时间的确定并存储在处理单元存储器内。
在某些配置中,处理单元可构建躯干表面激动时间的等时线图,允许用户 视觉地检查电信号在行进穿过患者躯干之后在心脏的传播。可通过将测得的躯 干表面激动时间范围分成一系列子范围来构建等时线图。可用图形表示患者躯 干表面上每个电极的位置。其测得的激动时间落入同一子范围内的各电极的区 域可在图形表示中用相同的颜色表示。
处理单元还可基于躯干表面激动时间计算电不同步的一个或多个指标 (708)。这些指标可包括SDAT(710)、RAT(712)、和PLAT(714)。在某些 示例中,PLAT可确定为QRS波群持续时间的一定百分比之后后部电极激动的 百分比。
如上所述,在某些示例中,可基于从这些区域内的各电极(702)接收的 信号对躯干的特定区域进行躯干表面激动时间等时线图的构建(706)、或不 同步的其它图形表示、以及电不同步的指标的计算(708)。可基于来自这些 区域的各电极接收的信号对多个区域中的每个确定图形表示和电不同步的指 标。在某些示例中,可将各区域的表示和指标呈现在一起或比较。
图8是示出经由测得的躯干表面激动时间测量患者的心脏电不同步的示 例技术的流程图。处理单元500可从诸如各电极404(图4A和4B)的多个电 极接收躯干表面电势信号(800)。处理单元500可对多个电极中的每个计算 躯干表面激动时间(802)。处理单元500可提供心脏电不同步的至少一个指 示(804)。
用户可基于电不同步的至少一个指示评估患者是否适合CRT(806)。用 户还可监测电不同步的至少一个指示(808),并使用该至少一个指示的变化 来辅助在例如IMD100(图1)的CRT设备的植入期间调整例如电极108、110 和112(图1)的各电极的定位(810)、或者在植入或随访期间CRT设备的 诸如电极组合和A-V或V-V起搏间隔的各种可编程参数的选择(812)。
诸如激动时间的统计或其它指示、或图形表示的本文所述的心脏电不同步 的各指示可指示对患者的心脏的导电率存在损害,例如出现左束支阻滞或右束 支阻滞,这无法从标准12导联ECG读取的检查中显现出来。例如,较大的 SDAT指示在大时间跨度内发生心室的激动,指示不同时发生心室的去极化。 较大的RAT还指示激动时间的较宽范围和心室的不同步收缩。较高的PLAT 指示心脏的特定区域,例如与左心室相关的后部区域,可能无法与测得的QRS 波群一致激动。此外,通过监测心脏电不同步的至少一个指示,用户可检测由 不同治疗或治疗配置所引起的心脏电活动的变化。
如上所述,可基于来自该区域的躯干表面激动时间对例如后部、左前等的 多个区域中的每个,来计算诸如统计指标的电不同步的各种指示。此外,基于 电不同步的至少一个指示评估患者是否适合CRT(806)可包括在心脏本征传 导期间和CRT期间,基于躯干表面激动时间确定电不同步的一个或多个指示。 本征传导与CRT期间指示之差可指示CRT将为患者提供益处,例如患者适合 CRT。如上所述,用户也可仅基于本征节律的电不同步的至少一个指示评估患 者是否适合CRT。此外,植入或随访期间监测电不同步的至少一个指示(808) 可包括基于各位置处CRT的递送产生的躯干表面激动时间、或用各电极配置 或参数值,对多个引线位置、电极配置、或其它参数值中的每个确定电不同步 的一个或多个指示。以此方式,可比较各位置、电极配置、或参数值相关的不 同步指示之差,以确定优选位置、配置、或值。
图9是一系列心脏激动时间的等时线图。使用在患者的躯干表面上测得的 躯干表面电势构建视图900、902和904并投影到患者的躯干和心脏的三维模 型上。使用投影到不同模型躯干和模型心脏上测得的相同患者的躯干表面电势 来构建视图910、912和914。
使用从先前获取的心胸图像的数据库得到的心脏的计算机断层扫描(CT) 图像构建视图900、902、904、910、912和914中示出的心脏的三维表示。患 者躯干上例如感测设备400的电极404(图4B)的各电极的位置可绘制到模型 躯干上的大致位置。可使用计算机来求解心电图的逆问题,这包括确定将会产 生测得的躯干表面电势的心脏表面上的电活动。视图900、902、904、910、912、 和914中所示的等时线图基于两个不同患者的心脏的图像,这还被用于确定心 脏的几何形状以及与相应躯干的关系以求解心电图的逆问题。
可通过使用市售软件从心肌病患者的先前获取的医疗图像(CT/MRI)的 可用数据库进行手动或半自动图像分割构件模型躯干和心脏。每个模型可使用 边界元法进行离散化,并还可操纵以考虑具有不同身体特征(例如大骨架、中 骨架和小骨架)和心脏大小(例如超大、大、中、小)的患者。
用户可选择适当的模型躯干和心脏来适应患者,例如具有大身躯的患者可 用大骨架模型躯干进行模拟。在某些示例中,可将患者的医疗图像(例如CT或 MRI图像)进行手动或半自动分割、记录、或与从模型选择的各种可用模型比 较。也可使用2-D医疗图像(例如X-射线或荧光)的一个或多个视图。用户 可将从患者躯干测得的躯干表面电势投影到模型躯干上的相应位置。然后可求 解将电信号从模型躯干传播到模型心脏的逆问题,并可估算模型心脏的激动时 间。
在应用本公开的技术的一示例中,从图像数据库获取其它对象的人类心脏 CT图像。在图像上进行半自动图像分割以生成心脏和躯干的不同模型的三维 表示。在某些示例中,可用来自加利福尼亚州圣地亚哥的面貌成像公司(Visage Imaging,Inc.)出售的AMIRA软件包完成图像分割。
例如,患者躯干上的电极位置到模型躯干的投影是近似的。特定地,患者 躯干到模型躯干上电极的位置,基于各电极安装在患者身上的顺序,将患者躯 干上各电极的位置投影到模型躯干的表面上。为了该投影的目的,使用胸骨 (前)和脊柱(后)作为参考,将患者和模型躯干分成右前、左前、右后和左 后区域。各电极布置在垂直条上,且三个条应用到躯干的每个区域。这些区域 内的各电极被投影到模型躯干的相应段上。此处描述的方法是可用于记录或描 绘测得的电势的几何分布的多种技术中的一种。例如,测得的电势。例如,可 在由模型给出的电极位置处内插或重新采样所测得的电势。各电极位置以正确 顺序从患者躯干的各段投影到模型躯干的相应段上使得模型心脏上的激动图 案和激动的空间离差相准确地反映了在实际患者心脏上的激动图案和激动的 空间离差。在一示例中,使用Matlab正则化工具盒可求解心电图的逆问题(汉 森PC,正则化工具:A Matlab package for analysis and solution of discrete ill-posed problems(分析和求解离散不适定问题的Matlab包),Numerical Algorithms(数值算法),6(1994),第1-35页)。
与该示例一致的用于求解逆问题的输入数据集可包括多电极表面ECG测 量、模型心脏和躯干表面的3-D笛卡尔坐标系、以及指定每个表面上不同点的 连接的每个模型表面上的网格。与本公开的技术一致的输出可包括可使用视觉 软件和计算机图形工具而可被可视化的3-D模型心脏表面上的激动时间。在某 些示例中,3-D模型心脏表面可使用Matlab(马萨诸塞州内蒂克的Mathworks 公司)或诸如Tecplot(华盛顿州贝尔维尤的Tecplot公司)之类的更先进可视 化软件来可视化。
比较从一个对象的相同躯干表面电势信号所确定的两个不同的心脏激动 时间而估算的心脏激动时间,示出类似的图案和分布。例如,视图902和904 的区域906在大小和激动时间上对应于视图912和914的区域916。视图902 和904的区域908对应于视图912和914的区域918。此外,两个模型的激动 时间的标准偏差都源自一个对象的相同躯干表面电势,且类似(17.6和15.5 ms)。因此心脏激动的总体图案和心脏激动时间的离差的测量并不依赖于特定 的心脏-躯干模型。使用通用心脏-躯干模型可允许用户创建适于诊断和观察的 心脏激动时间的等时线模型,同时避免了可被用于产生患者的心脏的患者特定 的模型的CT扫描或其它成像可造成的花费、不便、和辐射暴露。
图10是示出经由激动时间测量患者的心脏电不同步的系统的示例操作的 流程图。处理单元500通过电极定位记录模块524例如基于成像数据的分析来 确定各电极404的位置。处理单元将各电极的位置投影到例如所选模型躯干的 模型躯干上(1002)。
发生例如去极化的心脏事件致使电信号传播穿过患者的躯干,并记录在分 布在患者躯干表面上的各电极上。由各电极感测的躯干表面电势信号可由处理 单元500接收(1004)。处理单元可基于各电极的确定的位置将信号投影到模 型躯干的表面上(1006)。
处理单元可求解基于躯干表面电势确定心外膜电势的逆问题(1008)。然 后处理单元可基于所投影的躯干表面电势计算在模型心脏的各位置处的心脏 激动时间(1010)。可通过例如确定心外膜电图电势的最大负斜率(1016)、 或逆问题解的最小二乘最小化来计算心脏激动时间(1018)。可显示心脏激动 时间(1012)。显示心脏激动时间的潜在方法的示例包括等时线图(1014)、 和在模型心脏上描绘波阵面行进的影片(1016)。处理单元可配置成允许用户 在包括波阵面影片和等时线图在内的各种显示模式之间选择、或同时显示各显 示模式。此外,可计算心脏电不同步的一个或多个指标(1018),包括DAT (1020)、RAT(1022)、以及PLAT(1024)。
为了求解逆问题(1008),假设在拉普拉斯方程的逆柯西问题中心脏与躯 干之间是无源容积导体,从所投影的躯干表面电势来计算心外膜电势。可选地, 可假设躯干-表面电势与心脏跨膜电势之间的分析关系。此外,可从根据躯干- 表面电势/心外膜电势转换的逆解所确定的心外膜电图的最陡负斜率中估算心 脏激动时间(1010)。在其它示例中,可基于该分析关系方法来模拟模型躯干 -表面电势,从而从躯干-表面电势确定心脏跨膜电势。可基于使投影的模型躯 干-表面电势与模拟的躯干-表面电势之间的最小方差最小化来计算心脏激动时 间(分析关系中的参数)。
在某些示例中,可基于心脏的特定区域内所计算的心脏激动时间,对模型 心脏的特定区域,进行躯干表面激动时间等时线图(1014)、波阵面动画(1016)、 或心脏电不同步的其它图形表示的构建、以及心脏电不同步的指标的计算 (1018)。可基于在这些区域内所计算的心脏激动时间对该多个区域中的每个 确定心脏电不同步的图形表示和指标。在某些示例中,可将各区域的表示和指 标呈现在一起或进行比较。
图11是示出经由所确定的心脏激动时间来测量患者的心脏电不同步的示 例技术的流程图。这些技术可包括确定多个电极的位置(1100)、将各电极的 位置投影到模型躯干的表面上(1102)、记录多个电极的输出(1104)、将多 个电极的输出投影到模型躯干的表面上(1106)、求解逆问题(1108)、以及 从所投影的躯干表面电势确定模型心脏的心脏激动时间(1110)。可显示心脏 激动时间(1112)。可计算电不同步的一个或多个指标(1114)。可监测该输 出、心脏电不同步的指标、以及心脏激动时间图,这允许用户对患者进行诊断、 在植入期间调整CRT电极的位置(1118)或调整CRT设备的A-V或V-V起 搏间隔(1120)。
用户可监测计算的输出(1116),例如心脏电不同步的至少一个指标或心 脏激动时间的显示。监测这些值可允许用户诊断可能受益于CRT的情况或评 估CRT的有效性。例如,心脏电不同步的至少一个指标可指示对患者心脏导 电性的损害的存在、例如左束支阻滞或右束支阻滞的存在,这从标准12导联 ECG读取的检查中不能显现。较大的SDAT指示在大时间跨度内发生心室的 激动,指示不同时发生心室的去极化。较大的RAT还指示激动时间的宽范围 和心室的不同步收缩。较高的PLAT可指示心脏的特定区域,例如与左心室更 相关的后部区域不能与测得的QRS波群一致激动。
用户可根据所显示的心脏激动时间或心脏电不同步的指标来调整CRT电 极、例如IMD100的电极108、110和112(图1)的放置。例如,处理单元, 经由显示器,可实现基于心脏电不同步的指标的百分比变化来显示变化的颜色 的系统。当调整CRT电极的位置(1118)时,显示的颜色可基于心脏电不同 步的指标的百分比改进从红色变化成黄色变化成绿色。这可允许用户快速确定 CRT电极的调整是否对患者的症状具有积极效果。在另一示例中,用户可调整 植入的CRT设备的A-V或V-V起搏间隔(118)。心脏电不同步的指标的最 小值可指示足够的起搏间隔。等时线图或波阵面传播影片也可用于辅助CRT 调整或诊断可响应于CRT处理的情况。
如上所述,为了便于基于监测的输出评估患者是否适合CRT(1116), 心脏电不同步的一个或多个指示,例如指标或图形指示,可基于心脏的本征传 导期间、和CRT期间的躯干表面激动时间来确定。本征传导期间与CRT期间 的指示之差可指示CRT可为患者提供益处,例如患者适合CRT。此外,植入 或随访期间,基于各位置的、或具有各电极配置或参数值的CRT的递送产生 的躯干表面激动时间,对多个引线位置、电极配置或其它参数值的每个,来确 定心脏电不同步的一个或多个指示。以此方式,可将与各位置、电极配置、或 参数值相关联的心脏电不同步指示之差进行比较以确定优选位置、配置、或值。
已经描述了本公开的各示例。然而,在不偏离权利要求书的范围的情况下, 本领域的普通技术人员将理解可对所述实施例作出各种更改。例如,尽管讨论 了SDAT、RAT、和PLAT作为激动时间离差的统计指标的示例,但也可根据 本公开的技术确定去极化时序的离差的其它指标或度量。作为一个示例,可确 定例如前部和后部的两个特定区域之间的激动时间范围。作为另一个示例,可 根据本公开的技术确定排除特定位置或区域之后激动时间的范围和变化。排除 的位置或区域可以是被认为是例如由低幅电信号标识的疤痕组织的位置或区 域,或者延伸超出远场QRS波群范围的位置或区域。一般而言,指标的计算 可包括基于躯干表面或心脏激动时间或其某些子集来确定任何统计或其它值。