焦虑状态检测方法及装置.pdf

上传人:00****42 文档编号:8091497 上传时间:2020-01-05 格式:PDF 页数:17 大小:894.87KB
返回 下载 相关 举报
摘要
申请专利号:

CN201710844028.7

申请日:

20170918

公开号:

CN107595305A

公开日:

20180119

当前法律状态:

有效性:

审查中

法律详情:

IPC分类号:

A61B5/16,A61B5/0402,A61B5/11

主分类号:

A61B5/16,A61B5/0402,A61B5/11

申请人:

西南大学

发明人:

温万惠,刘光远

地址:

400700 重庆市北碚区天生路2号

优先权:

CN201710844028A

专利代理机构:

北京超凡志成知识产权代理事务所(普通合伙)

代理人:

张海洋

PDF下载: PDF下载
内容摘要

本发明实施例提供的一种焦虑状态检测方法及装置,涉及医疗电子技术领域。所述方法包括获取用户的三维加速度数据;然后检测到用户出现焦虑的生理特征后,判断所述用户的三维加速度数据是否满足伪焦虑特征条件,若不满足,确定所述用户处于焦虑状态。以此通过三维加速度数据来排除伪焦虑特征,从而准确地得到用户真实的焦虑状态,提醒用户及早采取措施以改善健康。

权利要求书

1.一种焦虑状态检测方法,其特征在于,所述方法包括:获取用户的三维加速度数据;检测到用户出现焦虑的生理特征后,判断所述用户的三维加速度数据是否满足伪焦虑特征条件,若不满足,确定所述用户处于焦虑状态。 2.根据权利要求1所述的方法,其特征在于,所述伪焦虑特征条件为以下条件中的至少一个:所述用户的三维加速度数据为预设的人体处于运动过程中的三维加速度数据;所述用户的三维加速度数据为预设的人体运动后的恢复期的三维加速度数据;以及所述用户的三维加速度数据为预设的人体身体突然的姿势改变时的三维加速度数据。 3.根据权利要求2所述的方法,其特征在于,所述预设的人体运动后的恢复期的三维加速度数据为预设的人体运动后的N分钟内的恢复期的三维加速度数据。 4.根据权利要求1所述的方法,其特征在于,所述方法还包括:获取用户的心电数据;基于所述心电数据以及预设的RR间期序列计算规则,获得所述心电数据对应的RR间期时间序列;基于所述心电数据对应的RR间期时间序列以及多种预设的特征提取规则,分别获得RR间期时间序列对应的多种特征数据;从所述多种特征数据中获取与预设的分类器对应的最佳特征子集,并利用所述预设的分类器对所述最佳特征子集对应的心电数据进行分类,输出分类结果,以检测用户是否出现焦虑的生理特征。 5.根据权利要求4所述的方法,其特征在于,所述基于所述心电数据以及预设的RR间期序列计算规则,获得所述心电数据对应的RR间期时间序列,包括:对所述心电数据去除基线漂移;基于预设的滑动时间窗以及去除基线漂移后的心电数据,获得所述滑动时间窗内的心电数据并定位所述滑动时间窗内的心电数据的最大值点作为R波峰点,以得到多个R波峰点;从所述多个R波峰点中,将相邻两个R峰点之间的时间间隔作为一个RR间期,以获得所述去除基线漂移后的心电数据对应的多个RR间期;将所述多个RR间期按照时间先后顺序排列,获得所述去除基线漂移后的心电数据对应的RR间期时间序列。 6.根据权利要求4所述的方法,其特征在于,所述多种预设的特征提取规则包括:RR间期均值规则、RR间期标准差规则、RR间期阶梯信号功率谱上处于0.04Hz-0.15Hz范围内的总功率规则、RR间期阶梯信号功率谱上处于0.15Hz-0.4Hz范围内的总功率规则、RR间期相邻差的均值规则、RR间期相邻差的标准差规则、RR间期相邻差绝对值的均值规则、RR间期相邻差绝对值的标准差规则、归一化的RR间期相邻差绝对值的均值规则、归一化的RR间期间隔一次差绝对值的均值规则、RR间期相邻差的绝对值大于0.05的比率规则、RR间期局部Hurst指数取值范围规则中的多种规则。 7.根据权利要求4所述的方法,其特征在于,所述预设的分类器为二分类分类器。 8.根据权利要求7所述的方法,其特征在于,所述二分类分类器为朴素贝叶斯分类器、支持向量机分类器、k最近邻分类器、线性判别分析分类器或二次判别分析分类器。 9.根据权利要求4所述的方法,其特征在于,所述方法还包括:获取样本人群中多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心电信号;基于所述多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心电信号以及预设的RR间期序列计算规则,分别获得所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列、所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列;基于所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列、所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列以及多种预设的特征提取规则,分别获得所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列各自对应的多种特征数据和所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列各自对应的多种特征数据;将所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列各自对应的多种特征数据和所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列各自对应的多种特征数据作为分类器的训练数据,训练所述分类器,以此获取预设的分类器。 10.一种焦虑状态监测装置,其特征在于,所述装置包括:第一获取单元,用于获取用户的三维加速度数据;判断单元,用于检测到用户出现焦虑的生理特征后,判断所述用户的三维加速度数据是否满足伪焦虑特征条件,若不满足,确定所述用户处于焦虑状态。

说明书

技术领域

本发明涉及医疗电子技术领域,具体而言,涉及一种焦虑状态检测方法及装置。

背景技术

现代社会快节奏高效率的生活方式极易引发大众的焦虑。而长期焦虑是中青年人群罹患抑郁症、焦虑症及并发心血管系统、内分泌系统和免疫系统等疾病的重要诱因。目前,上述疾病基本都是发病后再诊断和治疗,给患者带来精神上的极大痛苦和经济上的较大负担。在心理和生理诱因导致生理指标病理改变之前,监测和预警生理指标异常,并以适当的干预手段阻断其继续发展为病理改变,对改善中青年大众的亚健康状况具有重要意义。但是目前还没有出现检测人体是否处于焦虑状态的方案。

发明内容

本发明的目的在于提供一种焦虑状态检测方法及装置,以改善上述问题。为了实现上述目的,本发明采取的技术方案如下:

第一方面,本发明实施例提供了一种焦虑状态检测方法,所述方法包括获取用户的三维加速度数据;检测到用户出现焦虑的生理特征后,判断所述用户的三维加速度数据是否满足伪焦虑特征条件,若不满足,确定所述用户处于焦虑状态。

第二方面,本发明实施例提供了一种焦虑状态检测装置,所述装置包括第一获取单元和判断单元。第一获取单元,用于获取用户的三维加速度数据。判断单元,用于检测到用户出现焦虑的生理特征后,判断所述用户的三维加速度数据是否满足伪焦虑特征条件,若不满足,确定所述用户处于焦虑状态。

本发明实施例提供的一种焦虑状态检测方法及装置,获取用户的三维加速度数据;然后检测到用户出现焦虑的生理特征后,判断所述用户的三维加速度数据是否满足伪焦虑特征条件,若不满足,确定所述用户处于焦虑状态。以此通过三维加速度数据来排除伪焦虑特征,从而准确地得到用户真实的焦虑状态,提醒用户及早采取措施以改善健康。

本发明的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。

图1为本发明实施例提供的电子设备的结构框图;

图2为本发明实施例提供的焦虑状态检测方法的流程图;

图3为本发明实施例提供的人体运动状态下包含伪焦虑生理特征的RR间期数据示意图;

图4为本发明实施例提供的运动和静坐状态下的人体三维加速度信号示意图;

图5为本发明实施例提供的焦虑状态检测方法在硕士毕业答辩中检测到的焦虑结果示意图;

图6为本发明实施例提供的焦虑状态检测方法的子流程图;

图7为本发明实施例提供的焦虑状态检测方法中训练分类器里后向特征选择过程示意图;

图8为本发明实施例提供的五种分类器的最优特征子集及对应的交叉验证真阳性率和真阴性率;

图9为本发明实施例提供的焦虑状态检测装置的结构框图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。

图1示出了一种可应用于本发明实施例中的电子设备100的结构框图。如图1所示,电子设备100可以包括存储器102、存储控制器104、一个或多个(图1中仅示出一个)处理器106、外设接口108、输入输出模块110、音频模块112、显示模块114、射频模块116和焦虑状态检测装置。

存储器102、存储控制器104、处理器106、外设接口108、输入输出模块110、音频模块112、显示模块114、射频模块116各元件之间直接或间接地电连接,以实现数据的传输或交互。例如,这些元件之间可以通过一条或多条通讯总线或信号总线实现电连接。焦虑状态检测方法分别包括至少一个可以以软件或固件(firmware)的形式存储于存储器102中的软件功能模块,例如所述焦虑状态检测装置包括的软件功能模块或计算机程序。

存储器102可以存储各种软件程序以及模块,如本申请实施例提供的焦虑状态检测方法及装置对应的程序指令/模块。处理器106通过运行存储在存储器102中的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现本申请实施例中的焦虑状态检测方法。

存储器102可以包括但不限于随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),可编程只读存储器(Programmable Read-Only Memory,PROM),可擦除只读存储器(Erasable Programmable Read-Only Memory,EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-Only Memory,EEPROM)等。

处理器106可以是一种集成电路芯片,具有信号处理能力。上述处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。其可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。

所述外设接口108将各种输入/输入装置耦合至处理器106以及存储器102。在一些实施例中,外设接口108、处理器106以及存储控制器104可以在单个芯片中实现。在其他一些实例中,他们可以分别由独立的芯片实现。

输入输出模块110用于提供给用户输入数据实现用户与电子设备100的交互。所述输入输出模块110可以是,但不限于,鼠标和键盘等。

音频模块112向用户提供音频接口,其可包括一个或多个麦克风、一个或者多个扬声器以及音频电路。

显示模块114在电子设备100与用户之间提供一个交互界面(例如用户操作界面)或用于显示图像数据给用户参考。在本实施例中,所述显示模块114可以是液晶显示器或触控显示器。若为触控显示器,其可为支持单点和多点触控操作的电容式触控屏或电阻式触控屏等。支持单点和多点触控操作是指触控显示器能感应到来自该触控显示器上一个或多个位置处同时产生的触控操作,并将该感应到的触控操作交由处理器106进行计算和处理。

射频模块116用于接收以及发送电磁波,实现电磁波与电信号的相互转换,从而与通信网络或者其他设备进行通信。

可以理解,图1所示的结构仅为示意,电子设备100还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。图1中所示的各组件可以采用硬件、软件或其组合实现。

于本发明实施例中,电子设备100可以作为用户终端,或者作为服务器。用户终端可以为PC(personal computer)电脑、平板电脑、手机、笔记本电脑、智能电视、机顶盒、车载终端等终端设备。

请参阅图2,本发明实施例提供了一种焦虑状态检测方法,所述方法包括:

步骤S200:获取用户的三维加速度数据;

步骤S210:检测到用户出现焦虑的生理特征后,判断所述用户的三维加速度数据是否满足伪焦虑特征条件,若不满足,确定所述用户处于焦虑状态。

基于步骤S210,所述伪焦虑特征条件为以下条件中的至少一个:

所述用户的三维加速度数据为预设的人体处于运动过程中的三维加速度数据;所述用户的三维加速度数据为预设的人体运动后的恢复期的三维加速度数据;以及所述用户的三维加速度数据为预设的人体身体突然的姿势改变时的三维加速度数据。

所述预设的人体运动后的恢复期的三维加速度数据为预设的人体运动后的N分钟内的恢复期的三维加速度数据。N可以为6。运动恢复期从运动停止那一刻开始,这一刻前后三维加速度信号平均幅度改变非常大,从而可以轻易找到运动恢复期的开始时间,然后往后数6分钟,即为运动恢复期。

具体地,若检测到焦虑的生理特征,则用人体三维加速度信号排除用户处于运动中、运动后的6分钟左右的关键恢复期、或身体大幅度突然的姿势改变状态。排除上述三种可能出现伪焦虑生理特征的情况后,即可得知检测到的焦虑生理特征的确由焦虑状态引起。

请参阅图3,图3示出了人体运动状态下,包含伪焦虑生理特征的RR间期数据,作为上述三种可能出现伪焦虑生理特征情况之一的示例。图4示出了预设的人体处于运动过程中的三维加速度信号、预设的人体身体突然的姿势改变时(如突然停止运动时)以及预设的人体运动后的恢复期的三维加速度信号(此时人体处于静坐状态)。从图4中可知,横坐标为时间(秒),纵坐标对应有X方向、Y方向和Z方向的加速度大小,运动过程中的三维加速度信号与静坐状态三维加速度的平均幅度相差非常大,差别明显,从而可以轻易地从该信号中判断身体的运动状态。举例而言,三个维度(X方向、Y方向和Z方向)上的三维加速度任意一维在特定时间间隔内(比如1秒)的信号去除基线漂移后的平均幅度大于特定阈值(比如1),则有较大幅度的身体活动。当用户的三维加速度数据显示用户没有较大幅度身体活动,也不处于运动后的关键恢复期(恢复期的起始时刻如图4标注的三维加速度平均幅度忽然减小,之后保持为小的三维加速度平均幅度的那一时刻,即图4中标注的运动停止时刻),即排除伪焦虑特征可能性,则确定所述用户处于焦虑状态。提醒用户及早采取措施以改善健康。

焦虑状态引起的焦虑生理特征,通常会在一段连续时间段内不止一次反复出现。比如,以104次RR间期作为每次焦虑生理特征检测的时间窗长,用预设的支持向量机,在硕士毕业答辩中检测到的焦虑持续时间,通常都比104次RR间期对应的时间长,如图5所示。其中检测到的焦虑状态中持续时间最短的一次是从104次RR间期计算而得。

请参阅图6,为了检测用户是否出现焦虑的生理特征,在步骤S210之前,所述方法还可以包括步骤S310、步骤S320、步骤S330和步骤S340。

步骤S310:获取用户的心电数据。

步骤S320:基于所述心电数据以及预设的RR间期序列计算规则,获得所述心电数据对应的RR间期时间序列。

步骤S330:基于所述心电数据对应的RR间期时间序列以及多种预设的特征提取规则,分别获得RR间期时间序列对应的多种特征数据。

步骤S340:从所述多种特征数据中获取与预设的分类器对应的最佳特征子集,并利用所述预设的分类器对所述最佳特征子集对应的心电数据进行分类,输出分类结果,以检测用户是否出现焦虑的生理特征。

进一步地,步骤S320可以包括:对所述心电数据去除基线漂移;基于预设的滑动时间窗以及去除基线漂移后的心电数据,获得所述滑动时间窗内的心电数据并定位所述滑动时间窗内的心电数据的最大值点作为R波峰点,以得到多个R波峰点;从所述多个R波峰点中,将相邻两个R峰点之间的时间间隔作为一个RR间期,以获得所述去除基线漂移后的心电数据对应的多个RR间期;将所述多个RR间期按照时间先后顺序排列,获得所述去除基线漂移后的心电数据对应的RR间期时间序列。

进一步地,所述多种预设的特征提取规则包括:RR间期均值规则、RR间期标准差规则、RR间期阶梯信号功率谱上处于0.04Hz-0.15Hz范围内的总功率规则、RR间期阶梯信号功率谱上处于0.15Hz-0.4Hz范围内的总功率规则、RR间期相邻差的均值规则、RR间期相邻差的标准差规则、RR间期相邻差绝对值的均值规则、RR间期相邻差绝对值的标准差规则、归一化的RR间期相邻差绝对值的均值规则、归一化的RR间期间隔一次差绝对值的均值规则、RR间期相邻差的绝对值大于0.05的比率规则、RR间期局部Hurst指数取值范围规则中的多种规则。

具体地,RR间期均值规则为RR间期时间序列的均值计算规则。根据所述均值计算规则计算所述心电数据对应的RR间期时间序列的均值,获得RR间期时间序列对应的均值。

RR间期标准差规则为RR间期时间序列的标准差计算规则。根据所述标准差计算规则计算所述心电数据对应的RR间期时间序列的标准差,获得RR间期时间序列对应的标准差。例如,基于RR间期均值规则,在得到了每一段数据分别可计算得到对应的均值之后,每一段数据分别可计算得到对应的标准差,分别表征了对应时间内心率的变异。

同理,RR间期阶梯信号功率谱上处于0.04Hz-0.15Hz范围内的总功率规则为RR间期阶梯信号功率谱上处于0.04Hz-0.15Hz范围内的总功率计算规则。计算获得RR间期阶梯信号功率谱上处于0.04Hz-0.15Hz范围内的总功率。

RR间期阶梯信号功率谱上处于0.15Hz-0.4Hz范围内的总功率规则为RR间期阶梯信号功率谱上处于0.15Hz-0.4Hz范围内的总功率计算规则。计算获得所述心电数据对应的RR间期阶梯信号功率谱上处于0.15Hz-0.4Hz范围内的总功率。

RR间期相邻差指的是:d1=xn+1-xn。RR间期间隔一次差指的是:d2=xn+2-xn,xn是第n个RR间期。

RR间期相邻差的均值规则为RR间期相邻差的均值计算规则。计算获取所述心电数据对应的RR间期相邻差的均值。

RR间期相邻差的标准差规则为RR间期相邻差的标准差计算规则。计算获取所述心电数据对应的RR间期相邻差的标准差。

RR间期相邻差绝对值的均值规则为RR间期相邻差绝对值的均值计算规则。计算获取所述心电数据对应的RR间期相邻差绝对值的均值。

RR间期相邻差绝对值的标准差规则为RR间期相邻差绝对值的标准差计算规则。计算获取所述心电数据对应的RR间期相邻差绝对值的标准差。

归一化的RR间期相邻差绝对值的均值规则为归一化的RR间期相邻差绝对值的均值计算规则。计算获取所述心电数据对应的归一化的RR间期相邻差绝对值的均值。

归一化的RR间期间隔一次差绝对值的均值规则为归一化的RR间期间隔一次差绝对值的均值计算规则。计算获取所述心电数据对应的归一化的RR间期间隔一次差绝对值的均值。

RR间期相邻差的绝对值大于0.05的比率规则为RR间期相邻差的绝对值大于0.05的比率计算规则。计算获取所述心电数据对应的RR间期相邻差的绝对值大于0.05的比率。

RR间期局部Hurst指数取值范围规则为RR间期局部Hurst指数取值范围计算规则。

RR间期局部Hurst指数取值范围计算规则为:使用特定种类的连续小波(经验种类:Gaussian连续小波)对特定长度(经验值104个RR间隔)的RR间隔序列,在特定尺度范围(经验值8.05-18.76)进行小波变换,取每一个RR间隔处小波变换系数的最大值的模,作为RR间期局部Hurst指数。然后用该RR间隔序列的最大RR间期局部Hurst指数减去最小RR间期局部Hurst指数,获得RR间期局部Hurst指数的取值范围。

作为一种实施方式,所述预设的分类器为二分类分类器。例如,所述二分类分类器为朴素贝叶斯分类器、支持向量机分类器、k最近邻分类器、线性判别分析分类器或二次判别分析分类器。

为了获取预设的分类器,在步骤S340之前,所述方法还可以包括:

获取样本人群中多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心电信号;

基于所述多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心电信号以及预设的RR间期序列计算规则,分别获得所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列、所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列;

为了获取多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心电信号,形成具有两类数据子集的大样本心电数据集,对大样本人群进行有观众和无观众演讲状态下的心电数据采集。采用TSST(Trier Social Stress Test)实验范式,用有观众演讲和无观众演讲分别获得普通大学生人群的焦虑(第一数据子集)和非焦虑(第二数据子集)心电数据集。在本实施例中,共收集到37名被试的37条焦虑状态下的第一心电信号,构成第一数据子集,即数据子集1;共收集到41名被试的41条非焦虑状态下的第一心电信号,构成第二数据子集,即数据子集2。从每条心电信号中获得对应的RR间期序列的方法与前述相应内容一致,这里不再赘述。

进一步地,基于所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列、所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列以及多种预设的特征提取规则,分别获得所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列各自对应的多种特征数据和所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列各自对应的多种特征数据;

将所有第一心电信号和第二心电信号记录对应的RR间期时间序列统一取为相同长度的数据向量;再按照前述相应的内容提取各自对应的多种特征数据,这里不再赘述。

将所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列各自对应的多种特征数据和所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列各自对应的多种特征数据作为分类器的训练数据,训练所述分类器,以此获取预设的分类器。

将数据样本表示为以RR间期时间序列的特征为分量的数据向量,数据向量的每一个分量即为一个RR间期特征。每条第一心电信号和第二心电信号均对应获得了12种特征数据。考虑到模式分类器种类繁多,不同分类器由于分类准则的不同,在分类中使用到的起关键分类识别作用的RR间期特征子集也不同,因此,模式分类器训练过程中使用特征选择,比如使用后向选择算法,来选出对特定模式分类器而言最优的RR间期特征子集。此处以五种分类器为例进行说明:朴素贝叶斯(Bayes,NB),支持向量机(Support Vector Machine,SVM),k最近邻(k-nearest neighbor,KNN),线性判别分析(linear discriminant analysis,LDA)和二次判别分析(quadratic discriminant analysis,QDA)。

用于举例说明的数据集是前述获得的数据子集1和数据子集2。在后向选择的过程中,使用错误率作为特征子集的评价函数,而错误率从50次的5折交叉验证中得到。5折交叉验证是将数据子集1和2分别留出1/5作为测试集,剩下的4/5用来训练分类器。训练集和测试集每次都从原始数据集中随机抽取,进行50次有放回随机抽样。用每一次测试错误样本数量的累加除以总的测试样本数来计算错误率。后向特征选择过程如图7所示,以上述五种分类器为例,评价函数起初随着特征选择次数的增加而下降,以SVM为例,到第9次时,评价函数最低,此时获得各分类器对应的最佳特征子集。五种分类器的最优特征子集及对应的交叉验证真阳性率和真阴性率如图8所示,支持向量机的结果更好,优选地,预设的分类器可以为预先训练好的支持向量机分类器。其中,特征编号1-12分别依次表示RR间期序列的标准差、RR间期阶梯信号功率谱上处于0.04Hz-0.15Hz范围内的总功率、RR间期阶梯信号功率谱上处于0.15Hz-0.4Hz范围内的总功率、RR间期相邻差的标准差、RR间期相邻差绝对值的均值、RR间期相邻差的均值、RR间期相邻差绝对值的标准差、归一化的RR间期相邻差绝对值的均值、归一化的RR间期间隔一次差绝对值的均值、RR间期相邻差的绝对值大于0.05的比率、RR间期局部Hurst指数取值范围和RR间期序列的均值。

本发明实施例提供的一种焦虑状态检测方法,获取用户的三维加速度数据;然后检测到用户出现焦虑的生理特征后,判断所述用户的三维加速度数据是否满足伪焦虑特征条件,若不满足,确定所述用户处于焦虑状态。以此通过三维加速度数据来排除伪焦虑特征,从而准确地得到用户真实的焦虑状态,提醒用户及早采取措施以改善健康。

请参阅图9,本发明实施例提供了一种焦虑状态检测装置400,所述装置400包括心电数据获取单元410、RR序列获得单元420、特征数据获得单元430、分类器获得单元440、分类单元450、第一获取单元460和判断单元470。

心电数据获取单元410,用于获取用户的心电数据。

RR序列获得单元420,用于基于所述心电数据以及预设的RR间期序列计算规则,获得所述心电数据对应的RR间期时间序列。

作为一种实施方式,所述RR序列获得单元420可以包括去除子单元421、R波峰获得子单元422、RR间期获得子单元423和RR序列获得子单元424。

去除子单元421,用于对所述心电数据去除基线漂移。

R波峰获得子单元422,用于基于预设的滑动时间窗以及去除基线漂移后的心电数据,获得所述滑动时间窗内的心电数据并定位所述滑动时间窗内的心电数据的最大值点作为R波峰点,以得到多个R波峰点。

RR间期获得子单元423,用于从所述多个R波峰点中,将相邻两个R峰点之间的时间间隔作为一个RR间期,以获得所述去除基线漂移后的心电数据对应的多个RR间期。

RR序列获得子单元424,用于将所述多个RR间期按照时间先后顺序排列,获得所述去除基线漂移后的心电数据对应的RR间期时间序列。

特征数据获得单元430,用于基于所述心电数据对应的RR间期时间序列以及多种预设的特征提取规则,分别获得RR间期时间序列对应的多种特征数据。

分类器获得单元440,用于获取样本人群中多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心电信号;基于所述多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心电信号以及预设的RR间期序列计算规则,分别获得所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列、所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列;基于所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列、所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列以及多种预设的特征提取规则,分别获得所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列各自对应的多种特征数据和所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列各自对应的多种特征数据;将所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列各自对应的多种特征数据和所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列各自对应的多种特征数据作为分类器的训练数据,训练所述分类器,以此获取预设的分类器。

分类单元450,用于从所述多种特征数据中获取与预设的分类器对应的最佳特征子集,并利用所述预设的分类器对所述最佳特征子集对应的心电数据进行分类,输出分类结果,以检测用户是否出现焦虑的生理特征。

第一获取单元460,用于获取用户的三维加速度数据。

判断单元470,用于检测到用户出现焦虑的生理特征后,判断所述用户的三维加速度数据是否满足伪焦虑特征条件,若不满足,确定所述用户处于焦虑状态。

所述伪焦虑特征条件为以下条件中的至少一个:

所述用户的三维加速度数据为预设的人体处于运动过程中的三维加速度数据;所述用户的三维加速度数据为预设的人体运动后的恢复期的三维加速度数据;以及所述用户的三维加速度数据为预设的人体身体突然的姿势改变时的三维加速度数据。

所述预设的人体运动后的恢复期的三维加速度数据为预设的人体运动后的N分钟内的恢复期的三维加速度数据。

以上各单元可以是由软件代码实现,此时,上述的各单元可存储于存储器102内。以上各单元同样可以由硬件例如集成电路芯片实现。

本发明实施例提供的焦虑状态检测装置400,其实现原理及产生的技术效果和前述方法实施例相同,为简要描述,装置实施例部分未提及之处,可参考前述方法实施例中相应内容。

在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本发明的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

另外,在本发明各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。

所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

焦虑状态检测方法及装置.pdf_第1页
第1页 / 共17页
焦虑状态检测方法及装置.pdf_第2页
第2页 / 共17页
焦虑状态检测方法及装置.pdf_第3页
第3页 / 共17页
点击查看更多>>
资源描述

《焦虑状态检测方法及装置.pdf》由会员分享,可在线阅读,更多相关《焦虑状态检测方法及装置.pdf(17页珍藏版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201710844028.7 (22)申请日 2017.09.18 (71)申请人 西南大学 地址 400700 重庆市北碚区天生路2号 (72)发明人 温万惠 刘光远 (74)专利代理机构 北京超凡志成知识产权代理 事务所(普通合伙) 11371 代理人 张海洋 (51)Int.Cl. A61B 5/16(2006.01) A61B 5/0402(2006.01) A61B 5/11(2006.01) (54)发明名称 焦虑状态检测方法及装置 (57)摘要 本发明实施例提供的一。

2、种焦虑状态检测方 法及装置, 涉及医疗电子技术领域。 所述方法包 括获取用户的三维加速度数据; 然后检测到用户 出现焦虑的生理特征后, 判断所述用户的三维加 速度数据是否满足伪焦虑特征条件, 若不满足, 确定所述用户处于焦虑状态。 以此通过三维加速 度数据来排除伪焦虑特征, 从而准确地得到用户 真实的焦虑状态, 提醒用户及早采取措施以改善 健康。 权利要求书2页 说明书9页 附图5页 CN 107595305 A 2018.01.19 CN 107595305 A 1.一种焦虑状态检测方法, 其特征在于, 所述方法包括: 获取用户的三维加速度数据; 检测到用户出现焦虑的生理特征后, 判断所述用。

3、户的三维加速度数据是否满足伪焦虑 特征条件, 若不满足, 确定所述用户处于焦虑状态。 2.根据权利要求1所述的方法, 其特征在于, 所述伪焦虑特征条件为以下条件中的至少 一个: 所述用户的三维加速度数据为预设的人体处于运动过程中的三维加速度数据; 所述用 户的三维加速度数据为预设的人体运动后的恢复期的三维加速度数据; 以及所述用户的三 维加速度数据为预设的人体身体突然的姿势改变时的三维加速度数据。 3.根据权利要求2所述的方法, 其特征在于, 所述预设的人体运动后的恢复期的三维加 速度数据为预设的人体运动后的N分钟内的恢复期的三维加速度数据。 4.根据权利要求1所述的方法, 其特征在于, 所述。

4、方法还包括: 获取用户的心电数据; 基于所述心电数据以及预设的RR间期序列计算规则, 获得所述心电数据对应的RR间期 时间序列; 基于所述心电数据对应的RR间期时间序列以及多种预设的特征提取规则, 分别获得RR 间期时间序列对应的多种特征数据; 从所述多种特征数据中获取与预设的分类器对应的最佳特征子集, 并利用所述预设的 分类器对所述最佳特征子集对应的心电数据进行分类, 输出分类结果, 以检测用户是否出 现焦虑的生理特征。 5.根据权利要求4所述的方法, 其特征在于, 所述基于所述心电数据以及预设的RR间期 序列计算规则, 获得所述心电数据对应的RR间期时间序列, 包括: 对所述心电数据去除基。

5、线漂移; 基于预设的滑动时间窗以及去除基线漂移后的心电数据, 获得所述滑动时间窗内的心 电数据并定位所述滑动时间窗内的心电数据的最大值点作为R波峰点, 以得到多个R波峰 点; 从所述多个R波峰点中, 将相邻两个R峰点之间的时间间隔作为一个RR间期, 以获得所 述去除基线漂移后的心电数据对应的多个RR间期; 将所述多个RR间期按照时间先后顺序排列, 获得所述去除基线漂移后的心电数据对应 的RR间期时间序列。 6.根据权利要求4所述的方法, 其特征在于, 所述多种预设的特征提取规则包括: RR间 期均值规则、 RR间期标准差规则、 RR间期阶梯信号功率谱上处于0.04Hz-0.15Hz范围内的总 。

6、功率规则、 RR间期阶梯信号功率谱上处于0.15Hz-0.4Hz范围内的总功率规则、 RR间期相邻 差的均值规则、 RR间期相邻差的标准差规则、 RR间期相邻差绝对值的均值规则、 RR间期相邻 差绝对值的标准差规则、 归一化的RR间期相邻差绝对值的均值规则、 归一化的RR间期间隔 一次差绝对值的均值规则、 RR间期相邻差的绝对值大于0.05的比率规则、 RR间期局部Hurst 指数取值范围规则中的多种规则。 7.根据权利要求4所述的方法, 其特征在于, 所述预设的分类器为二分类分类器。 8.根据权利要求7所述的方法, 其特征在于, 所述二分类分类器为朴素贝叶斯分类器、 权 利 要 求 书 1/。

7、2 页 2 CN 107595305 A 2 支持向量机分类器、 k最近邻分类器、 线性判别分析分类器或二次判别分析分类器。 9.根据权利要求4所述的方法, 其特征在于, 所述方法还包括: 获取样本人群中多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心电信 号; 基于所述多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心电信号以及 预设的RR间期序列计算规则, 分别获得所述多条焦虑状态下的第一心电信号各自对应的RR 间期时间序列、 所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列; 基于所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列、 所述多条非焦 虑状态下的。

8、第二心电信号各自对应的RR间期时间序列以及多种预设的特征提取规则, 分别 获得所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列各自对应的多种特 征数据和所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列各自对应的 多种特征数据; 将所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列各自对应的多种 特征数据和所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列各自对应 的多种特征数据作为分类器的训练数据, 训练所述分类器, 以此获取预设的分类器。 10.一种焦虑状态监测装置, 其特征在于, 所述装置包括: 第一获取单元, 用于获取用户的三维加速度数据; 判断单。

9、元, 用于检测到用户出现焦虑的生理特征后, 判断所述用户的三维加速度数据 是否满足伪焦虑特征条件, 若不满足, 确定所述用户处于焦虑状态。 权 利 要 求 书 2/2 页 3 CN 107595305 A 3 焦虑状态检测方法及装置 技术领域 0001 本发明涉及医疗电子技术领域, 具体而言, 涉及一种焦虑状态检测方法及装置。 背景技术 0002 现代社会快节奏高效率的生活方式极易引发大众的焦虑。 而长期焦虑是中青年人 群罹患抑郁症、 焦虑症及并发心血管系统、 内分泌系统和免疫系统等疾病的重要诱因。 目 前, 上述疾病基本都是发病后再诊断和治疗, 给患者带来精神上的极大痛苦和经济上的较 大负担。

10、。 在心理和生理诱因导致生理指标病理改变之前, 监测和预警生理指标异常, 并以适 当的干预手段阻断其继续发展为病理改变, 对改善中青年大众的亚健康状况具有重要意 义。 但是目前还没有出现检测人体是否处于焦虑状态的方案。 发明内容 0003 本发明的目的在于提供一种焦虑状态检测方法及装置, 以改善上述问题。 为了实 现上述目的, 本发明采取的技术方案如下: 0004 第一方面, 本发明实施例提供了一种焦虑状态检测方法, 所述方法包括获取用户 的三维加速度数据; 检测到用户出现焦虑的生理特征后, 判断所述用户的三维加速度数据 是否满足伪焦虑特征条件, 若不满足, 确定所述用户处于焦虑状态。 000。

11、5 第二方面, 本发明实施例提供了一种焦虑状态检测装置, 所述装置包括第一获取 单元和判断单元。 第一获取单元, 用于获取用户的三维加速度数据。 判断单元, 用于检测到 用户出现焦虑的生理特征后, 判断所述用户的三维加速度数据是否满足伪焦虑特征条件, 若不满足, 确定所述用户处于焦虑状态。 0006 本发明实施例提供的一种焦虑状态检测方法及装置, 获取用户的三维加速度数 据; 然后检测到用户出现焦虑的生理特征后, 判断所述用户的三维加速度数据是否满足伪 焦虑特征条件, 若不满足, 确定所述用户处于焦虑状态。 以此通过三维加速度数据来排除伪 焦虑特征, 从而准确地得到用户真实的焦虑状态, 提醒用。

12、户及早采取措施以改善健康。 0007 本发明的其他特征和优点将在随后的说明书阐述, 并且, 部分地从说明书中变得 显而易见, 或者通过实施本发明实施例了解。 本发明的目的和其他优点可通过在所写的说 明书、 权利要求书、 以及附图中所特别指出的结构来实现和获得。 附图说明 0008 为了更清楚地说明本发明实施例的技术方案, 下面将对实施例中所需要使用的附 图作简单地介绍, 应当理解, 以下附图仅示出了本发明的某些实施例, 因此不应被看作是对 范围的限定, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这 些附图获得其他相关的附图。 0009 图1为本发明实施例提供的电子设。

13、备的结构框图; 0010 图2为本发明实施例提供的焦虑状态检测方法的流程图; 说 明 书 1/9 页 4 CN 107595305 A 4 0011 图3为本发明实施例提供的人体运动状态下包含伪焦虑生理特征的RR间期数据示 意图; 0012 图4为本发明实施例提供的运动和静坐状态下的人体三维加速度信号示意图; 0013 图5为本发明实施例提供的焦虑状态检测方法在硕士毕业答辩中检测到的焦虑结 果示意图; 0014 图6为本发明实施例提供的焦虑状态检测方法的子流程图; 0015 图7为本发明实施例提供的焦虑状态检测方法中训练分类器里后向特征选择过程 示意图; 0016 图8为本发明实施例提供的五种。

14、分类器的最优特征子集及对应的交叉验证真阳性 率和真阴性率; 0017 图9为本发明实施例提供的焦虑状态检测装置的结构框图。 具体实施方式 0018 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明实施例 中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是 本发明一部分实施例, 而不是全部的实施例。 通常在此处附图中描述和示出的本发明实施 例的组件可以以各种不同的配置来布置和设计。 因此, 以下对在附图中提供的本发明的实 施例的详细描述并非旨在限制要求保护的本发明的范围, 而是仅仅表示本发明的选定实施 例。 基于本发明中的实施例, 本领域。

15、普通技术人员在没有作出创造性劳动前提下所获得的 所有其他实施例, 都属于本发明保护的范围。 0019 应注意到: 相似的标号和字母在下面的附图中表示类似项, 因此, 一旦某一项在一 个附图中被定义, 则在随后的附图中不需要对其进行进一步定义和解释。 同时, 在本发明的 描述中, 术语 “第一” 、“第二” 等仅用于区分描述, 而不能理解为指示或暗示相对重要性。 0020 图1示出了一种可应用于本发明实施例中的电子设备100的结构框图。 如图1所示, 电子设备100可以包括存储器102、 存储控制器104、 一个或多个(图1中仅示出一个)处理器 106、 外设接口108、 输入输出模块110、 。

16、音频模块112、 显示模块114、 射频模块116和焦虑状态 检测装置。 0021 存储器102、 存储控制器104、 处理器106、 外设接口108、 输入输出模块110、 音频模 块112、 显示模块114、 射频模块116各元件之间直接或间接地电连接, 以实现数据的传输或 交互。 例如, 这些元件之间可以通过一条或多条通讯总线或信号总线实现电连接。 焦虑状态 检测方法分别包括至少一个可以以软件或固件(firmware)的形式存储于存储器102中的软 件功能模块, 例如所述焦虑状态检测装置包括的软件功能模块或计算机程序。 0022 存储器102可以存储各种软件程序以及模块, 如本申请实施例。

17、提供的焦虑状态检 测方法及装置对应的程序指令/模块。 处理器106通过运行存储在存储器102中的软件程序 以及模块, 从而执行各种功能应用以及数据处理, 即实现本申请实施例中的焦虑状态检测 方法。 0023 存储器102可以包括但不限于随机存取存储器(Random Access Memory, RAM), 只 读存储器(Read Only Memory, ROM), 可编程只读存储器(Programmable Read-Only Memory, PROM), 可擦除只读存储器(Erasable Programmable Read-Only Memory, EPROM), 说 明 书 2/9 页。

18、 5 CN 107595305 A 5 电可擦除只读存储器(Electric Erasable Programmable Read-Only Memory, EEPROM)等。 0024 处理器106可以是一种集成电路芯片, 具有信号处理能力。 上述处理器可以是通用 处理器, 包括中央处理器(Central Processing Unit, 简称CPU)、 网络处理器(Network Processor, 简称NP)等; 还可以是数字信号处理器(DSP)、 专用集成电路(ASIC)、 现成可编程 门阵列(FPGA)或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 其可 以实。

19、现或者执行本申请实施例中的公开的各方法、 步骤及逻辑框图。 通用处理器可以是微 处理器或者该处理器也可以是任何常规的处理器等。 0025 所述外设接口108将各种输入/输入装置耦合至处理器106以及存储器102。 在一些 实施例中, 外设接口108、 处理器106以及存储控制器104可以在单个芯片中实现。 在其他一 些实例中, 他们可以分别由独立的芯片实现。 0026 输入输出模块110用于提供给用户输入数据实现用户与电子设备100的交互。 所述 输入输出模块110可以是, 但不限于, 鼠标和键盘等。 0027 音频模块112向用户提供音频接口, 其可包括一个或多个麦克风、 一个或者多个扬 声。

20、器以及音频电路。 0028 显示模块114在电子设备100与用户之间提供一个交互界面(例如用户操作界面) 或用于显示图像数据给用户参考。 在本实施例中, 所述显示模块114可以是液晶显示器或触 控显示器。 若为触控显示器, 其可为支持单点和多点触控操作的电容式触控屏或电阻式触 控屏等。 支持单点和多点触控操作是指触控显示器能感应到来自该触控显示器上一个或多 个位置处同时产生的触控操作, 并将该感应到的触控操作交由处理器106进行计算和处理。 0029 射频模块116用于接收以及发送电磁波, 实现电磁波与电信号的相互转换, 从而与 通信网络或者其他设备进行通信。 0030 可以理解, 图1所示的。

21、结构仅为示意, 电子设备100还可包括比图1中所示更多或者 更少的组件, 或者具有与图1所示不同的配置。 图1中所示的各组件可以采用硬件、 软件或其 组合实现。 0031 于本发明实施例中, 电子设备100可以作为用户终端, 或者作为服务器。 用户终端 可以为PC(personal computer)电脑、 平板电脑、 手机、 笔记本电脑、 智能电视、 机顶盒、 车载 终端等终端设备。 0032 请参阅图2, 本发明实施例提供了一种焦虑状态检测方法, 所述方法包括: 0033 步骤S200: 获取用户的三维加速度数据; 0034 步骤S210: 检测到用户出现焦虑的生理特征后, 判断所述用户的。

22、三维加速度数据 是否满足伪焦虑特征条件, 若不满足, 确定所述用户处于焦虑状态。 0035 基于步骤S210, 所述伪焦虑特征条件为以下条件中的至少一个: 0036 所述用户的三维加速度数据为预设的人体处于运动过程中的三维加速度数据; 所 述用户的三维加速度数据为预设的人体运动后的恢复期的三维加速度数据; 以及所述用户 的三维加速度数据为预设的人体身体突然的姿势改变时的三维加速度数据。 0037 所述预设的人体运动后的恢复期的三维加速度数据为预设的人体运动后的N分钟 内的恢复期的三维加速度数据。 N可以为6。 运动恢复期从运动停止那一刻开始, 这一刻前后 三维加速度信号平均幅度改变非常大, 从。

23、而可以轻易找到运动恢复期的开始时间, 然后往 后数6分钟, 即为运动恢复期。 说 明 书 3/9 页 6 CN 107595305 A 6 0038 具体地, 若检测到焦虑的生理特征, 则用人体三维加速度信号排除用户处于运动 中、 运动后的6分钟左右的关键恢复期、 或身体大幅度突然的姿势改变状态。 排除上述三种 可能出现伪焦虑生理特征的情况后, 即可得知检测到的焦虑生理特征的确由焦虑状态引 起。 0039 请参阅图3, 图3示出了人体运动状态下, 包含伪焦虑生理特征的RR间期数据, 作为 上述三种可能出现伪焦虑生理特征情况之一的示例。 图4示出了预设的人体处于运动过程 中的三维加速度信号、 预。

24、设的人体身体突然的姿势改变时(如突然停止运动时)以及预设的 人体运动后的恢复期的三维加速度信号(此时人体处于静坐状态)。 从图4中可知, 横坐标为 时间(秒), 纵坐标对应有X方向、 Y方向和Z方向的加速度大小, 运动过程中的三维加速度信 号与静坐状态三维加速度的平均幅度相差非常大, 差别明显, 从而可以轻易地从该信号中 判断身体的运动状态。 举例而言, 三个维度(X方向、 Y方向和Z方向)上的三维加速度任意一 维在特定时间间隔内(比如1秒)的信号去除基线漂移后的平均幅度大于特定阈值(比如1), 则有较大幅度的身体活动。 当用户的三维加速度数据显示用户没有较大幅度身体活动, 也 不处于运动后的。

25、关键恢复期(恢复期的起始时刻如图4标注的三维加速度平均幅度忽然减 小, 之后保持为小的三维加速度平均幅度的那一时刻, 即图4中标注的运动停止时刻), 即排 除伪焦虑特征可能性, 则确定所述用户处于焦虑状态。 提醒用户及早采取措施以改善健康。 0040 焦虑状态引起的焦虑生理特征, 通常会在一段连续时间段内不止一次反复出现。 比如, 以104次RR间期作为每次焦虑生理特征检测的时间窗长, 用预设的支持向量机, 在硕 士毕业答辩中检测到的焦虑持续时间, 通常都比104次RR间期对应的时间长, 如图5所示。 其 中检测到的焦虑状态中持续时间最短的一次是从104次RR间期计算而得。 0041 请参阅图。

26、6, 为了检测用户是否出现焦虑的生理特征, 在步骤S210之前, 所述方法 还可以包括步骤S310、 步骤S320、 步骤S330和步骤S340。 0042 步骤S310: 获取用户的心电数据。 0043 步骤S320: 基于所述心电数据以及预设的RR间期序列计算规则, 获得所述心电数 据对应的RR间期时间序列。 0044 步骤S330: 基于所述心电数据对应的RR间期时间序列以及多种预设的特征提取规 则, 分别获得RR间期时间序列对应的多种特征数据。 0045 步骤S340: 从所述多种特征数据中获取与预设的分类器对应的最佳特征子集, 并 利用所述预设的分类器对所述最佳特征子集对应的心电数据。

27、进行分类, 输出分类结果, 以 检测用户是否出现焦虑的生理特征。 0046 进一步地, 步骤S320可以包括: 对所述心电数据去除基线漂移; 基于预设的滑动时 间窗以及去除基线漂移后的心电数据, 获得所述滑动时间窗内的心电数据并定位所述滑动 时间窗内的心电数据的最大值点作为R波峰点, 以得到多个R波峰点; 从所述多个R波峰点 中, 将相邻两个R峰点之间的时间间隔作为一个RR间期, 以获得所述去除基线漂移后的心电 数据对应的多个RR间期; 将所述多个RR间期按照时间先后顺序排列, 获得所述去除基线漂 移后的心电数据对应的RR间期时间序列。 0047 进一步地, 所述多种预设的特征提取规则包括: 。

28、RR间期均值规则、 RR间期标准差规 则、 RR间期阶梯信号功率谱上处于0.04Hz-0.15Hz范围内的总功率规则、 RR间期阶梯信号功 率谱上处于0.15Hz-0.4Hz范围内的总功率规则、 RR间期相邻差的均值规则、 RR间期相邻差 说 明 书 4/9 页 7 CN 107595305 A 7 的标准差规则、 RR间期相邻差绝对值的均值规则、 RR间期相邻差绝对值的标准差规则、 归一 化的RR间期相邻差绝对值的均值规则、 归一化的RR间期间隔一次差绝对值的均值规则、 RR 间期相邻差的绝对值大于0.05的比率规则、 RR间期局部Hurst指数取值范围规则中的多种 规则。 0048 具体地。

29、, RR间期均值规则为RR间期时间序列的均值计算规则。 根据所述均值计算 规则计算所述心电数据对应的RR间期时间序列的均值, 获得RR间期时间序列对应的均值。 0049 RR间期标准差规则为RR间期时间序列的标准差计算规则。 根据所述标准差计算规 则计算所述心电数据对应的RR间期时间序列的标准差, 获得RR间期时间序列对应的标准 差。 例如, 基于RR间期均值规则, 在得到了每一段数据分别可计算得到对应的均值之后, 每 一段数据分别可计算得到对应的标准差, 分别表征了对应时间内心率的变异。 0050 同理, RR间期阶梯信号功率谱上处于0.04Hz-0.15Hz范围内的总功率规则为RR间 期阶。

30、梯信号功率谱上处于0.04Hz-0.15Hz范围内的总功率计算规则。 计算获得RR间期阶梯 信号功率谱上处于0.04Hz-0.15Hz范围内的总功率。 0051 RR间期阶梯信号功率谱上处于0.15Hz-0.4Hz范围内的总功率规则为RR间期阶梯 信号功率谱上处于0.15Hz-0.4Hz范围内的总功率计算规则。 计算获得所述心电数据对应的 RR间期阶梯信号功率谱上处于0.15Hz-0.4Hz范围内的总功率。 0052 RR间期相邻差指的是: d1xn+1-xn。 RR间期间隔一次差指的是: d2xn+2-xn, xn是第n 个RR间期。 0053 RR间期相邻差的均值规则为RR间期相邻差的均值。

31、计算规则。 计算获取所述心电数 据对应的RR间期相邻差的均值。 0054 RR间期相邻差的标准差规则为RR间期相邻差的标准差计算规则。 计算获取所述心 电数据对应的RR间期相邻差的标准差。 0055 RR间期相邻差绝对值的均值规则为RR间期相邻差绝对值的均值计算规则。 计算获 取所述心电数据对应的RR间期相邻差绝对值的均值。 0056 RR间期相邻差绝对值的标准差规则为RR间期相邻差绝对值的标准差计算规则。 计 算获取所述心电数据对应的RR间期相邻差绝对值的标准差。 0057 归一化的RR间期相邻差绝对值的均值规则为归一化的RR间期相邻差绝对值的均 值计算规则。 计算获取所述心电数据对应的归一。

32、化的RR间期相邻差绝对值的均值。 0058 归一化的RR间期间隔一次差绝对值的均值规则为归一化的RR间期间隔一次差绝 对值的均值计算规则。 计算获取所述心电数据对应的归一化的RR间期间隔一次差绝对值的 均值。 0059 RR间期相邻差的绝对值大于0.05的比率规则为RR间期相邻差的绝对值大于0.05 的比率计算规则。 计算获取所述心电数据对应的RR间期相邻差的绝对值大于0.05的比率。 0060 RR间期局部Hurst指数取值范围规则为RR间期局部Hurst指数取值范围计算规则。 0061 RR间期局部Hurst指数取值范围计算规则为: 使用特定种类的连续小波(经验种 类: Gaussian连。

33、续小波)对特定长度(经验值104个RR间隔)的RR间隔序列, 在特定尺度范围 (经验值8.05-18.76)进行小波变换, 取每一个RR间隔处小波变换系数的最大值的模, 作为 RR间期局部Hurst指数。 然后用该RR间隔序列的最大RR间期局部Hurst指数减去最小RR间期 局部Hurst指数, 获得RR间期局部Hurst指数的取值范围。 说 明 书 5/9 页 8 CN 107595305 A 8 0062 作为一种实施方式, 所述预设的分类器为二分类分类器。 例如, 所述二分类分类器 为朴素贝叶斯分类器、 支持向量机分类器、 k最近邻分类器、 线性判别分析分类器或二次判 别分析分类器。 0。

34、063 为了获取预设的分类器, 在步骤S340之前, 所述方法还可以包括: 0064 获取样本人群中多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心 电信号; 0065 基于所述多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心电信号 以及预设的RR间期序列计算规则, 分别获得所述多条焦虑状态下的第一心电信号各自对应 的RR间期时间序列、 所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列; 0066 为了获取多条焦虑状态下的第一心电信号和多条非焦虑状态下的第二心电信号, 形成具有两类数据子集的大样本心电数据集, 对大样本人群进行有观众和无观众演讲状态 下的心电数据采集。 。

35、采用TSST(Trier Social Stress Test)实验范式, 用有观众演讲和无 观众演讲分别获得普通大学生人群的焦虑(第一数据子集)和非焦虑(第二数据子集)心电 数据集。 在本实施例中, 共收集到37名被试的37条焦虑状态下的第一心电信号, 构成第一数 据子集, 即数据子集1; 共收集到41名被试的41条非焦虑状态下的第一心电信号, 构成第二 数据子集, 即数据子集2。 从每条心电信号中获得对应的RR间期序列的方法与前述相应内容 一致, 这里不再赘述。 0067 进一步地, 基于所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序 列、 所述多条非焦虑状态下的第二心电信号各自。

36、对应的RR间期时间序列以及多种预设的特 征提取规则, 分别获得所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列各 自对应的多种特征数据和所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间 序列各自对应的多种特征数据; 0068 将所有第一心电信号和第二心电信号记录对应的RR间期时间序列统一取为相同 长度的数据向量; 再按照前述相应的内容提取各自对应的多种特征数据, 这里不再赘述。 0069 将所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列各自对应的 多种特征数据和所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列各自 对应的多种特征数据作为分类器的训练数据。

37、, 训练所述分类器, 以此获取预设的分类器。 0070 将数据样本表示为以RR间期时间序列的特征为分量的数据向量, 数据向量的每一 个分量即为一个RR间期特征。 每条第一心电信号和第二心电信号均对应获得了12种特征数 据。 考虑到模式分类器种类繁多, 不同分类器由于分类准则的不同, 在分类中使用到的起关 键分类识别作用的RR间期特征子集也不同, 因此, 模式分类器训练过程中使用特征选择, 比 如使用后向选择算法, 来选出对特定模式分类器而言最优的RR间期特征子集。 此处以五种 分类器为例进行说明: 朴素贝叶斯(Bayes, NB), 支持向量机(Support Vector Machine, 。

38、SVM), k最近邻(k-nearest neighbor, KNN), 线性判别分析(linear discriminant analysis, LDA)和二次判别分析(quadratic discriminant analysis,QDA)。 0071 用于举例说明的数据集是前述获得的数据子集1和数据子集2。 在后向选择的过程 中, 使用错误率作为特征子集的评价函数, 而错误率从50次的5折交叉验证中得到。 5折交叉 验证是将数据子集1和2分别留出1/5作为测试集, 剩下的4/5用来训练分类器。 训练集和测 试集每次都从原始数据集中随机抽取, 进行50次有放回随机抽样。 用每一次测试错误样。

39、本 说 明 书 6/9 页 9 CN 107595305 A 9 数量的累加除以总的测试样本数来计算错误率。 后向特征选择过程如图7所示, 以上述五种 分类器为例, 评价函数起初随着特征选择次数的增加而下降, 以SVM为例, 到第9次时, 评价 函数最低, 此时获得各分类器对应的最佳特征子集。 五种分类器的最优特征子集及对应的 交叉验证真阳性率和真阴性率如图8所示, 支持向量机的结果更好, 优选地, 预设的分类器 可以为预先训练好的支持向量机分类器。 其中, 特征编号1-12分别依次表示RR间期序列的 标准差、 RR间期阶梯信号功率谱上处于0.04Hz-0.15Hz范围内的总功率、 RR间期阶。

40、梯信号功 率谱上处于0.15Hz-0.4Hz范围内的总功率、 RR间期相邻差的标准差、 RR间期相邻差绝对值 的均值、 RR间期相邻差的均值、 RR间期相邻差绝对值的标准差、 归一化的RR间期相邻差绝对 值的均值、 归一化的RR间期间隔一次差绝对值的均值、 RR间期相邻差的绝对值大于0.05的 比率、 RR间期局部Hurst指数取值范围和RR间期序列的均值。 0072 本发明实施例提供的一种焦虑状态检测方法, 获取用户的三维加速度数据; 然后 检测到用户出现焦虑的生理特征后, 判断所述用户的三维加速度数据是否满足伪焦虑特征 条件, 若不满足, 确定所述用户处于焦虑状态。 以此通过三维加速度数据。

41、来排除伪焦虑特 征, 从而准确地得到用户真实的焦虑状态, 提醒用户及早采取措施以改善健康。 0073 请参阅图9, 本发明实施例提供了一种焦虑状态检测装置400, 所述装置400包括心 电数据获取单元410、 RR序列获得单元420、 特征数据获得单元430、 分类器获得单元440、 分 类单元450、 第一获取单元460和判断单元470。 0074 心电数据获取单元410, 用于获取用户的心电数据。 0075 RR序列获得单元420, 用于基于所述心电数据以及预设的RR间期序列计算规则, 获 得所述心电数据对应的RR间期时间序列。 0076 作为一种实施方式, 所述RR序列获得单元420可以。

42、包括去除子单元421、 R波峰获得 子单元422、 RR间期获得子单元423和RR序列获得子单元424。 0077 去除子单元421, 用于对所述心电数据去除基线漂移。 0078 R波峰获得子单元422, 用于基于预设的滑动时间窗以及去除基线漂移后的心电数 据, 获得所述滑动时间窗内的心电数据并定位所述滑动时间窗内的心电数据的最大值点作 为R波峰点, 以得到多个R波峰点。 0079 RR间期获得子单元423, 用于从所述多个R波峰点中, 将相邻两个R峰点之间的时间 间隔作为一个RR间期, 以获得所述去除基线漂移后的心电数据对应的多个RR间期。 0080 RR序列获得子单元424, 用于将所述多。

43、个RR间期按照时间先后顺序排列, 获得所述 去除基线漂移后的心电数据对应的RR间期时间序列。 0081 特征数据获得单元430, 用于基于所述心电数据对应的RR间期时间序列以及多种 预设的特征提取规则, 分别获得RR间期时间序列对应的多种特征数据。 0082 分类器获得单元440, 用于获取样本人群中多条焦虑状态下的第一心电信号和多 条非焦虑状态下的第二心电信号; 基于所述多条焦虑状态下的第一心电信号和多条非焦虑 状态下的第二心电信号以及预设的RR间期序列计算规则, 分别获得所述多条焦虑状态下的 第一心电信号各自对应的RR间期时间序列、 所述多条非焦虑状态下的第二心电信号各自对 应的RR间期时。

44、间序列; 基于所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序 列、 所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间序列以及多种预设的特 征提取规则, 分别获得所述多条焦虑状态下的第一心电信号各自对应的RR间期时间序列各 说 明 书 7/9 页 10 CN 107595305 A 10 自对应的多种特征数据和所述多条非焦虑状态下的第二心电信号各自对应的RR间期时间 序列各自对应的多种特征数据; 将所述多条焦虑状态下的第一心电信号各自对应的RR间期 时间序列各自对应的多种特征数据和所述多条非焦虑状态下的第二心电信号各自对应的 RR间期时间序列各自对应的多种特征数据作为分类器的训。

45、练数据, 训练所述分类器, 以此 获取预设的分类器。 0083 分类单元450, 用于从所述多种特征数据中获取与预设的分类器对应的最佳特征 子集, 并利用所述预设的分类器对所述最佳特征子集对应的心电数据进行分类, 输出分类 结果, 以检测用户是否出现焦虑的生理特征。 0084 第一获取单元460, 用于获取用户的三维加速度数据。 0085 判断单元470, 用于检测到用户出现焦虑的生理特征后, 判断所述用户的三维加速 度数据是否满足伪焦虑特征条件, 若不满足, 确定所述用户处于焦虑状态。 0086 所述伪焦虑特征条件为以下条件中的至少一个: 0087 所述用户的三维加速度数据为预设的人体处于运。

46、动过程中的三维加速度数据; 所 述用户的三维加速度数据为预设的人体运动后的恢复期的三维加速度数据; 以及所述用户 的三维加速度数据为预设的人体身体突然的姿势改变时的三维加速度数据。 0088 所述预设的人体运动后的恢复期的三维加速度数据为预设的人体运动后的N分钟 内的恢复期的三维加速度数据。 0089 以上各单元可以是由软件代码实现, 此时, 上述的各单元可存储于存储器102内。 以上各单元同样可以由硬件例如集成电路芯片实现。 0090 本发明实施例提供的焦虑状态检测装置400, 其实现原理及产生的技术效果和前 述方法实施例相同, 为简要描述, 装置实施例部分未提及之处, 可参考前述方法实施例。

47、中相 应内容。 0091 在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 也可以通过 其它的方式实现。 以上所描述的装置实施例仅仅是示意性的, 例如, 附图中的流程图和框图 显示了根据本发明的多个实施例的装置、 方法和计算机程序产品的可能实现的体系架构、 功能和操作。 在这点上, 流程图或框图中的每个方框可以代表一个模块、 程序段或代码的一 部分, 所述模块、 程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执 行指令。 也应当注意, 在有些作为替换的实现方式中, 方框中所标注的功能也可以以不同于 附图中所标注的顺序发生。 例如, 两个连续的方框实际上可以基本并。

48、行地执行, 它们有时也 可以按相反的顺序执行, 这依所涉及的功能而定。 也要注意的是, 框图和/或流程图中的每 个方框、 以及框图和/或流程图中的方框的组合, 可以用执行规定的功能或动作的专用的基 于硬件的系统来实现, 或者可以用专用硬件与计算机指令的组合来实现。 0092 另外, 在本发明各个实施例中的各功能模块可以集成在一起形成一个独立的部 分, 也可以是各个模块单独存在, 也可以两个或两个以上模块集成形成一个独立的部分。 0093 所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时, 可以 存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说 。

49、对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来, 该计 算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个 人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 说 明 书 8/9 页 11 CN 107595305 A 11 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory)、 随机存取存 储器(RAM, Random Access Memory)、 磁碟或者光盘等各种可以存储程序代码的介质。 需要 说明的是, 在本文中, 诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与 另一个实体或操作区分开来, 而不一定要求或者暗示这些实体或操作之间存在任何这种实 际的关系或者顺序。 而且, 术语 “包括” 、“包含” 或者其任。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 >


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1