睡眠状态分析中睡眠周期检测方法和系统.pdf

上传人:三** 文档编号:8036111 上传时间:2019-12-17 格式:PDF 页数:13 大小:849.97KB
返回 下载 相关 举报
摘要
申请专利号:

CN201610839398.7

申请日:

20160921

公开号:

CN106333674A

公开日:

20170118

当前法律状态:

有效性:

审查中

法律详情:

IPC分类号:

A61B5/0476,A61B5/0496,A61B5/00

主分类号:

A61B5/0476,A61B5/0496,A61B5/00

申请人:

广州视源电子科技股份有限公司

发明人:

赵巍,胡静,韩志

地址:

510530 广东省广州市广州黄埔区云埔四路6号

优先权:

CN201610839398A

专利代理机构:

广州华进联合专利商标代理有限公司

代理人:

潘桂生

PDF下载: PDF下载
内容摘要

本发明涉及一种睡眠状态分析中睡眠周期检测方法和系统,其中所述方法包括:对用户在睡眠过程中产生的脑电信号进行小波分解,并根据预设的低频段的小波系数重建脑电信号,得到低频脑电信号;从重建的所述低频脑电信号上提取脑电波;根据K综合波的波形特征从所述脑电波中检测K综合波,当检测到K综合波时,判断用户当前处于非眼快动睡眠的S2周期;根据δ波波形特征从所述脑电波中检测δ波,统计检测到δ波的数量;并根据δ波的数量确定用户的非眼快动睡眠的S3和S4周期。本发明的技术可以避免脑电信号受到干扰影响,可以准确地检测用户当前处于非眼快动睡眠S2‑S4的哪个时期,具有更高的准确率。

权利要求书

1.一种睡眠状态分析中睡眠周期检测方法,其特征在于,包括:对用户在睡眠过程中产生的脑电信号进行小波分解,并根据预设的低频段的小波系数重建脑电信号,得到低频脑电信号;从重建的所述低频脑电信号上提取脑电波;根据K综合波的波形特征从所述脑电波中检测K综合波,当检测到K综合波时,判断用户当前处于非眼快动睡眠的S2周期;根据δ波波形特征从所述脑电波中检测δ波,统计检测到δ波的数量;并根据δ波的数量确定用户的非眼快动睡眠的S3和S4周期。 2.根据权利要求1所述的睡眠状态分析中睡眠周期检测方法,其特征在于,所述从重建的所述低频脑电信号上提取脑电波的步骤包括:从低频脑电信号的波形上找出局部极小值点,并将其标记为波谷;将相邻两个波谷之间最大的局部极大值点标记为波峰;根据波形上每个左波谷-波峰-右波谷对的高度判断出脑电波。 3.根据权利要求2所述的睡眠状态分析中睡眠周期检测方法,其特征在于,所述根据波形上每个左波谷-波峰-右波谷对的高度判断出脑电波的步骤包括:计算每个左波谷-波峰-右波谷对的高度;若左右两个波谷的高度差小于预设的差值阈值,则将该波形判为一个脑电波;若左右两个波谷的高度差大于差值阈值,且左波谷-上升支波峰的高度小于波峰-下降支右波谷的一半,则将该波形判为一个脑电波;若左右两个波谷的高度差大于差值阈值,且上升支的高度大于下降支的一半,则抛弃右波谷并在波形上寻找接下来的第二个波谷,重新进行判断。 4.根据权利要求2所述的睡眠状态分析中睡眠周期检测方法,其特征在于,所述根据K综合波的波形特征从所述脑电波中检测K综合波的步骤包括如下公式:式中,p与p分别表示左右波谷数据点的坐标,fs为脑电波的采样率,与分别表示脑电信号与眼电信号在区间[p,p]上的最大值减最小值的取值,peak_thre与trough_thre分别表示K综合波的波峰阈值与波谷阈值,w表示K综合波,true表示判断结果为真,if表示满足的条件。 5.根据权利要求2所述的睡眠状态分析中睡眠周期检测方法,其特征在于,所述根据δ波波形特征从所述脑电波中检测δ波的步骤包括如下公式:式中,pti与pt分别表示左右波谷数据点的坐标,fs为脑电波的采样率,与分别表示脑电信号与眼电信号在区间[p,p]上的最大值减最小值的取值,height_thre表示δ波的幅度阈值;w表示δ波,true表示判断结果为真,if表示满足的条件。 6.根据权利要求1至5任一项所述的睡眠状态分析中睡眠周期检测方法,其特征在于,当检测到K综合波时,还包括:在检测到K综合波与δ波的时间窗口内,对眼电信号的幅度进行检测,当眼电信号的幅值超过预设幅度阈值,则判定检测到的K综合波与δ波属于伪阳性结果;或在统计检测到δ波的数量的步骤前,还包括:在检测到δ波的时间窗口内,对眼电信号的幅度进行检测,当眼电信号的幅值超过预设幅度阈值,则判定检测到δ波属于伪阳性结果。 7.根据权利要求6所述的睡眠状态分析中睡眠周期检测方法,其特征在于,所述预设的幅度阈值为75微伏,。 8.根据权利要求4所述的睡眠状态分析中睡眠周期检测方法,其特征在于,所述K综合波的波峰阈值与波谷阈值分别为+100微伏与-100微伏,或所述δ波的幅度阈值为75-150微伏。 9.根据权利要求1所述的睡眠状态分析中睡眠周期检测方法,其特征在于,所述根据δ波的数量确定用户的非眼快动睡眠的S3和S4周期的步骤包括:当δ波数量属于[f(m),f(m)]时,判定用户当前处于非眼快动睡眠的S3周期;当δ波数量大于等于f(m)时,判定用户当前处于非眼快动睡眠的处于S4周期;f(m)=m/t×p;f(m)=m/t×p;f(m)=f(m)+1;其中,检测脑电波的时间窗口的长度为m,t为δ波持续时间的均值,(p,p)为δ波占脑电信号的时间范围。 10.一种睡眠状态分析中睡眠周期检测系统,其特征在于,包括:低频信号获取模块,用于对用户在睡眠过程中产生的脑电信号进行小波分解,并根据预设的低频段的小波系数重建脑电信号,得到低频脑电信号;脑电波提取模块,用于从重建的所述低频脑电信号上提取脑电波;S2周期检测模块,用于根据K综合波的波形特征从所述脑电波中检测K综合波,当检测到K综合波时,判断用户当前处于非眼快动睡眠的S2周期;S3-S4周期检测模块,用于根据δ波波形特征从所述脑电波中检测δ波,统计检测到δ波的数量;并根据δ波的数量确定用户的非眼快动睡眠的S3和S4周期。

说明书

技术领域

本发明涉及辅助睡眠技术领域,特别是涉及一种睡眠状态分析中睡眠周期检测方法和系统。

背景技术

目前市面上已经有一些设备来帮助人们入睡,提高睡眠质量。睡眠状态分析是了解用户睡眠质量的重要手段,而在此过程中,需要对用户睡眠状态进行检测,以准确知道用户是否睡着。

多导睡眠图(Polysomnography,PSG),又称睡眠脑电图,是目前临床上用于睡眠诊断和分析的“金标准”。多导睡眠图利用多种生命体征对睡眠进行分析,在这些体征信号中,脑电处于核心地位;利用脑电波4种节律:δ波(1-3Hz),θ波(4-7Hz),α波(8-12Hz),β波(14-30Hz)的频率特性。根据不同节律的脑电波和眼球运动特征,除了清醒阶段以外,睡眠可以分成非眼快动睡眠(No Rapid Eye Movement Sleep,NREM sleep)和眼快动睡眠(Rapid Eye Movement Sleep,REM sleep)周期。其中非眼快动睡眠又可以分为4个时期:S1期(完全清醒至睡眠之间的过渡阶段),S2期(浅睡阶段),S3期(中等深度睡眠),S4期(深睡期)。

传统的检测睡眠状态是通过训练识别模型来对脑电信号进行识别,例如对于非眼快动睡眠的4个时期时,通过对脑电信号进行小波分解与重构,到脑电信号的四种频段(δ波频段、θ波频段、α波频段和β波频段)的信号,通过将这几种脑电波信号特征输入识别模型进行识别。

由于脑电信号的个人特异性很强,并且脑电的强度很弱(脑电为微伏级别,心电为毫伏级别),在信号采集时极易被外界信号所干扰。因此,利用计算机对脑电信号进行睡眠分析研究时,传统的方法容易受到干扰影响,难以准确地检测用户当前处于非眼快动睡眠S2-S4的哪个时期,准确率较低。

发明内容

基于此,有必要针对上述问题,提供一种睡眠状态分析中睡眠周期检测方法和系统,有效地提高睡眠状态识别的准确率。

一种睡眠状态分析中睡眠周期检测方法,包括:

对用户在睡眠过程中产生的脑电信号进行小波分解,并根据预设的低频段的小波系数重建脑电信号,得到低频脑电信号;

从重建的所述低频脑电信号上提取脑电波;

根据K综合波的波形特征从所述脑电波中检测K综合波,当检测到K综合波时,判断用户当前处于非眼快动睡眠的S2周期;

根据δ波波形特征从所述脑电波中检测δ波,统计检测到δ波的数量;并根据δ波的数量确定用户的非眼快动睡眠的S3和S4周期。

一种睡眠状态分析中睡眠周期检测系统,包括:

低频信号获取模块,用于对用户在睡眠过程中产生的脑电信号进行小波分解,并根据预设的低频段的小波系数重建脑电信号,得到低频脑电信号;

脑电波提取模块,用于从重建的所述低频脑电信号上提取脑电波;

S2周期检测模块,用于根据K综合波的波形特征从所述脑电波中检测K综合波,当检测到K综合波时,判断用户当前处于非眼快动睡眠的S2周期;

S3-S4周期检测模块,用于根据δ波波形特征从所述脑电波中检测δ波,统计检测到δ波的数量;并根据δ波的数量确定用户的非眼快动睡眠的S3和S4周期。

上述睡眠状态分析中睡眠周期检测方法和系统,对脑电信号进行小波分解,并根据低频段的小波系数重建脑电信号,在低频部分上根据K综合波,确定非眼快动睡眠的S2周期,然后再在低频部分上检测δ波并统计数量,并通过该数量确定用户非眼快动睡眠的S3和S4周期。该方案可以避免脑电信号受到干扰影响,可以准确地检测用户当前处于非眼快动睡眠S2-S4的哪个时期,具有更高的准确率。

附图说明

图1为一个实施例的睡眠状态分析中睡眠周期检测方法的流程图;

图2是K综合波的波形示意图;

图3是δ波的波形示意图;

图4为判断为脑电波的波形示意图;

图5是非眼快动睡眠S2期的脑电信号上K综合波的检测结果示意图;

图6是非眼快动睡眠S3期的脑电信号上δ波的检测结果示意图;

图7为检测非眼快动睡眠的S2-S4周期的流程图;

图8为一个实施例的睡眠状态分析中睡眠周期检测系统结构示意图。

具体实施方式

下面结合附图阐述本发明的睡眠状态分析中睡眠周期检测方法和系统的实施例。

参考图1所示,图1为一个实施例的睡眠状态分析中睡眠周期检测方法的流程图,包括:

S101,对用户在睡眠过程中产生的脑电信号进行小波分解,并根据预设的低频段的小波系数重建脑电信号,得到低频脑电信号;

上述步骤,在对用户进行辅助睡眠等睡眠状态分析中,通过用户佩戴相关传感设备,采集用户在睡眠过程中产生的脑电信号,在采集脑电信号时,可以以30s为一帧进行采集,对每帧脑电信号进行后续处理。

在临床上,K综合波的出现是进入睡眠状态的典型标志,K综合波的频率较低。因此可以在低频部分上对脑电信号进行分析,以排除高频干扰,在此,首先对脑电信号进行小波分解,并根据低频段的小波系数重建脑电信号,然后在重建的低频脑电信号上提取脑电波;上述预设的低频段,至少选取0~2Hz频段的范围,在该频段内检测出K综合波。另外,如果考虑到后续也需要对δ波进行处理,可以固定选取0~4Hz频段。

S102,从重建的所述低频脑电信号上提取脑电波;

此步骤中,是根据波形特征,从重建的低频脑电信号上提取脑电波。参考图2和图3所示,图2是K综合波的波形示意图,图3是δ波的波形示意图;可见K综合波是一种具有高波幅的复合双相或者多相的慢波,持续时间约为1~2s,波幅约为200~300微伏(uV);δ波活动的频率为1~3Hz,波幅约为20~200微伏。在此,通过小波分解与低频重构后,需要从低频脑电信号中提取出脑电波。

作为一个实施例,结合K综合波的在波形上具有复合双相或者多相且波幅较高的特点,在此将其简化成具有高波峰、深波谷、持续时间为1~2s左右的脑电波。δ波具有波幅较高、频率较低的特点,将其简化成具有高振幅、持续时间为0.5s~2s左右的脑电波。

在一个实施例中,从低频脑电信号上提取脑电波的过程,可以包括如下步骤:

从低频脑电信号的波形上找出局部极小值点,并将其标记为波谷;将相邻两个波谷之间最大的局部极大值点标记为波峰;根据波形上每个左波谷-波峰-右波谷对的高度判断出脑电波;

参考图4所示,图4为判断为脑电波的波形示意图,在判断过程中,首先计算每个左波谷-波峰-右波谷对的高度,然后分为以下三种方式:

(1)若左右两个波谷的高度差小于预设的差值阈值,则将该波形判为一个脑电波;具体的,如图4(a)所示,如果两个波谷的高度差小于阈值时(如10微伏),判为一个脑电波。

(2)若左右两个波谷的高度差大于差值阈值,且左波谷-上升支波峰的高度小于波峰-下降支右波谷的一半,则将该波形判为一个脑电波;具体的,如图4(b)所示,如果两个波谷的高度差大于阈值,且左波谷-波峰(上升支)的高度小于波峰-右波谷(下降支)的一半,则将其判为一个脑电波。

(3)若左右两个波谷的高度差大于差值阈值,且上升支的高度大于下降支的一半,则抛弃右波谷并在波形上寻找接下来的第二个波谷,重新进行判断;具体的,如图4(c)所示,如果两个波谷的高度差大于阈值,且上升支的高度大于下降支的一半,则抛弃右波谷并寻找接下来的第二个波谷,重新进行计算和判断。

上述实施例的方案中,在检测K综合波阶段,可以将预设的低频段选取0~2Hz频段的范围,在该频段内检测出K综合波。可以将预设的低频段选取0~4Hz频段的范围,在该频段内检测出δ波。

S103,根据K综合波的波形特征从所述脑电波中检测K综合波,当检测到K综合波时,判断用户当前处于非眼快动睡眠的S2周期;

如上所述,K综合波是一种具有高波幅的复合双相或者多相的慢波,持续时间约为1~2s,波幅约为200~300微伏。在低频段的脑电信号上提取出脑电波后,根据K综合波的波形特点来检测K综合波。

在此步骤中,可以根据K综合波的波形特征,先设定K综合波的幅度阈值,结合提取的脑电波的采样率,从脑电波中检测K综合波。

在一个实施例中,从所述脑电波中检测K综合波的步骤,可以包括如下公式:

w k - t r u e , i f height E O G t r o u g h _ l e f : t r i u g h _ r i g h t < h e i g h t _ thre E O G 1 < ( p t r o u g h _ r i g h t - p t r o u g h _ l e f t ) / f s < 2 amp E E G t r o u g h < t r o u g h _ thre E E G amp E E G p e a k > p e a k _ thre E E G - - - ( 1 ) ]]>

式中,ptrough_right与ptrough_left分别表示左右波谷数据点的坐标,fs为脑电波的采样率,与分别表示脑电信号与眼电信号在区间[ptrough_right,ptrough_left]上的最大值减最小值的取值,peak_threEEG与trough_threEEG分别表示K综合波的波峰阈值与波谷阈值,wk表示K综合波,true表示判断结果为真,if表示满足的条件。

上述实施例中,K综合波的波峰阈值与波谷阈值可以分别取+100微伏与-100微伏。

由于是在小波分解后的脑电信号上而非原始脑电信号上进行检波,因此K综合波的幅度阈值可较临床标准适当降低。K综合波的波峰的阈值peak_threEEG与波谷的阈值trough_threEEG可以分别设为正负100微伏;上述阈值设置经过验证,能够得到较好的检测效果。

作为一个实施例,对于上述检测到的K综合波,为了避免眼电信号造成的干扰,在检测到K综合波的时间窗口内,对眼电信号的幅度进行检测,当眼电信号的幅值超过预设幅度阈值(例如75微伏),则判定检测到的K综合波属于伪阳性(false positive)结果,并不是真正的K综合波,丢弃该检测结果,排除眼电伪迹的干扰。

参考图5所示,图5是非眼快动睡眠S2期的脑电信号上K综合波的检测结果示意图;图5(a)中波动较大的波形为原始脑电信号,波动较小的波形为低频段重建的脑电信号;图5(b)中波形部分是低频段重建的脑电信号,圆圈部分为检出的K综合波。

S104,根据δ波波形特征从所述脑电波中检测δ波,统计检测到δ波的数量;并根据δ波的数量确定用户的非眼快动睡眠的S3和S4周期。

此步骤中,在检测到K综合波后,表明用户已经进入了睡眠状态,此时就可以检测δ波,根据δ波的数量判断用户的非眼快动睡眠的S3和S4周期。

如上所述,δ波是一种具有波幅较高,频率较低的特点,持续时间为0.5s~2s左右的脑电波,在低频段的脑电信号上提取出脑电波后,根据δ波的波形特点来检测δ波。

在一个实施例中,从所述脑电波中检测δ波的步骤,可以包括如下公式:

w δ = t r u e , i f height E O G t r o u g h _ l e f : t r o u g h _ r i g h t < h e i g h t _ thre E O G 0.5 < ( p t r o u g h _ r i g h t - p t r o u g h _ l e f t ) / f s < 2 height E E G t r o u g h _ l e f : t r o u g h _ r i g h t > h e i g h t _ thre E E G - - - ( 2 ) ]]>

式中,ptrough_right与ptrough_left分别表示左右波谷数据点的坐标,fs为脑电波的采样率,与分别表示脑电信号与眼电信号在区间[ptrough_right,ptrough_left]上的最大值减最小值的取值,height_threEEG表示δ波的幅度阈值;wδ表示δ波,true表示判断结果为真,if表示满足的条件。

上述实施例中,δ波的幅度阈值可以取75-150微伏。

由于是在小波分解后的脑电信号上而非原始脑电信号上进行检波,因此δ波的幅度阈值可较临床标准适当降低,δ波的幅度阈值height_threEEG为75至150微伏;上述阈值设置经过验证,能够得到较好的检测效果。

作为一个实施例,对于上述检测到的δ波,为了避免眼电信号造成的干扰,在检测到δ波的时间窗口内,对眼电信号的幅度进行检测,当眼电信号的幅值超过预设幅度阈值(例如75微伏),则判定检测到的δ波属于伪阳性(false positive)结果,并不是真正的δ波,丢弃该检测结果,排除眼电伪迹的干扰。

参考图6所示,图6是非眼快动睡眠S3期的脑电信号上δ波的检测结果示意图;图6(a)中波动较大的波形为原始脑电信号,波动较小的波形为低频段重建的脑电信号;图6(b)中波形部分是是低频段重建的脑电信号,圆圈部分为检出的δ波。

对于根据δ波的数量确定用户的非眼快动睡眠的S3和S4周期的方法,主要是依据检测到δ波的数量来确定,具体确定可以依据以下判断原则:

当δ波数量属于[fL(m),fH(m)]时,判定用户当前处于非眼快动睡眠的S3周期;当δ波数量大于等于f0(m)时,判定用户当前处于非眼快动睡眠的处于S4周期;

fL(m)=m/t×pL;

fL(m)=m/t×pH;

f0(m)=fH(m)+1;

其中,检测脑电波的时间窗口的长度为m,t为δ波持续时间的均值,(pL,pH)为δ波占脑电信号的时间范围。

δ波的持续时间一般为0.5~2秒,多在1.5s左右,因此可以取值为1.5秒,脑电信号检测的时间窗口长度为30秒,即以30秒为一帧进行分析。则在S3期时,δ波占脑电信号的时间为20%~50%,即6秒~15秒,由此可以算出δ波的数量fL(m)=4,fL(m)=9,f0(m)=10。

本发明实施例的睡眠状态分析中睡眠周期检测方法,具有较高的准确性。实验证明,在多例利用脑电信号进行的非眼快动睡眠的S2-S4周期的检测中,检测的准确率达到了95%以上。

参考图7所示,图7为检测非眼快动睡眠的S2-S4周期的流程图,包括如下步骤:

s1:采集脑电信号(含眼电信号);

s2:脑电信号小波分解;

s3:重建低频段信号(0-2Hz);

s4:从低频段信号中检测脑电波;

s5:脑电波中检测K综合波;

s6:去除K综合波检测中的眼电干扰;

s7:是否检测到K综合波?若是,判定为S2周期,执行s8,否则继续判断;

s8:重建低频段信号(0-4Hz);

s9:从低频段信号中检测脑电波;

s10:脑电波中检测δ波;

s11:去除δ波检测中的眼电干扰;

s12:统计δ波数量,阈值判断;数量属于[4,9],判定为S3周期;数量大于等于10,判定为S4周期。

参考图8所示,图8为一个实施例的睡眠状态分析中睡眠周期检测系统结构示意图,包括:

低频信号获取模块101,用于对用户在睡眠过程中产生的脑电信号进行小波分解,并根据预设的低频段的小波系数重建脑电信号,得到低频脑电信号;

脑电波提取模块102,用于从重建的所述低频脑电信号上提取脑电波;

S2周期检测模块103,用于根据K综合波的波形特征从所述脑电波中检测K综合波,当检测到K综合波时,判断用户当前处于非眼快动睡眠的S2周期;

S3-S4周期检测模块104,用于根据δ波波形特征从所述脑电波中检测δ波,统计检测到δ波的数量;并根据δ波的数量确定用户的非眼快动睡眠的S3和S4周期。

本发明的睡眠状态分析中睡眠周期检测系统与本发明的睡眠状态分析中睡眠周期检测方法一一对应,在上述睡眠状态分析中睡眠周期检测方法的实施例阐述的技术特征及其有益效果均适用于睡眠状态分析中睡眠周期检测系统的实施例中,特此声明。

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

睡眠状态分析中睡眠周期检测方法和系统.pdf_第1页
第1页 / 共13页
睡眠状态分析中睡眠周期检测方法和系统.pdf_第2页
第2页 / 共13页
睡眠状态分析中睡眠周期检测方法和系统.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《睡眠状态分析中睡眠周期检测方法和系统.pdf》由会员分享,可在线阅读,更多相关《睡眠状态分析中睡眠周期检测方法和系统.pdf(13页珍藏版)》请在专利查询网上搜索。

1、(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201610839398.7 (22)申请日 2016.09.21 (71)申请人 广州视源电子科技股份有限公司 地址 510530 广东省广州市广州黄埔区云 埔四路6号 (72)发明人 赵巍 胡静 韩志 (74)专利代理机构 广州华进联合专利商标代理 有限公司 44224 代理人 潘桂生 (51)Int.Cl. A61B 5/0476(2006.01) A61B 5/0496(2006.01) A61B 5/00(2006.01) (54)发明名称 睡眠状态分析中睡眠周期检测方。

2、法和系统 (57)摘要 本发明涉及一种睡眠状态分析中睡眠周期 检测方法和系统, 其中所述方法包括: 对用户在 睡眠过程中产生的脑电信号进行小波分解, 并根 据预设的低频段的小波系数重建脑电信号, 得到 低频脑电信号; 从重建的所述低频脑电信号上提 取脑电波; 根据K综合波的波形特征从所述脑电 波中检测K综合波, 当检测到K综合波时, 判断用 户当前处于非眼快动睡眠的S2周期; 根据波波 形特征从所述脑电波中检测波, 统计检测到 波的数量; 并根据波的数量确定用户的非眼快 动睡眠的S3和S4周期。 本发明的技术可以避免脑 电信号受到干扰影响, 可以准确地检测用户当前 处于非眼快动睡眠S2-S4的。

3、哪个时期, 具有更高 的准确率。 权利要求书2页 说明书6页 附图4页 CN 106333674 A 2017.01.18 CN 106333674 A 1.一种睡眠状态分析中睡眠周期检测方法, 其特征在于, 包括: 对用户在睡眠过程中产生的脑电信号进行小波分解, 并根据预设的低频段的小波系数 重建脑电信号, 得到低频脑电信号; 从重建的所述低频脑电信号上提取脑电波; 根据K综合波的波形特征从所述脑电波中检测K综合波, 当检测到K综合波时, 判断用户 当前处于非眼快动睡眠的S2周期; 根据 波波形特征从所述脑电波中检测 波, 统计检测到 波的数量; 并根据 波的数量 确定用户的非眼快动睡眠的S。

4、3和S4周期。 2.根据权利要求1所述的睡眠状态分析中睡眠周期检测方法, 其特征在于, 所述从重建 的所述低频脑电信号上提取脑电波的步骤包括: 从低频脑电信号的波形上找出局部极小值点, 并将其标记为波谷; 将相邻两个波谷之间最大的局部极大值点标记为波峰; 根据波形上每个左波谷-波峰-右波谷对的高度判断出脑电波。 3.根据权利要求2所述的睡眠状态分析中睡眠周期检测方法, 其特征在于, 所述根据波 形上每个左波谷-波峰-右波谷对的高度判断出脑电波的步骤包括: 计算每个左波谷-波峰-右波谷对的高度; 若左右两个波谷的高度差小于预设的差值阈值, 则将该波形判为一个脑电波; 若左右两个波谷的高度差大于差。

5、值阈值, 且左波谷-上升支波峰的高度小于波峰-下降 支右波谷的一半, 则将该波形判为一个脑电波; 若左右两个波谷的高度差大于差值阈值, 且上升支的高度大于下降支的一半, 则抛弃 右波谷并在波形上寻找接下来的第二个波谷, 重新进行判断。 4.根据权利要求2所述的睡眠状态分析中睡眠周期检测方法, 其特征在于, 所述根据K 综合波的波形特征从所述脑电波中检测K综合波的步骤包括如下公式: 式中, ptrough_right与ptrough_left分别表示左右波谷数据点的坐标, fs为脑电波的采样率, 与分 别 表 示 脑电 信 号 与 眼 电 信 号 在 区 间 ptrough_right,ptro。

6、ugh_left上的最大值减最小值的取值, peak_threEEG与trough_threEEG分别表 示K综合波的波峰阈值与波谷阈值, wk表示K综合波, true表示判断结果为真, if表示满足的 条件。 5.根据权利要求2所述的睡眠状态分析中睡眠周期检测方法, 其特征在于, 所述根据 波波形特征从所述脑电波中检测 波的步骤包括如下公式: 权 利 要 求 书 1/2 页 2 CN 106333674 A 2 式中, ptrough_right与ptrough_left分别表示左右波谷数据点的坐标, fs为脑电波的采样率, 与分 别 表 示 脑电 信 号 与 眼 电 信 号 在 区 间 p。

7、trough_right,ptrough_left上的最大值减最小值的取值, height_threEEG表示 波的幅度阈值; w表示 波, true表示判断结果为真, if表示满足的条件。 6.根据权利要求1至5任一项所述的睡眠状态分析中睡眠周期检测方法, 其特征在于, 当检测到K综合波时, 还包括: 在检测到K综合波与 波的时间窗口内, 对眼电信号的幅度进行检测, 当眼电信号的幅 值超过预设幅度阈值, 则判定检测到的K综合波与 波属于伪阳性结果; 或 在统计检测到 波的数量的步骤前, 还包括: 在检测到 波的时间窗口内, 对眼电信号的幅度进行检测, 当眼电信号的幅值超过预设 幅度阈值, 则。

8、判定检测到 波属于伪阳性结果。 7.根据权利要求6所述的睡眠状态分析中睡眠周期检测方法, 其特征在于, 所述预设的 幅度阈值为75微伏, 。 8.根据权利要求4所述的睡眠状态分析中睡眠周期检测方法, 其特征在于, 所述K综合 波的波峰阈值与波谷阈值分别为+100微伏与100微伏, 或所述 波的幅度阈值为75-150微 伏。 9.根据权利要求1所述的睡眠状态分析中睡眠周期检测方法, 其特征在于, 所述根据 波的数量确定用户的非眼快动睡眠的S3和S4周期的步骤包括: 当 波数量属于fL(m), fH(m)时, 判定用户当前处于非眼快动睡眠的S3周期; 当 波数 量大于等于f0(m)时, 判定用户当。

9、前处于非眼快动睡眠的处于S4周期; fL(m)m/tpL; fL(m)m/tpH; f0(m)fH(m)+1; 其中, 检测脑电波的时间窗口的长度为m, t为 波持续时间的均值, (pL,pH)为 波占脑电 信号的时间范围。 10.一种睡眠状态分析中睡眠周期检测系统, 其特征在于, 包括: 低频信号获取模块, 用于对用户在睡眠过程中产生的脑电信号进行小波分解, 并根据 预设的低频段的小波系数重建脑电信号, 得到低频脑电信号; 脑电波提取模块, 用于从重建的所述低频脑电信号上提取脑电波; S2周期检测模块, 用于根据K综合波的波形特征从所述脑电波中检测K综合波, 当检测 到K综合波时, 判断用户。

10、当前处于非眼快动睡眠的S2周期; S3-S4周期检测模块, 用于根据 波波形特征从所述脑电波中检测 波, 统计检测到 波 的数量; 并根据 波的数量确定用户的非眼快动睡眠的S3和S4周期。 权 利 要 求 书 2/2 页 3 CN 106333674 A 3 睡眠状态分析中睡眠周期检测方法和系统 技术领域 0001 本发明涉及辅助睡眠技术领域, 特别是涉及一种睡眠状态分析中睡眠周期检测方 法和系统。 背景技术 0002 目前市面上已经有一些设备来帮助人们入睡, 提高睡眠质量。 睡眠状态分析是了 解用户睡眠质量的重要手段, 而在此过程中, 需要对用户睡眠状态进行检测, 以准确知道用 户是否睡着。。

11、 0003 多导睡眠图(Polysomnography,PSG), 又称睡眠脑电图, 是目前临床上用于睡眠诊 断和分析的 “金标准” 。 多导睡眠图利用多种生命体征对睡眠进行分析, 在这些体征信号中, 脑电处于核心地位; 利用脑电波4种节律: 波(1-3Hz), 波(4-7Hz), 波(8-12Hz), 波(14- 30Hz)的频率特性。 根据不同节律的脑电波和眼球运动特征, 除了清醒阶段以外, 睡眠可以 分成非眼快动睡眠(No Rapid Eye Movement Sleep,NREM sleep)和眼快动睡眠(Rapid Eye Movement Sleep,REM sleep)周期。 其。

12、中非眼快动睡眠又可以分为4个时期: S1期(完全 清醒至睡眠之间的过渡阶段), S2期(浅睡阶段), S3期(中等深度睡眠), S4期(深睡期)。 0004 传统的检测睡眠状态是通过训练识别模型来对脑电信号进行识别, 例如对于非眼 快动睡眠的4个时期时, 通过对脑电信号进行小波分解与重构, 到脑电信号的四种频段( 波 频段、 波频段、 波频段和 波频段)的信号, 通过将这几种脑电波信号特征输入识别模型进 行识别。 0005 由于脑电信号的个人特异性很强, 并且脑电的强度很弱(脑电为微伏级别, 心电为 毫伏级别), 在信号采集时极易被外界信号所干扰。 因此, 利用计算机对脑电信号进行睡眠 分析研。

13、究时, 传统的方法容易受到干扰影响, 难以准确地检测用户当前处于非眼快动睡眠 S2-S4的哪个时期, 准确率较低。 发明内容 0006 基于此, 有必要针对上述问题, 提供一种睡眠状态分析中睡眠周期检测方法和系 统, 有效地提高睡眠状态识别的准确率。 0007 一种睡眠状态分析中睡眠周期检测方法, 包括: 0008 对用户在睡眠过程中产生的脑电信号进行小波分解, 并根据预设的低频段的小波 系数重建脑电信号, 得到低频脑电信号; 0009 从重建的所述低频脑电信号上提取脑电波; 0010 根据K综合波的波形特征从所述脑电波中检测K综合波, 当检测到K综合波时, 判断 用户当前处于非眼快动睡眠的S。

14、2周期; 0011 根据 波波形特征从所述脑电波中检测 波, 统计检测到 波的数量; 并根据 波的 数量确定用户的非眼快动睡眠的S3和S4周期。 0012 一种睡眠状态分析中睡眠周期检测系统, 包括: 说 明 书 1/6 页 4 CN 106333674 A 4 0013 低频信号获取模块, 用于对用户在睡眠过程中产生的脑电信号进行小波分解, 并 根据预设的低频段的小波系数重建脑电信号, 得到低频脑电信号; 0014 脑电波提取模块, 用于从重建的所述低频脑电信号上提取脑电波; 0015 S2周期检测模块, 用于根据K综合波的波形特征从所述脑电波中检测K综合波, 当 检测到K综合波时, 判断用。

15、户当前处于非眼快动睡眠的S2周期; 0016 S3-S4周期检测模块, 用于根据 波波形特征从所述脑电波中检测 波, 统计检测到 波的数量; 并根据 波的数量确定用户的非眼快动睡眠的S3和S4周期。 0017 上述睡眠状态分析中睡眠周期检测方法和系统, 对脑电信号进行小波分解, 并根 据低频段的小波系数重建脑电信号, 在低频部分上根据K综合波, 确定非眼快动睡眠的S2周 期, 然后再在低频部分上检测 波并统计数量, 并通过该数量确定用户非眼快动睡眠的S3和 S4周期。 该方案可以避免脑电信号受到干扰影响, 可以准确地检测用户当前处于非眼快动 睡眠S2-S4的哪个时期, 具有更高的准确率。 附图。

16、说明 0018 图1为一个实施例的睡眠状态分析中睡眠周期检测方法的流程图; 0019 图2是K综合波的波形示意图; 0020 图3是 波的波形示意图; 0021 图4为判断为脑电波的波形示意图; 0022 图5是非眼快动睡眠S2期的脑电信号上K综合波的检测结果示意图; 0023 图6是非眼快动睡眠S3期的脑电信号上 波的检测结果示意图; 0024 图7为检测非眼快动睡眠的S2-S4周期的流程图; 0025 图8为一个实施例的睡眠状态分析中睡眠周期检测系统结构示意图。 具体实施方式 0026 下面结合附图阐述本发明的睡眠状态分析中睡眠周期检测方法和系统的实施例。 0027 参考图1所示, 图1为。

17、一个实施例的睡眠状态分析中睡眠周期检测方法的流程图, 包括: 0028 S101, 对用户在睡眠过程中产生的脑电信号进行小波分解, 并根据预设的低频段 的小波系数重建脑电信号, 得到低频脑电信号; 0029 上述步骤, 在对用户进行辅助睡眠等睡眠状态分析中, 通过用户佩戴相关传感设 备, 采集用户在睡眠过程中产生的脑电信号, 在采集脑电信号时, 可以以30s为一帧进行采 集, 对每帧脑电信号进行后续处理。 0030 在临床上, K综合波的出现是进入睡眠状态的典型标志, K综合波的频率较低。 因此 可以在低频部分上对脑电信号进行分析, 以排除高频干扰, 在此, 首先对脑电信号进行小波 分解, 并。

18、根据低频段的小波系数重建脑电信号, 然后在重建的低频脑电信号上提取脑电波; 上述预设的低频段, 至少选取02Hz频段的范围, 在该频段内检测出K综合波。 另外, 如果考 虑到后续也需要对 波进行处理, 可以固定选取04Hz频段。 0031 S102, 从重建的所述低频脑电信号上提取脑电波; 0032 此步骤中, 是根据波形特征, 从重建的低频脑电信号上提取脑电波。 参考图2和图3 说 明 书 2/6 页 5 CN 106333674 A 5 所示, 图2是K综合波的波形示意图, 图3是 波的波形示意图; 可见K综合波是一种具有高波 幅的复合双相或者多相的慢波, 持续时间约为12s, 波幅约为2。

19、00300微伏(uV); 波活动 的频率为13Hz, 波幅约为20200微伏。 在此, 通过小波分解与低频重构后, 需要从低频脑 电信号中提取出脑电波。 0033 作为一个实施例, 结合K综合波的在波形上具有复合双相或者多相且波幅较高的 特点, 在此将其简化成具有高波峰、 深波谷、 持续时间为12s左右的脑电波。 波具有波幅 较高、 频率较低的特点, 将其简化成具有高振幅、 持续时间为0.5s2s左右的脑电波。 0034 在一个实施例中, 从低频脑电信号上提取脑电波的过程, 可以包括如下步骤: 0035 从低频脑电信号的波形上找出局部极小值点, 并将其标记为波谷; 将相邻两个波 谷之间最大的局。

20、部极大值点标记为波峰; 根据波形上每个左波谷-波峰-右波谷对的高度判 断出脑电波; 0036 参考图4所示, 图4为判断为脑电波的波形示意图, 在判断过程中, 首先计算每个左 波谷-波峰-右波谷对的高度, 然后分为以下三种方式: 0037 (1)若左右两个波谷的高度差小于预设的差值阈值, 则将该波形判为一个脑电波; 具体的, 如图4(a)所示, 如果两个波谷的高度差小于阈值时(如10微伏), 判为一个脑电波。 0038 (2)若左右两个波谷的高度差大于差值阈值, 且左波谷-上升支波峰的高度小于波 峰-下降支右波谷的一半, 则将该波形判为一个脑电波; 具体的, 如图4(b)所示, 如果两个波 谷。

21、的高度差大于阈值, 且左波谷-波峰(上升支)的高度小于波峰-右波谷(下降支)的一半, 则将其判为一个脑电波。 0039 (3)若左右两个波谷的高度差大于差值阈值, 且上升支的高度大于下降支的一半, 则抛弃右波谷并在波形上寻找接下来的第二个波谷, 重新进行判断; 具体的, 如图4(c)所 示, 如果两个波谷的高度差大于阈值, 且上升支的高度大于下降支的一半, 则抛弃右波谷并 寻找接下来的第二个波谷, 重新进行计算和判断。 0040 上述实施例的方案中, 在检测K综合波阶段, 可以将预设的低频段选取02Hz频段 的范围, 在该频段内检测出K综合波。 可以将预设的低频段选取04Hz频段的范围, 在该。

22、频 段内检测出 波。 0041 S103, 根据K综合波的波形特征从所述脑电波中检测K综合波, 当检测到K综合波 时, 判断用户当前处于非眼快动睡眠的S2周期; 0042 如上所述, K综合波是一种具有高波幅的复合双相或者多相的慢波, 持续时间约为 12s, 波幅约为200300微伏。 在低频段的脑电信号上提取出脑电波后, 根据K综合波的波 形特点来检测K综合波。 0043 在此步骤中, 可以根据K综合波的波形特征, 先设定K综合波的幅度阈值, 结合提取 的脑电波的采样率, 从脑电波中检测K综合波。 0044 在一个实施例中, 从所述脑电波中检测K综合波的步骤, 可以包括如下公式: 0045 。

23、说 明 书 3/6 页 6 CN 106333674 A 6 0046 式中, ptrough_right与ptrough_left分别表示左右波谷数据点的坐标, fs为脑电波的采样 率,与分别表示脑电 信号与眼电 信号在区间 ptrough_right,ptrough_left上的最大值减最小值的取值, peak_threEEG与trough_threEEG分别表 示K综合波的波峰阈值与波谷阈值, wk表示K综合波, true表示判断结果为真, if表示满足的 条件。 0047 上述实施例中, K综合波的波峰阈值与波谷阈值可以分别取+100微伏与100微 伏。 0048 由于是在小波分解后的。

24、脑电信号上而非原始脑电信号上进行检波, 因此K综合波 的幅度阈值可较临床标准适当降低。 K综合波的波峰的阈值peak_threEEG与波谷的阈值 trough_threEEG可以分别设为正负100微伏; 上述阈值设置经过验证, 能够得到较好的检测 效果。 0049 作为一个实施例, 对于上述检测到的K综合波, 为了避免眼电信号造成的干扰, 在 检测到K综合波的时间窗口内, 对眼电信号的幅度进行检测, 当眼电信号的幅值超过预设幅 度阈值(例如75微伏), 则判定检测到的K综合波属于伪阳性(false positive)结果, 并不是 真正的K综合波, 丢弃该检测结果, 排除眼电伪迹的干扰。 00。

25、50 参考图5所示, 图5是非眼快动睡眠S2期的脑电信号上K综合波的检测结果示意图; 图5(a)中波动较大的波形为原始脑电信号, 波动较小的波形为低频段重建的脑电信号; 图5 (b)中波形部分是低频段重建的脑电信号, 圆圈部分为检出的K综合波。 0051 S104, 根据 波波形特征从所述脑电波中检测 波, 统计检测到 波的数量; 并根据 波的数量确定用户的非眼快动睡眠的S3和S4周期。 0052 此步骤中, 在检测到K综合波后, 表明用户已经进入了睡眠状态, 此时就可以检测 波, 根据 波的数量判断用户的非眼快动睡眠的S3和S4周期。 0053 如上所述, 波是一种具有波幅较高, 频率较低的。

26、特点, 持续时间为0.5s2s左右 的脑电波, 在低频段的脑电信号上提取出脑电波后, 根据 波的波形特点来检测 波。 0054 在一个实施例中, 从所述脑电波中检测 波的步骤, 可以包括如下公式: 0055 0056 式中, ptrough_right与ptrough_left分别表示左右波谷数据点的坐标, fs为脑电波的采 样率,与分别表示脑电信号与眼电信号在区间 ptrough_right,ptrough_left上的最大值减最小值的取值, height_threEEG表示 波的幅度阈值; w表示 波, true表示判断结果为真, if表示满足的条件。 0057 上述实施例中, 波的幅度阈。

27、值可以取75-150微伏。 0058 由于是在小波分解后的脑电信号上而非原始脑电信号上进行检波, 因此 波的幅 度阈值可较临床标准适当降低, 波的幅度阈值height_threEEG为75至150微伏; 上述阈值设 置经过验证, 能够得到较好的检测效果。 0059 作为一个实施例, 对于上述检测到的 波, 为了避免眼电信号造成的干扰, 在检测 说 明 书 4/6 页 7 CN 106333674 A 7 到 波的时间窗口内, 对眼电信号的幅度进行检测, 当眼电信号的幅值超过预设幅度阈值 (例如75微伏), 则判定检测到的 波属于伪阳性(false positive)结果, 并不是真正的 波, 。

28、丢弃该检测结果, 排除眼电伪迹的干扰。 0060 参考图6所示, 图6是非眼快动睡眠S3期的脑电信号上 波的检测结果示意图; 图6 (a)中波动较大的波形为原始脑电信号, 波动较小的波形为低频段重建的脑电信号; 图6(b) 中波形部分是是低频段重建的脑电信号, 圆圈部分为检出的 波。 0061 对于根据 波的数量确定用户的非眼快动睡眠的S3和S4周期的方法, 主要是依据 检测到 波的数量来确定, 具体确定可以依据以下判断原则: 0062 当 波数量属于fL(m), fH(m)时, 判定用户当前处于非眼快动睡眠的S3周期; 当 波数量大于等于f0(m)时, 判定用户当前处于非眼快动睡眠的处于S4。

29、周期; 0063 fL(m)m/tpL; 0064 fL(m)m/tpH; 0065 f0(m)fH(m)+1; 0066 其中, 检测脑电波的时间窗口的长度为m, t为 波持续时间的均值, (pL,pH)为 波占 脑电信号的时间范围。 0067 波的持续时间一般为0.52秒, 多在1.5s左右, 因此可以取值为1.5秒, 脑电信号 检测的时间窗口长度为30秒, 即以30秒为一帧进行分析。 则在S3期时, 波占脑电信号的时 间为2050, 即6秒15秒, 由此可以算出 波的数量fL(m)4, fL(m)9, f0(m)10。 0068 本发明实施例的睡眠状态分析中睡眠周期检测方法, 具有较高的。

30、准确性。 实验证 明, 在多例利用脑电信号进行的非眼快动睡眠的S2-S4周期的检测中, 检测的准确率达到了 95以上。 0069 参考图7所示, 图7为检测非眼快动睡眠的S2-S4周期的流程图, 包括如下步骤: 0070 s1: 采集脑电信号(含眼电信号); 0071 s2: 脑电信号小波分解; 0072 s3: 重建低频段信号(0-2Hz); 0073 s4: 从低频段信号中检测脑电波; 0074 s5: 脑电波中检测K综合波; 0075 s6: 去除K综合波检测中的眼电干扰; 0076 s7: 是否检测到K综合波? 若是, 判定为S2周期, 执行s8, 否则继续判断; 0077 s8: 重。

31、建低频段信号(0-4Hz); 0078 s9: 从低频段信号中检测脑电波; 0079 s10: 脑电波中检测 波; 0080 s11: 去除 波检测中的眼电干扰; 0081 s12: 统计 波数量, 阈值判断; 数量属于4, 9, 判定为S3周期; 数量大于等于10, 判 定为S4周期。 0082 参考图8所示, 图8为一个实施例的睡眠状态分析中睡眠周期检测系统结构示意 图, 包括: 0083 低频信号获取模块101, 用于对用户在睡眠过程中产生的脑电信号进行小波分解, 并根据预设的低频段的小波系数重建脑电信号, 得到低频脑电信号; 说 明 书 5/6 页 8 CN 106333674 A 8。

32、 0084 脑电波提取模块102, 用于从重建的所述低频脑电信号上提取脑电波; 0085 S2周期检测模块103, 用于根据K综合波的波形特征从所述脑电波中检测K综合波, 当检测到K综合波时, 判断用户当前处于非眼快动睡眠的S2周期; 0086 S3-S4周期检测模块104, 用于根据 波波形特征从所述脑电波中检测 波, 统计检 测到 波的数量; 并根据 波的数量确定用户的非眼快动睡眠的S3和S4周期。 0087 本发明的睡眠状态分析中睡眠周期检测系统与本发明的睡眠状态分析中睡眠周 期检测方法一一对应, 在上述睡眠状态分析中睡眠周期检测方法的实施例阐述的技术特征 及其有益效果均适用于睡眠状态分。

33、析中睡眠周期检测系统的实施例中, 特此声明。 0088 以上所述实施例的各技术特征可以进行任意的组合, 为使描述简洁, 未对上述实 施例中的各个技术特征所有可能的组合都进行描述, 然而, 只要这些技术特征的组合不存 在矛盾, 都应当认为是本说明书记载的范围。 0089 以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详细, 但并 不能因此而理解为对发明专利范围的限制。 应当指出的是, 对于本领域的普通技术人员来 说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进, 这些都属于本发明的保护 范围。 因此, 本发明专利的保护范围应以所附权利要求为准。 说 明 书 6/6 页 9 CN 106333674 A 9 图1 图2 说 明 书 附 图 1/4 页 10 CN 106333674 A 10 图3 图4 说 明 书 附 图 2/4 页 11 CN 106333674 A 11 图5 图6 说 明 书 附 图 3/4 页 12 CN 106333674 A 12 图7 图8 说 明 书 附 图 4/4 页 13 CN 106333674 A 13 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 >


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1