《基于分数阶微分方程的血糖数据处理方法及装置.pdf》由会员分享,可在线阅读,更多相关《基于分数阶微分方程的血糖数据处理方法及装置.pdf(13页珍藏版)》请在专利查询网上搜索。
1、(19)中华人民共和国国家知识产权局 (12)发明专利 (10)授权公告号 (45)授权公告日 (21)申请号 201611056309.8 (22)申请日 2016.11.23 (65)同一申请的已公布的文献号 申请公布号 CN 106805943 A (43)申请公布日 2017.06.09 (73)专利权人 舒糖讯息科技 (深圳) 有限公司 地址 518000 广东省深圳市南山区蛇口兴 华路海滨商业中心3栋英瑞商务310室 (72)发明人 李志光 邓兴华 方百立 蓝伟杰 陈泳潼 (74)专利代理机构 广州三环专利商标代理有限 公司 44202 代理人 郝传鑫 (51)Int.Cl. A6。
2、1B 5/00(2006.01) (56)对比文件 CN 104921736 A,2015.09.23,全文. CN 102740770 A,2012.10.17,全文. CN 102821687 A,2012.12.12,全文. US 2015164414 A1,2015.06.18,全文. 审查员 郑其蔚 (54)发明名称 基于分数阶微分方程的血糖数据处理方法 及装置 (57)摘要 本发明公开了一种基于分数阶微分方程的 血糖数据处理方法及装置, 该方法包括: 获取待 测者的检测数据和血糖数据库中待测者的血糖 数据; 血糖数据库设置在无创血糖检测仪中; 检 测数据由无创血糖检测仪获取; 根据。
3、检测数据和 血糖数据, 建立分数阶微分方程模型, 并确定分 数阶微分方程模型在优化过程所需求解的参数 矩阵; 创建噪声优化问题, 并根据噪声优化问题 的最优解, 计算参数矩阵中的最优参数; 噪声优 化问题用于过滤噪声对分数阶微分方程模型的 影响; 根据优化参数和分数阶微分方程模型, 建 立血糖估计模型; 血糖估计模型用于根据待测者 的检测数据, 输出相应的血糖估计值。 采用本技 术方案解决因信号受到周围噪声影响而造成的 测量结果不精准的问题。 权利要求书3页 说明书8页 附图1页 CN 106805943 B 2018.06.05 CN 106805943 B 1.一种基于分数阶微分方程的血糖。
4、数据处理方法, 其特征在于, 包括: 获取待测者的检测数据和血糖数据库中所述待测者的血糖数据; 所述血糖数据库设置 在无创血糖检测仪中; 所述检测数据由所述无创血糖检测仪获取; 根据所述检测数据和所述血糖数据, 建立分数阶微分方程模型, 并确定所述分数阶微 分方程模型在优化过程所需求解的参数矩阵; 创建噪声优化问题, 并根据所述噪声优化问题的最优解, 计算所述参数矩阵中的最优 参数; 所述噪声优化问题用于过滤环境噪声对所述分数阶微分方程模型的影响; 根据所述优化参数和所述分数阶微分方程模型, 建立血糖估计模型; 所述血糖估计模 型用于根据所述待测者的检测数据, 输出相应的血糖估计值; 其中, 。
5、所述根据所述检测数据和所述血糖数据, 建立分数阶微分方程模型, 具体为: 所 述检测数据为由所述无创血糖检测仪的传感器收集的第一测量信号xk(t), 所述血糖数据 为yk(t), k是所述传感器在第k个算子的频率; 则建立的分数阶微分方程模型为: 其中, k0,K-1; 定义Sk为分数阶微分方程模型的输出部分的非零阶集合, Tk是包含了所有的阶, ap,k和 bq,k分别是输出部分和输入部分的相关参数, p和q为随机数; 则所述分数阶微分方程模型的分数微分算子为: 其中 2.根据权利要求1所述的基于分数阶微分方程的血糖数据处理方法, 其特征在于, 确定 所述分数阶微分方程模型在优化过程所需求解。
6、的参数矩阵, 具体为: 设 a,k和 b,k为分数阶微分方程的输出和输入系数的矢量, Nk为输入输出采样的对数的 总和; 令i0,Nk-1, 则xk(t)和yk(t)为输入和输出的采样, 同时, 令矢量dy,k(ti)为包含了 输出采样的非零分数阶导数, dx,k(ti)包含了输入采样的所有分数阶导数, 则关系式为: yk(ti)+dy,k(ti)Ta,kdx,k(ti)Tb,k, i0,Nk-1, k0,K-1; 令dk,idy,k(ti)T -dx,k(ti)TT和 则 令和 则Dkk-yk; 权 利 要 求 书 1/3 页 2 CN 106805943 B 2 所述参数矩阵确认为 3.根。
7、据权利要求2所述的基于分数阶微分方程的血糖数据处理方法, 其特征在于, 创建 噪声优化问题, 并根据所述噪声优化问题的最优解, 计算所述参数矩阵中的最优参数, 具体 为: 令所述参数矩阵和Ddiag (D0,DK-1), 则D -y; 创建优化问题为: 令所述最优解为 *, 则得出 *-(DTD)-1DTy; 根据所述最优解, 计算获得所述参数矩阵中的最优参数。 4.根据权利要求3所述的基于分数阶微分方程的血糖数据处理方法, 其特征在于, 所述 根据所述优化参数和所述分数阶微分方程模型, 建立血糖估计模型, 具体为: 将所述优化参数代入所述分数阶微分方程模型, 建立所述血糖估计模型。 5.一种。
8、基于分数阶微分方程的血糖数据处理装置, 其特征在于, 所述血糖数据处理装 置设置在无创血糖检测仪中, 所述血糖数据处理装置包括: 数据获取模块, 用于获取待测者的检测数据血糖数据库中所述待测者的血糖数据; 所 述血糖数据库设置在所述无创血糖检测仪中; 所述检测数据由所述无创血糖检测仪获取; 第一模型建立模块, 用于根据所述检测数据和所述血糖数据, 建立分数阶微分方程模 型, 并确定所述分数阶微分方程模型在优化过程所需求解的参数矩阵; 噪声优化模块, 用于创建噪声优化问题, 并根据所述噪声优化问题的最优解, 计算所述 参数矩阵中的最优参数; 所述噪声优化问题用于过滤环境噪声对所述分数阶微分方程模。
9、型 的影响; 和, 第二模型建立模块, 用于根据所述优化参数和所述分数阶微分方程模型, 建立血糖 估计模型; 所述血糖估计模型用于根据所述待测者的检测数据, 输出相应的血糖估计值; 其中, 第一模型建立模块包括: 第一模型建立单元和微分算子确定单元; 所述第一模型建立单元用于建立分数阶微分方程模型; 所述分数阶微分方程模型为: 其中, k0,K-1; 所述检测数据为由所述无创血糖检测仪的传感器收集的第一测量信号xk(t), 所述血糖 数据为yk(t), k是所述传感器在第k个算子的频率; 定义单元, 用于定义Sk为分数阶微分方程模型的输出部分的非零阶集合, Tk是包含了所 有的阶, ap,k和。
10、bq,k分别是输出部分和输入部分的相关参数, p和q为随机数; 所述微分算子确定单元用于确定所述分数阶微分方程模型的分数微分算子; 所述分数 微分算子为: 权 利 要 求 书 2/3 页 3 CN 106805943 B 3 其中 6.根据权利要求5所述的基于分数阶微分方程的血糖数据处理装置, 其特征在于, 所述 第一模型建立模块还包括: 参数矩阵确定单元, 所述参数矩阵确定单元用于确定所述分数阶微分方程模型在优化 过程所需求解的参数矩阵, 具体为: 设 a,k和 b,k为分数阶微分方程的输出和输入系数的矢量, Nk为输入输出采样的对数的 总和; 令i0,Nk-1, 则xk(t)和yk(t)为。
11、输入和输出的采样, 同时, 令矢量dy,k(ti)为包含了 输出采样的非零分数阶导数, dx,k(ti)包含了输入采样的所有分数阶导数, 则关系式为: yk(ti)+dy,k(ti)Ta,kdx,k(ti)Tb,k, i0,Nk-1, k0,K-1; 令dk,idy,k(ti)T -dx,k(ti)TT和 则 令和 则Dkk-yk; 所述参数矩阵确认为 7.根据权利要求6所述的基于分数阶微分方程的血糖数据处理装置, 其特征在于, 所述 噪声优化模块用于创建噪声优化问题, 并根据所述噪声优化问题的最优解, 计算所述参数 矩阵中的最优参数, 具体为: 令所述参数矩阵和Ddiag (D0,DK-1)。
12、, 则D -y; 创建优化问题为: 令所述最优解为 *, 则得出 *-(DTD)-1DTy; 根据所述最优解, 计算获得所述参数矩阵中的最优参数。 8.根据权利要求7所述的基于分数阶微分方程的血糖数据处理装置, 其特征在于, 所述 第二模型建立单元用于根据所述优化参数和所述分数阶微分方程模型, 建立血糖估计模 型, 具体为: 将所述优化参数代入所述分数阶微分方程模型, 建立所述血糖估计模型。 权 利 要 求 书 3/3 页 4 CN 106805943 B 4 基于分数阶微分方程的血糖数据处理方法及装置 技术领域 0001 本发明涉及计算机技术领域, 尤其涉及一种基于分数阶微分方程的血糖数据处。
13、理 方法及装置。 背景技术 0002 传统的检测血糖的仪器主要是大型生化分析仪和便携式血糖仪两类。 这两种测量 仪均是有创检测, 不仅造成体表创口增加感染几率, 而且限制了检测频率, 不适用于糖尿病 患者。 而随着无创监测技术的发展, 出现了无创血糖检测仪, 通过第一测量信号发射器往病 人皮肤发射, 再由探测器接收漫反射的第一测量信号来测量病人的血糖值。 但是现有测量 仪的测量准确性会随源信号的变化而变化, 信号容易受到周围噪声影响, 造成血糖测量不 准确, 影响医生评估病人病情。 发明内容 0003 本发明实施例提出一种基于分数阶微分方程的血糖数据处理方法及装置, 解决因 信号受到周围噪声影。
14、响而造成的测量结果不精准的问题。 0004 本发明实施例提供一种基于分数阶微分方程的血糖数据处理方法, 包括: 0005 获取待测者的检测数据和血糖数据库中所述待测者的血糖数据; 所述血糖数据库 设置在无创血糖检测仪中; 所述检测数据由所述无创血糖检测仪获取; 0006 根据所述检测数据和所述血糖数据, 建立分数阶微分方程模型, 并确定所述分数 阶微分方程模型在优化过程所需求解的参数矩阵; 0007 创建噪声优化问题, 并根据所述噪声优化问题的最优解, 计算所述参数矩阵中的 最优参数; 所述噪声优化问题用于过滤环境噪声对所述分数阶微分方程模型的影响; 0008 根据所述优化参数和所述分数阶微分。
15、方程模型, 建立血糖估计模型; 所述血糖估 计模型用于根据所述待测者的检测数据, 输出相应的血糖估计值; 0009 其中, 所述根据所述检测数据和所述血糖数据, 建立分数阶微分方程模型, 具体 为: 0010 所述检测数据为由所述无创血糖检测仪的传感器收集的第一测量信号xk(t), 所 述血糖数据为yk(t), k是所述传感器在第k个算子的频率; 0011 则建立的分数阶微分方程模型为: 0012其中, k0,K-1; 0013 定义Sk为分数阶微分方程模型的输出部分的非零阶集合, Tk是包含了所有的阶, ap,k和bq,k分别是输出部分和输入部分的相关参数, p和q为随机数; 0014 则所。
16、述分数阶微分方程模型的分数微分算子为: 说 明 书 1/8 页 5 CN 106805943 B 5 0015其中 0016 进一步的, 确定所述分数阶微分方程模型在优化过程所需求解的参数矩阵, 具体 为: 0017 设 a,k和 b,k为分数阶微分方程的输出和输入系数的矢量, Nk为输入输出采样的对 数的总和; 0018 令i0,Nk-1, 则xk(t)和yk(t)为输入和输出的采样, 同时, 令矢量dy,k(ti)为包 含了输出采样的非零分数阶导数, dx,k(ti)包含了输入采样的所有分数阶导数, 则关系式 为: 0019 yk(ti)+dy,k(ti)Ta,kdx,k(ti)Tb,k,。
17、 i0,Nk-1, k0,K-1; 0020令dk,idy,k(ti)T -dx,k(ti)TT和 0021则 0022令和 0023 则Dkk-yk; 0024所述参数矩阵确认为 0025 进一步的, 创建噪声优化问题, 并根据所述噪声优化问题的最优解, 计算所述参数 矩阵中的最优参数, 具体为: 0026令所述参数矩阵和Ddiag (D0,DK-1), 则D -y; 0027创建优化问题为: 0028 令所述最优解为 *, 则得出 *-(DTD)-1DTy; 0029 根据所述最优解, 计算获得所述参数矩阵中的最优参数。 0030 进一步的, , 所述根据所述优化参数和所述分数阶微分方程模。
18、型, 建立血糖估计模 型, 具体为: 0031 将所述优化参数代入所述分数阶微分方程模型, 建立所述血糖估计模型。 0032 相应地, 本发明实施例还提供一种基于分数阶微分方程的血糖数据处理装置, 所 述血糖数据处理装置设置在无创血糖检测仪中, 所述血糖数据处理装置包括: 0033 数据获取模块, 用于获取待测者的检测数据血糖数据库中所述待测者的血糖数 据; 所述血糖数据库设置在所述无创血糖检测仪中; 所述检测数据由所述无创血糖检测仪 获取; 说 明 书 2/8 页 6 CN 106805943 B 6 0034 第一模型建立模块, 用于根据所述检测数据和所述血糖数据, 建立分数阶微分方 程模。
19、型, 并确定所述分数阶微分方程模型在优化过程所需求解的参数矩阵; 0035 噪声优化模块, 用于创建噪声优化问题, 并根据所述噪声优化问题的最优解, 计算 所述参数矩阵中的最优参数; 所述噪声优化问题用于过滤环境噪声对所述分数阶微分方程 模型的影响; 0036 和, 第二模型建立模块, 用于根据所述优化参数和所述分数阶微分方程模型, 建立 血糖估计模型; 所述血糖估计模型用于根据所述待测者的检测数据, 输出相应的血糖估计 值; 0037 其中, 所述第一模型建立模块包括: 第一模型建立单元和微分算子确定单元; 0038 所述第一模型建立单元用于建立分数阶微分方程模型; 所述分数阶微分方程模型 。
20、为: 0039其中, k0,K-1; 0040 所述检测数据为由所述无创血糖检测仪的传感器收集的第一测量信号xk(t), 所 述血糖数据为yk(t), k是所述传感器在第k个算子的频率; 0041 定义单元, 用于定义Sk为分数阶微分方程模型的输出部分的非零阶集合, Tk是包含 了所有的阶, ap,k和bq,k分别是输出部分和输入部分的相关参数, p和q为随机数; 0042 所述微分算子确定单元用于确定所述分数阶微分方程模型的分数微分算子; 所述 分数微分算子为: 0043其中 0044 进一步的, 所述第一模型建立模块还包括: 0045 参数矩阵确定单元, 所述参数矩阵确定单元用于确定所述分。
21、数阶微分方程模型在 优化过程所需求解的参数矩阵, 具体为: 0046 设 a,k和 b,k为分数阶微分方程的输出和输入系数的矢量, Nk为输入输出采样的对 数的总和; 0047 令i0,Nk-1, 则xk(t)和yk(t)为输入和输出的采样, 同时, 令矢量dy,k(ti)为包 含了输出采样的非零分数阶导数, dx,k(ti)包含了输入采样的所有分数阶导数, 则关系式 为: 0048 yk(ti)+dy,k(ti)Ta,kdx,k(ti)Tb,k, i0,Nk-1, k0,K-1; 0049令dk,idy,k(ti)T -dx,k(ti)TT和 0050则 说 明 书 3/8 页 7 CN 1。
22、06805943 B 7 0051令和 0052 则Dkk-yk; 0053所述参数矩阵确认为 0054 进一步的, 所述噪声优化模块用于创建噪声优化问题, 并根据所述噪声优化问题 的最优解, 计算所述参数矩阵中的最优参数, 具体为: 0055令所述参数矩阵和Ddiag (D0,DK-1), 则D -y; 0056创建优化问题为: 0057 令所述最优解为 *, 则得出 *-(DTD)-1DTy; 0058 根据所述最优解, 计算获得所述参数矩阵中的最优参数。 0059 进一步的, 所述第二模型建立单元用于根据所述优化参数和所述分数阶微分方程 模型, 建立血糖估计模型, 具体为: 0060 将。
23、所述优化参数代入所述分数阶微分方程模型, 建立所述血糖估计模型。 0061 实施本发明实施例, 具有如下有益效果: 0062 本发明实施例提供的基于分数阶微分方程的血糖数据处理方法及装置, 根据获取 的待测者检测数据和数据库预设的血糖数据, 建立分数阶微分方程模型, 并确定其所需求 解的参数矩阵, 再结合噪声优化问题进行优化, 求出参数矩阵中的最优参数。 最后根据最优 参数和分数阶微分方程模型, 建立血糖估计模型, 以此来得到准确的血糖估计值。 相比于现 有技术无创血糖仪直接根据检测到的数据获得血糖数据, 本发明技术方案解决因信号受到 周围噪声影响而造成的测量结果不精准的问题, 提高血糖估计的。
24、精准性。 附图说明 0063 图1是本发明提供的基于分数阶微分方程的血糖数据处理方法的一种实施例的流 程示意图; 0064 图2是本发明提供了基于分数阶微分方程的血糖数据处理装置, 的一种实施例的 结构示意图; 0065 图3是本发明提供的第一模型建立模块的一种实施例的结构示意图。 具体实施方式 0066 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完 整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。 说 明 。
25、书 4/8 页 8 CN 106805943 B 8 0067 参见图1, 是本发明提供的基于分数阶微分方程的血糖数据处理方法的一种实施 例的流程示意图, 该方法包括步骤101至104, 各步骤具体如下: 0068 步骤101: 获取待测者的检测数据和血糖数据库中该待测者的血糖数据; 血糖数据 库设置在无创血糖检测仪中; 检测数据由所述无创血糖检测仪获取。 0069 在本实施例中, 血糖数据库预先存储该待测者或其他患者的检测数据及其对应的 血糖数据, 如某病人前几次测量的检测数据和对应输出的血糖值。 该检测数据由无创血糖 检测仪上的测量数据采集模块获取, 测量数据采集模块中的第一测量信号发射器。
26、往病人皮 肤发射第一测量信号, 并通过第一测量信号数据采集模块中的传感器接收漫反射的测量信 号, 再经光电转换单元或电信号转换单元和A/D转换器把光信号或电信号转换为数字信号, 即检测数据。 另外, 无创血糖检测仪中设置有存储模块, 用于存储血糖数据库。 0070 本实施例中所述的第一测量信号包括所有可通过光电获得测量数据的测量信号, 如近红外, 电磁波, 超声波, 生物阻抗,以及其它物理信号。 以红外线信号举例,“第一测量信 号” 指 “红外光” ,“测量数据采集模块” 指 “红外数据采集模块” ,“第一测量信号发射器” 指 “红外发射器” ,“第一测量信号数据采集模块” 指 “红外数据采集。
27、模块” 。 作为本实施例的一 种举例, 红外数据采集模块所获取的红外数据包括一个或多个不同的红外线的光波谱。 0071 步骤102: 根据检测数据和血糖数据, 建立分数阶微分方程模型, 并确定分数阶微 分方程模型在优化过程所需求解的参数矩阵。 0072 在本实施例中, 根据检测数据和血糖数据, 建立分数阶微分方程模型具体为: 检测 数据为由所述无创血糖检测仪的传感器收集的第一测量信号xk(t), 血糖数据为yk(t), k是 传感器在第k个算子的频率; 0073 则建立的分数阶微分方程模型为: 0074其中, k0,K-1; 0075 定义Sk为分数阶微分方程模型的输出部分的非零阶集合, Tk。
28、是包含了所有的阶, ap,k和bq,k分别是输出部分和输入部分的相关参数, p和q为随机数且不一定是整数; 0076 则所述分数阶微分方程模型的分数微分算子为: 0077其中 0078 在本实施例中, 确定分数阶微分方程模型在优化过程所需求解的参数矩阵, 具体 为: 设 a,k和 b,k为分数阶微分方程的输出和输入系数的矢量, 假设系统的输出输入已经采 样, 设Nk为输入输出采样的对数的总和; 0079 令i0,Nk-1, 则xk(t)和yk(t)为输入和输出的采样, 同时, 令矢量dy,k(ti)为包 含了输出采样的非零分数阶导数, dx,k(ti)包含了输入采样的所有分数阶导数, 则关系式。
29、 为: 0080 yk(ti)+dy,k(ti)Ta,kdx,k(ti)Tb,k, i0,Nk-1, k0,K-1; 0081令dk,idy,k(ti)T -dx,k(ti)TT和 说 明 书 5/8 页 9 CN 106805943 B 9 0082则 0083令和 0084 则Dkk-yk; 0085所述参数矩阵确认为 0086 步骤103: 创建噪声优化问题, 并根据噪声优化问题的最优解, 计算参数矩阵中的 最优参数; 该噪声优化问题用于过滤环境噪声对分数阶微分方程模型的影响。 0087在本实施例中, 步骤103具体为: 令所述参数矩阵 和Ddiag(D0,DK-1), 则D -y; 0。
30、088创建优化问题为: 0089 令所述最优解为 *, 则得出 *-(DTD)-1DTy; 0090 根据所述最优解, 计算获得所述参数矩阵中的最优参数。 0091 步骤104: 根据优化参数和分数阶微分方程模型, 建立血糖估计模型; 血糖估计模 型用于根据待测者的检测数据, 输出相应的血糖估计值。 0092 在本实施例中, 步骤104具体为: 将优化参数代入所述分数阶微分方程模型, 建立 所述血糖估计模型。 该血糖估计模型可根据实际获取的检测数据得到优化后的血糖估计 值, 该血糖估计值避免了环境噪声的干扰, 数据更准确。 0093 在本实施例中, 在获得血糖估计值后, 还可以通过蓝牙,WIF。
31、I或LIFI等无线传输技 术, 将血糖估计值发送给远程客户端。 客户端可以是手机、 个人电脑或者平板电脑, 实现了 病人随时监测血糖浓度值。 0094 在本实施例中, 本次测量的检测数据和血糖估计值可以存储在血糖数据库中, 以 更新血糖数据库中的数据, 便于提高下次优化的精准性。 0095 参见图2, 图2是本发明提供了基于分数阶微分方程的血糖数据处理装置, 的一种 实施例的结构示意图。 如图2所示, 血糖数据处理装置设置在无创血糖检测仪中, 该血糖数 据处理装置包括: 数据获取模块201、 第一模型建立模块202、 噪声优化模块203和第二模型 建立模块204。 0096 作为本实施例的一种。
32、举例, 本血糖数据处理装置除了设置在无创血糖检测仪中, 还可以设置成可穿戴在耳朵、 手指、 虎口、 手腕、 手臂、 四肢、 身体上的设备, 只需该设备具备 第一测量数据采集和用于存储血糖数据库的存储等功能即能实现本发明技术方案。 0097 数据获取模块201, 用于获取待测者的检测数据血糖数据库中待测者的血糖数据; 该血糖数据库设置在无创血糖检测仪中; 该检测数据由无创血糖检测仪获取。 0098 第一模型建立模块202, 用于根据检测数据和血糖数据, 建立分数阶微分方程模 型, 并确定分数阶微分方程模型在优化过程所需求解的参数矩阵。 说 明 书 6/8 页 10 CN 106805943 B 。
33、10 0099 噪声优化模块203, 用于创建噪声优化问题, 并根据噪声优化问题的最优解, 计算 参数矩阵中的最优参数; 该噪声优化问题用于过滤环境噪声对分数阶微分方程模型的影 响。 0100 第二模型建立模块204, 用于根据优化参数和所述分数阶微分方程模型, 建立血糖 估计模型; 该血糖估计模型用于根据待测者的检测数据, 输出相应的血糖估计值。 0101 作为本实施例的一种举例, 参见图3, 图3是本发明提供的第一模型建立模块的一 种实施例的结构示意图。 如图3所述, 该第一模型建立模块包括: 第一模型建立单元301、 定 义单元302、 微分算子确定单元303和参数矩阵确定单元304。 。
34、0102 第一模型建立单元301用于建立分数阶微分方程模型。 该分数阶微分方程模型为: 0103其中, k0,K-1; 0104 检测数据为由无创血糖检测仪的传感器收集的第一测量信号xk(t), 血糖数据为yk (t), k是传感器在第k个算子的频率。 0105 定义单元302用于定义Sk为分数阶微分方程模型的输出部分的非零阶集合, Tk是包 含了所有的阶, ap,k和bq,k分别是输出部分和输入部分的相关参数, p和q为随机数且不一定 为整数。 0106 微分算子确定单元303用于确定分数阶微分方程模型的分数微分算子。 分数微分 算子为: 0107其中 0108 参数矩阵确定单元304用于确。
35、定分数阶微分方程模型在优化过程所需求解的参数 矩阵, 具体为: 设 a,k和 b,k为分数阶微分方程的输出和输入系数的矢量, Nk为输入输出采样 的对数的总和; 0109 令i0,Nk-1, 则xk(t)和yk(t)为输入和输出的采样, 同时, 令矢量dy,k(ti)为包 含了输出采样的非零分数阶导数, dx,k(ti)包含了输入采样的所有分数阶导数, 则关系式 为: 0110 yk(ti)+dy,k(ti)Ta,kdx,k(ti)Tb,k, i0,Nk-1, k0,K-1; 0111令dk,idy,k(ti)T -dx,k(ti)TT和 0112则 0113令和 0114 则Dkk-yk; 。
36、0115该参数矩阵确认为 说 明 书 7/8 页 11 CN 106805943 B 11 0116 在本实施例中, 噪声优化模块203用于创建噪声优化问题, 并根据所述噪声优化问 题的最优解, 计算所述参数矩阵中的最优参数, 具体为: 0117令参数矩阵和Ddiag (D0,DK-1), 则D -y; 0118创建优化问题为: 0119 令最优解为 *, 则得出 *-(DTD)-1DTy; 0120 根据最优解, 计算获得参数矩阵中的最优参数。 0121 在本实施例中, 第二模型建立单元204用于根据优化参数和分数阶微分方程模型, 建立血糖估计模型, 具体为: 将优化参数代入分数阶微分方程模。
37、型, 建立血糖估计模型。 0122 由上可见, 本发明实施例提供的基于分数阶微分方程的血糖数据处理方法及装 置, 根据获取的待测者检测数据和数据库预设的血糖数据, 建立分数阶微分方程模型, 并确 定其所需求解的参数矩阵, 再结合噪声优化问题进行优化, 求出参数矩阵中的最优参数。 最 后根据最优参数和分数阶微分方程模型, 建立血糖估计模型, 以此来得到准确的血糖估计 值。 相比于现有技术无创血糖仪直接根据检测到的数据获得血糖数据, 本发明技术方案解 决因信号受到周围噪声影响而造成的测量结果不精准的问题, 提高血糖估计的精准性。 0123 进一步的, 本发明提供的血糖数据处理装置可以将优化的血糖值发送给远程客户 端, 实现病人随时监测血糖浓度值, 便于用户监测。 0124 以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技术人员 来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也视为 本发明的保护范围。 说 明 书 8/8 页 12 CN 106805943 B 12 图1 图2 图3 说 明 书 附 图 1/1 页 13 CN 106805943 B 13 。