钢围堰结构的锚固方法.pdf

上传人:111****11 文档编号:749117 上传时间:2018-03-08 格式:PDF 页数:14 大小:880.77KB
返回 下载 相关 举报
摘要
申请专利号:

CN201610160885.0

申请日:

2016.03.21

公开号:

CN105780789A

公开日:

2016.07.20

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||专利申请权的转移IPC(主分类):E02D 19/04登记生效日:20171031变更事项:申请人变更前权利人:广东高航知识产权运营有限公司变更后权利人:泰兴市东城水处理工程有限公司变更事项:地址变更前权利人:510640 广东省广州市天河区五山路中公教育大厦371-1号2401单元变更后权利人:225300 江苏省泰州市泰兴市城东工业园横一路南侧|||专利申请权的转移IPC(主分类):E02D 19/04登记生效日:20170728变更事项:申请人变更前权利人:潘燕变更后权利人:广东高航知识产权运营有限公司变更事项:地址变更前权利人:315200 浙江省宁波市镇海区鼓楼东路32号变更后权利人:510640 广东省广州市天河区五山路中公教育大厦371-1号2401单元|||实质审查的生效IPC(主分类):E02D 19/04申请日:20160321|||公开

IPC分类号:

E02D19/04; E02D5/74

主分类号:

E02D19/04

申请人:

潘燕

发明人:

潘燕

地址:

315200 浙江省宁波市镇海区鼓楼东路32号

优先权:

专利代理机构:

北京高航知识产权代理有限公司 11530

代理人:

赵永强

PDF下载: PDF下载
内容摘要

本发明公开了钢围堰结构的锚固方法,包括构建钢围堰锚固结构模型、构建钢围堰锚固结构的随机地震动模型、钢围堰锚固结构主要构件的位移和速度功率谱密度计算、构建钢围堰锚固结构损伤模型,计算损伤指数、对钢围堰锚固结构模型进行双重可靠度评估、评估反馈等步骤。本发明按照事先评估合格的钢围堰锚固结构模型对钢围堰进行锚固,并根据评估结果及时做出合理调整,提高了抗震性能和结构安全性,且提高了效率,节约了成本。

权利要求书

1.钢围堰结构的锚固方法,其特征是,包括以下步骤:
(1)通过计算机辅助设计初步构建钢围堰锚固结构模型,并确定钢围堰锚固结构模型
的主要构件;
(2)根据当地抗震设防烈度、抗震设计分组及钢围堰锚固结构所属场地类别,构建钢围
堰锚固结构模型的随机地震动模型,生成对应所述主要构件的位移和速度的功率谱密度函
数;
(3)根据所述主要构件的位移和速度的功率谱密度函数计算得到相应的位移功率谱密
度和速度功率谱密度,对所述位移功率谱密度和速度功率谱密度进行积分计算,得到对应
主要构件的位移方差和速度方差;
(4)在标准温度W0下对所述主要构件进行试验研究得出其性能参数,根据所述性能参数
构建钢围堰锚固结构的损伤模型,计算损伤指数Φ,考虑当地平均温度W对主要构件性能参
数的影响,引入温度修正系数δ,当W>W0时,温度修正系数当W≤W0时,温度修
正系数另外考虑到具体施工情况、当地自然环境会对构件性能参数产生较
大影响,进而影响到损伤指数Φ,引入施工因子和环境因子,均介于0到1之间,以各自权重
a、b、c影响损伤指数Φ,损伤指数Φ的计算公式为:
Φ = ( 1 - η ) S m S j ( δ a + δ 1 b + δ 2 c ) + η E ( T ) QS j ]]>
其中,η为能量耗散因子,Sj为极限位移,Q为屈服荷载,T为地震动强度超过50%峰值的
震动时刻,Sm为主要构件在[0,T]时段内的最大位移,E(T)为主要构件在[0,T]时段内的累
积滞变耗能;
(5)通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估,若评估合格,则按照
钢围堰锚固结构模型进行锚固,如果评估不合格,可能会造成相应的安全隐患,则需要进行
重新设计。
2.根据权利要求1所述的钢围堰结构的锚固方法,其特征是,通过MATLAB对钢围堰锚固
结构模型进行双重动力可靠度评估时,设置评估系数ψ,其中评估系数ψ的计算公式为:
ψ = ψ 1 ψ 2 ]]>
= { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) e x ] - P 1 } × { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>
其中,
Ψ 1 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) e x ] - P 1 } , Ψ 2 = { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>
若ψ1、ψ2均大于0,钢围堰锚固结构模型满足设计要求,评估合格;若仅满足ψ1大于0,则
对P2进行调整后重新评估;其余情况,需重新进行钢围堰锚固结构设计;
其中,0≤t≤T,a为设定的层间位移角界限值,Φ0为设定的累积损伤指数界限值,层间
位移角界限值a和累积损伤指数界限值Φ0根据地震类型确定;σv(x)为速度标准差,σs(x)
为位移标准差,σ2s(x)为位移方差,mΦ为累积损伤指数的均值,σΦ2为累积损伤指数的标准
差,P1为设定的第一标准可靠度,P2为设定的第二标准可靠度;
所述P1、P2的设定范围为90%~99.9%,P1值根据结构的用途提前确定,P2值可根据其初
始值P′2在范围内进行自适应调整,具体调整方式为:
当评估合格时,P2=P′2
当评估不合格且满足ψ1大于0时,P2=P2min

说明书

钢围堰结构的锚固方法

技术领域

本发明涉及桥梁建筑领域,具体涉及钢围堰结构的锚固方法。

背景技术

相关技术中,进行钢围堰结构的锚固时,钢围堰结构的主要构件的参数选择沿用
技术规格中的标准参数。

由于钢围堰结构所属地的地震强度和地震类型不同,按照相关技术进行钢围堰结
构的锚固时,锚固后的钢围堰结构的抗震性能对适应当地要求的灵活性较差,另一方面,缺
乏针对锚固时的钢围堰结构的抗震性能快速评估的方法。

发明内容

针对上述问题,本发明提供钢围堰结构的锚固方法。

本发明的目的采用以下技术方案来实现:

钢围堰结构的锚固方法,包括以下步骤:

(1)通过计算机辅助设计初步构建钢围堰锚固结构模型,并确定钢围堰锚固结构
模型的主要构件;

(2)根据当地抗震设防烈度、抗震设计分组及钢围堰锚固结构所属场地类别,构建
钢围堰锚固结构模型的随机地震动模型,生成对应所述主要构件的位移和速度的功率谱密
度函数;

(3)根据所述主要构件的位移和速度的功率谱密度函数计算得到相应的位移功率
谱密度和速度功率谱密度,对所述位移功率谱密度和速度功率谱密度进行积分计算,得到
对应主要构件的位移方差和速度方差;

(4)在标准温度W0下对所述主要构件进行试验研究得出其性能参数,根据所述性
能参数构建钢围堰锚固结构的损伤模型,计算损伤指数Φ,考虑当地平均温度W对主要构件
性能参数的影响,引入温度修正系数δ,当W>W0时,温度修正系数当W≤W0时,
温度修正系数另外考虑到具体施工情况、当地自然环境会对构件性能参数
产生较大影响,进而影响到损伤指数Φ,引入施工因子和环境因子,均介于0到1之间,以各
自权重a、b、c影响损伤指数Φ,损伤指数Φ的计算公式为:

Φ = ( 1 - η ) S m S j ( δ a + δ 1 b + δ 2 c ) + η E ( T ) QS j ]]>

其中,η为能量耗散因子,Sj为极限位移,Q为屈服荷载,T为地震动强度超过50%峰
值的震动时刻,Sm为主要构件在[0,T]时段内的最大位移,E(T)为主要构件在[0,T]时段内
的累积滞变耗能;

(5)通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估,若评估合格,则
按照钢围堰锚固结构模型进行锚固,如果评估不合格,可能会造成相应的安全隐患,则需要
进行重新设计。

优选的,通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估时,设置评
估系数ψ,其中评估系数ψ的计算公式为:


ψ = ψ 1 ψ 2 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } × { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

其中,


ψ 1 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } , ψ 2 = { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

若ψ1、ψ2均大于0,钢围堰锚固结构模型满足设计要求,评估合格;若仅满足ψ1大于
0,则对P2进行调整后重新评估;其余情况,需重新进行钢围堰锚固结构设计;

其中,0≤t≤T,a为设定的层间位移角界限值,Φ0为设定的累积损伤指数界限值,
层间位移角界限值a和累积损伤指数界限值Φ0根据地震类型确定;σv(x)为速度标准差,σs
(x)为位移标准差,σ2s(x)为位移方差,mΦ为累积损伤指数的均值,σΦ2为累积损伤指数的标
准差,P1为设定的第一标准可靠度,P2为设定的第二标准可靠度;

所述P1、P2的设定范围为90%~99.9%,P1值根据结构的用途提前确定,P2值可根
据其初始值P′2在范围内进行自适应调整,具体调整方式为:

当评估合格时,P2=P′2

当评估不合格且满足ψ1大于0时,P2=P2min

本发明的有益效果为:采用双重动力可靠度计算方法构建钢围堰锚固结构,以对
结构进行定量控制设计,然后按照评估合格的钢围堰锚固结构模型进行钢围堰结构的锚
固,从而保证并提高锚固后的钢围堰结构的抗震强度;精简了钢围堰锚固结构的双重动力
可靠度计算,提高了设计的速度;引入温度修正系数、施工因子和环境因子,进行损伤指数
Φ的计算,提高了对结构进行定量控制设计的精度;在满足结构安全的前提下,P2值可根据
其初始值在范围内进行自适应调整,能够大大提高效率,节约成本,且能够极大减少安全隐
患,大大提高结构安全性。

附图说明

利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限
制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得
其它的附图。

图1是本发明的方法流程示意图。

具体实施方式

结合以下实施例对本发明作进一步描述。

实施例1:如图1所示的钢围堰结构的锚固方法,包括以下步骤:

(1)通过计算机辅助设计初步构建钢围堰锚固结构模型,并确定钢围堰锚固结构
模型的主要构件;

(2)根据当地抗震设防烈度、抗震设计分组及钢围堰锚固结构所属场地类别,构建
钢围堰锚固结构模型的随机地震动模型,生成对应所述主要构件的位移和速度的功率谱密
度函数;

(3)根据所述主要构件的位移和速度的功率谱密度函数计算得到相应的位移功率
谱密度和速度功率谱密度,对所述位移功率谱密度和速度功率谱密度进行积分计算,得到
对应主要构件的位移方差和速度方差;

(4)在标准温度W0下对所述主要构件进行试验研究得出其性能参数,根据所述性
能参数构建钢围堰锚固结构的损伤模型,计算损伤指数Φ,考虑当地平均温度W对主要构件
性能参数的影响,引入温度修正系数δ,当W>W0时,温度修正系数当W≤W0时,
温度修正系数另外考虑到具体施工情况、当地自然环境会对构件性能参数
产生较大影响,进而影响到损伤指数Φ,引入施工因子和环境因子,均介于0到1之间,以各
自权重a、b、c影响损伤指数Φ,损伤指数Φ的计算公式为:

Φ = ( 1 - η ) S m S j ( δ a + δ 1 b + δ 2 c ) + η E ( T ) QS j ]]>

其中,η为能量耗散因子,Sj为极限位移,Q为屈服荷载,T为地震动强度超过50%峰
值的震动时刻,Sm为主要构件在[0,T]时段内的最大位移,E(T)为主要构件在[0,T]时段内
的累积滞变耗能;

(5)通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估,若评估合格,则
按照钢围堰锚固结构模型进行锚固,如果评估不合格,可能会造成相应的安全隐患,则需要
进行重新设计。

优选的,通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估时,设置评
估系数ψ,其中评估系数ψ的计算公式为:

ψ = ψ 1 ψ 2 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } × { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

其中,


ψ 1 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } , ψ 2 = { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

若ψ1、ψ2均大于0,钢围堰锚固结构模型满足设计要求,评估合格;若仅满足ψ1大于
0,则对P2进行调整后重新评估;其余情况,需重新进行钢围堰锚固结构设计;

其中,0≤t≤T,a为设定的层间位移角界限值,Φ0为设定的累积损伤指数界限值,
层间位移角界限值a和累积损伤指数界限值Φ0根据地震类型确定;σv(x)为速度标准差,σs
(x)为位移标准差,σ2s(x)为位移方差,mΦ为累积损伤指数的均值,σΦ2为累积损伤指数的标
准差,P1为设定的第一标准可靠度,P2为设定的第二标准可靠度;

所述P1、P2的设定范围为90%~99.9%,P1值根据结构的用途提前确定,P2值可根
据其初始值P′2在范围内进行自适应调整,具体调整方式为:

当评估合格时,P2=P′2

当评估不合格且满足ψ1大于0时,P2=P2min

在此实施例中:采用双重动力可靠度计算方法构建钢围堰锚固结构,以对结构进
行定量控制设计,然后按照评估合格的钢围堰锚固结构模型进行钢围堰结构的锚固,从而
保证并提高锚固后的钢围堰结构的抗震强度;精简了钢围堰锚固结构的双重动力可靠度计
算,提高了设计的速度;引入温度修正系数、施工因子和环境因子,进行损伤指数Φ的计算,
提高了对结构进行定量控制设计的精度;在满足结构安全的前提下,P2值可根据其初始值
在范围内进行自适应调整,能够大大提高效率,节约成本,且能够极大减少安全隐患,大大
提高结构安全性;第一标准可靠度的取值为90%,设计速度比现有技术提高了50%,安全性
比现有技术提高了20%。

实施例2:如图1所示的钢围堰结构的锚固方法,包括以下步骤:

(1)通过计算机辅助设计初步构建钢围堰锚固结构模型,并确定钢围堰锚固结构
模型的主要构件;

(2)根据当地抗震设防烈度、抗震设计分组及钢围堰锚固结构所属场地类别,构建
钢围堰锚固结构模型的随机地震动模型,生成对应所述主要构件的位移和速度的功率谱密
度函数;

(3)根据所述主要构件的位移和速度的功率谱密度函数计算得到相应的位移功率
谱密度和速度功率谱密度,对所述位移功率谱密度和速度功率谱密度进行积分计算,得到
对应主要构件的位移方差和速度方差;

(4)在标准温度W0下对所述主要构件进行试验研究得出其性能参数,根据所述性
能参数构建钢围堰锚固结构的损伤模型,计算损伤指数Φ,考虑当地平均温度W对主要构件
性能参数的影响,引入温度修正系数δ,当W>W0时,温度修正系数当W≤W0时,
温度修正系数另外考虑到具体施工情况、当地自然环境会对构件性能参数
产生较大影响,进而影响到损伤指数Φ,引入施工因子和环境因子,均介于0到1之间,以各
自权重a、b、c影响损伤指数Φ,损伤指数Φ的计算公式为:

Φ = ( 1 - η ) S m S j ( δ a + δ 1 b + δ 2 c ) + η E ( T ) QS j ]]>

其中,η为能量耗散因子,Sj为极限位移,Q为屈服荷载,T为地震动强度超过50%峰
值的震动时刻,Sm为主要构件在[0,T]时段内的最大位移,E(T)为主要构件在[0,T]时段内
的累积滞变耗能;

(5)通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估,若评估合格,则
按照钢围堰锚固结构模型进行锚固,如果评估不合格,可能会造成相应的安全隐患,则需要
进行重新设计。

优选的,通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估时,设置评
估系数ψ,其中评估系数ψ的计算公式为:


ψ = ψ 1 ψ 2 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } × { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

其中,


ψ 1 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } , ψ 2 = { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

若ψ1、ψ2均大于0,钢围堰锚固结构模型满足设计要求,评估合格;若仅满足ψ1大于
0,则对P2进行调整后重新评估;其余情况,需重新进行钢围堰锚固结构设计;

其中,0≤t≤T,a为设定的层间位移角界限值,Φ0为设定的累积损伤指数界限值,
层间位移角界限值a和累积损伤指数界限值Φ0根据地震类型确定;σv(x)为速度标准差,σs
(x)为位移标准差,σ2s(x)为位移方差,mΦ为累积损伤指数的均值,σΦ2为累积损伤指数的标
准差,P1为设定的第一标准可靠度,P2为设定的第二标准可靠度;

所述P1、P2的设定范围为90%~99.9%,P1值根据结构的用途提前确定,P2值可根
据其初始值P′2在范围内进行自适应调整,具体调整方式为:

当评估合格时,P2=P′2

当评估不合格且满足ψ1大于0时,P2=P2min

在此实施例中:采用双重动力可靠度计算方法构建钢围堰锚固结构,以对结构进
行定量控制设计,然后按照评估合格的钢围堰锚固结构模型进行钢围堰结构的锚固,从而
保证并提高锚固后的钢围堰结构的抗震强度;精简了钢围堰锚固结构的双重动力可靠度计
算,提高了设计的速度;引入温度修正系数、施工因子和环境因子,进行损伤指数Φ的计算,
提高了对结构进行定量控制设计的精度;在满足结构安全的前提下,P2值可根据其初始值
在范围内进行自适应调整,能够大大提高效率,节约成本,且能够极大减少安全隐患,大大
提高结构安全性;第一标准可靠度的取值为92%,设计速度比现有技术提高了45%,安全性
比现有技术提高了25%。

实施例3:如图1所示的钢围堰结构的锚固方法,包括以下步骤:

(1)通过计算机辅助设计初步构建钢围堰锚固结构模型,并确定钢围堰锚固结构
模型的主要构件;

(2)根据当地抗震设防烈度、抗震设计分组及钢围堰锚固结构所属场地类别,构建
钢围堰锚固结构模型的随机地震动模型,生成对应所述主要构件的位移和速度的功率谱密
度函数;

(3)根据所述主要构件的位移和速度的功率谱密度函数计算得到相应的位移功率
谱密度和速度功率谱密度,对所述位移功率谱密度和速度功率谱密度进行积分计算,得到
对应主要构件的位移方差和速度方差;

(4)在标准温度W0下对所述主要构件进行试验研究得出其性能参数,根据所述性
能参数构建钢围堰锚固结构的损伤模型,计算损伤指数Φ,考虑当地平均温度W对主要构件
性能参数的影响,引入温度修正系数δ,当W>W0时,温度修正系数当W≤W0时,
温度修正系数另外考虑到具体施工情况、当地自然环境会对构件性能参数
产生较大影响,进而影响到损伤指数Φ,引入施工因子和环境因子,均介于0到1之间,以各
自权重a、b、c影响损伤指数Φ,损伤指数Φ的计算公式为:

Φ = ( 1 - η ) S m S j ( δ a + δ 1 b + δ 2 c ) + η E ( T ) QS j ]]>

其中,η为能量耗散因子,Sj为极限位移,Q为屈服荷载,T为地震动强度超过50%峰
值的震动时刻,Sm为主要构件在[0,T]时段内的最大位移,E(T)为主要构件在[0,T]时段内
的累积滞变耗能;

(5)通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估,若评估合格,则
按照钢围堰锚固结构模型进行锚固,如果评估不合格,可能会造成相应的安全隐患,则需要
进行重新设计。

优选的,通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估时,设置评
估系数ψ,其中评估系数ψ的计算公式为:


ψ = ψ 1 ψ 2 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } × { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

其中,


ψ 1 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } , ψ 2 = { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

若ψ1、ψ2均大于0,钢围堰锚固结构模型满足设计要求,评估合格;若仅满足ψ1大于
0,则对P2进行调整后重新评估;其余情况,需重新进行钢围堰锚固结构设计;

其中,0≤t≤T,a为设定的层间位移角界限值,Φ0为设定的累积损伤指数界限值,
层间位移角界限值a和累积损伤指数界限值Φ0根据地震类型确定;σv(x)为速度标准差,σs
(x)为位移标准差,σ2s(x)为位移方差,mΦ为累积损伤指数的均值,σΦ2为累积损伤指数的标
准差,P1为设定的第一标准可靠度,P2为设定的第二标准可靠度;

所述P1、P2的设定范围为90%~99.9%,P1值根据结构的用途提前确定,P2值可根
据其初始值P′2在范围内进行自适应调整,具体调整方式为:

当评估合格时,P2=P′2

当评估不合格且满足ψ1大于0时,P2=P2min

在此实施例中:采用双重动力可靠度计算方法构建钢围堰锚固结构,以对结构进
行定量控制设计,然后按照评估合格的钢围堰锚固结构模型进行钢围堰结构的锚固,从而
保证并提高锚固后的钢围堰结构的抗震强度;精简了钢围堰锚固结构的双重动力可靠度计
算,提高了设计的速度;引入温度修正系数、施工因子和环境因子,进行损伤指数Φ的计算,
提高了对结构进行定量控制设计的精度;在满足结构安全的前提下,P2值可根据其初始值
在范围内进行自适应调整,能够大大提高效率,节约成本,且能够极大减少安全隐患,大大
提高结构安全性;第一标准可靠度的取值为94%,设计速度比现有技术提高了40%,安全性
比现有技术提高了30%。

实施例4:如图1所示的钢围堰结构的锚固方法,包括以下步骤:

(1)通过计算机辅助设计初步构建钢围堰锚固结构模型,并确定钢围堰锚固结构
模型的主要构件;

(2)根据当地抗震设防烈度、抗震设计分组及钢围堰锚固结构所属场地类别,构建
钢围堰锚固结构模型的随机地震动模型,生成对应所述主要构件的位移和速度的功率谱密
度函数;

(3)根据所述主要构件的位移和速度的功率谱密度函数计算得到相应的位移功率
谱密度和速度功率谱密度,对所述位移功率谱密度和速度功率谱密度进行积分计算,得到
对应主要构件的位移方差和速度方差;

(4)在标准温度W0下对所述主要构件进行试验研究得出其性能参数,根据所述性
能参数构建钢围堰锚固结构的损伤模型,计算损伤指数Φ,考虑当地平均温度W对主要构件
性能参数的影响,引入温度修正系数δ,当W>W0时,温度修正系数当W≤W0时,
温度修正系数另外考虑到具体施工情况、当地自然环境会对构件性能参数
产生较大影响,进而影响到损伤指数Φ,引入施工因子和环境因子,均介于0到1之间,以各
自权重a、b、c影响损伤指数Φ,损伤指数Φ的计算公式为:

Φ = ( 1 - η ) S m S j ( δ a + δ 1 b + δ 2 c ) + η F ( T ) QS j ]]>

其中,η为能量耗散因子,Sj为极限位移,Q为屈服荷载,T为地震动强度超过50%峰
值的震动时刻,Sm为主要构件在[0,T]时段内的最大位移,E(T)为主要构件在[0,T]时段内
的累积滞变耗能;

(5)通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估,若评估合格,则
按照钢围堰锚固结构模型进行锚固,如果评估不合格,可能会造成相应的安全隐患,则需要
进行重新设计。

优选的,通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估时,设置评
估系数ψ,其中评估系数ψ的计算公式为:


ψ = ψ 1 ψ 2 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } × { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

其中,


ψ 1 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } , ψ 2 = { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

若ψ1、ψ2均大于0,钢围堰锚固结构模型满足设计要求,评估合格;若仅满足ψ1大于
0,则对P2进行调整后重新评估;其余情况,需重新进行钢围堰锚固结构设计;

其中,0≤t≤T,a为设定的层间位移角界限值,Φ0为设定的累积损伤指数界限值,
层间位移角界限值a和累积损伤指数界限值Φ0根据地震类型确定;σv(x)为速度标准差,σs
(x)为位移标准差,σ2s(x)为位移方差,mΦ为累积损伤指数的均值,σΦ2为累积损伤指数的标
准差,P1为设定的第一标准可靠度,P2为设定的第二标准可靠度;

所述P1、P2的设定范围为90%~99.9%,P1值根据结构的用途提前确定,P2值可根
据其初始值P′2在范围内进行自适应调整,具体调整方式为:

当评估合格时,P2=P′2

当评估不合格且满足ψ1大于0时,P2=P2min。。

在此实施例中:采用双重动力可靠度计算方法构建钢围堰锚固结构,以对结构进
行定量控制设计,然后按照评估合格的钢围堰锚固结构模型进行钢围堰结构的锚固,从而
保证并提高锚固后的钢围堰结构的抗震强度;精简了钢围堰锚固结构的双重动力可靠度计
算,提高了设计的速度;引入温度修正系数、施工因子和环境因子,进行损伤指数Φ的计算,
提高了对结构进行定量控制设计的精度;在满足结构安全的前提下,P2值可根据其初始值
在范围内进行自适应调整,能够大大提高效率,节约成本,且能够极大减少安全隐患,大大
提高结构安全性;第一标准可靠度的取值为96%,设计速度比现有技术提高了35%,安全性
比现有技术提高了35%。

实施例5:如图1所示的钢围堰结构的锚固方法,包括以下步骤:

(1)通过计算机辅助设计初步构建钢围堰锚固结构模型,并确定钢围堰锚固结构
模型的主要构件;

(2)根据当地抗震设防烈度、抗震设计分组及钢围堰锚固结构所属场地类别,构建
钢围堰锚固结构模型的随机地震动模型,生成对应所述主要构件的位移和速度的功率谱密
度函数;

(3)根据所述主要构件的位移和速度的功率谱密度函数计算得到相应的位移功率
谱密度和速度功率谱密度,对所述位移功率谱密度和速度功率谱密度进行积分计算,得到
对应主要构件的位移方差和速度方差;

(4)在标准温度W0下对所述主要构件进行试验研究得出其性能参数,根据所述性
能参数构建钢围堰锚固结构的损伤模型,计算损伤指数Φ,考虑当地平均温度W对主要构件
性能参数的影响,引入温度修正系数δ,当W>W0时,温度修正系数当W≤W0时,
温度修正系数另外考虑到具体施工情况、当地自然环境会对构件性能参数
产生较大影响,进而影响到损伤指数Φ,引入施工因子和环境因子,均介于0到1之间,以各
自权重a、b、c影响损伤指数Φ,损伤指数Φ的计算公式为:

Φ = ( 1 - η ) S m S j ( δ a + δ 1 b + δ 2 c ) + η F ( T ) QS j ]]>

其中,η为能量耗散因子,Sj为极限位移,Q为屈服荷载,T为地震动强度超过50%峰
值的震动时刻,Sm为主要构件在[0,T]时段内的最大位移,E(T)为主要构件在[0,T]时段内
的累积滞变耗能;

(5)通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估,若评估合格,则
按照钢围堰锚固结构模型进行锚固,如果评估不合格,可能会造成相应的安全隐患,则需要
进行重新设计。

优选的,通过MATLAB对钢围堰锚固结构模型进行双重动力可靠度评估时,设置评
估系数ψ,其中评估系数ψ的计算公式为:


ψ = ψ 1 ψ 2 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } × { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

其中,


ψ 1 = { exp [ - 0 t 1 π σ v ( x ) σ s ( x ) exp ( - a 2 2 σ 2 s ( x ) ) d x ] - P 1 } , ψ 2 = { 0 Φ 0 [ 1 2 π ( ln Φ ) s exp [ lnm Φ - ln s - 1 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] 2 ln ( 1 + σ Φ 2 m Φ 2 ) ] d s - P 2 } ]]>

若ψ1、ψ2均大于0,钢围堰锚固结构模型满足设计要求,评估合格;若仅满足ψ1大于
0,则对P2进行调整后重新评估;其余情况,需重新进行钢围堰锚固结构设计;

其中,0≤t≤T,a为设定的层间位移角界限值,Φ0为设定的累积损伤指数界限值,
层间位移角界限值a和累积损伤指数界限值Φ0根据地震类型确定;σv(x)为速度标准差,σs
(x)为位移标准差,σ2s(x)为位移方差,mΦ为累积损伤指数的均值,σΦ2为累积损伤指数的标
准差,P1为设定的第一标准可靠度,P2为设定的第二标准可靠度;

所述P1、P2的设定范围为90%~99.9%,P1值根据结构的用途提前确定,P2值可根
据其初始值P′2在范围内进行自适应调整,具体调整方式为:

当评估合格时,P2=P′2

当评估不合格且满足ψ1大于0时,P2=P2min

在此实施例中:采用双重动力可靠度计算方法构建钢围堰锚固结构,以对结构进
行定量控制设计,然后按照评估合格的钢围堰锚固结构模型进行钢围堰结构的锚固,从而
保证并提高锚固后的钢围堰结构的抗震强度;精简了钢围堰锚固结构的双重动力可靠度计
算,提高了设计的速度;引入温度修正系数、施工因子和环境因子,进行损伤指数Φ的计算,
提高了对结构进行定量控制设计的精度;在满足结构安全的前提下,P2值可根据其初始值
在范围内进行自适应调整,能够大大提高效率,节约成本,且能够极大减少安全隐患,大大
提高结构安全性;第一标准可靠度的取值为98%,设计速度比现有技术提高了30%,安全性
比现有技术提高了40%。

最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保
护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应
当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实
质和范围。

钢围堰结构的锚固方法.pdf_第1页
第1页 / 共14页
钢围堰结构的锚固方法.pdf_第2页
第2页 / 共14页
钢围堰结构的锚固方法.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《钢围堰结构的锚固方法.pdf》由会员分享,可在线阅读,更多相关《钢围堰结构的锚固方法.pdf(14页珍藏版)》请在专利查询网上搜索。

本发明公开了钢围堰结构的锚固方法,包括构建钢围堰锚固结构模型、构建钢围堰锚固结构的随机地震动模型、钢围堰锚固结构主要构件的位移和速度功率谱密度计算、构建钢围堰锚固结构损伤模型,计算损伤指数、对钢围堰锚固结构模型进行双重可靠度评估、评估反馈等步骤。本发明按照事先评估合格的钢围堰锚固结构模型对钢围堰进行锚固,并根据评估结果及时做出合理调整,提高了抗震性能和结构安全性,且提高了效率,节约了成本。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 固定建筑物 > 水利工程;基础;疏浚


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1