波形钢腹板钢混组合结构连续工字梁.pdf

上传人:a2 文档编号:725294 上传时间:2018-03-08 格式:PDF 页数:9 大小:1.03MB
返回 下载 相关 举报
摘要
申请专利号:

CN201310308354.8

申请日:

2013.07.18

公开号:

CN103422617A

公开日:

2013.12.04

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||专利申请权的转移IPC(主分类):E04C 3/293变更事项:申请人变更前权利人:杭州冯氏彩钢板有限公司变更后权利人:浙江中隧桥波形钢腹板有限公司变更事项:地址变更前权利人:311200 浙江省杭州市萧山区南阳经济开发区变更后权利人:314422 浙江省杭州市萧山区所前镇东复村168-2号登记生效日:20150227|||专利申请权的转移IPC(主分类):E04C 3/293变更事项:申请人变更前权利人:杭州博数土木工程技术有限公司变更后权利人:杭州冯氏彩钢板有限公司变更事项:地址变更前权利人:311215 浙江省杭州市萧山区经济技术开发区市心北路宁安大厦2幢1711室变更后权利人:311200 浙江省杭州市萧山区南阳经济开发区登记生效日:20141113|||实质审查的生效IPC(主分类):E04C 3/293申请日:20130718|||公开

IPC分类号:

E04C3/293; E01D19/00; E01D2/00

主分类号:

E04C3/293

申请人:

杭州博数土木工程技术有限公司

发明人:

孙天明; 俞国良

地址:

311215 浙江省杭州市萧山区经济技术开发区市心北路宁安大厦2幢1711室

优先权:

专利代理机构:

浙江永鼎律师事务所 33233

代理人:

王梨华;陈丽霞

PDF下载: PDF下载
内容摘要

本发明涉及工字梁,公开了一种波形钢腹板钢混组合结构连续工字梁,包括一块波形钢腹板、上翼缘钢板及混凝土组合结构、下翼缘钢板,所述的波形钢腹板设置在上翼缘钢板与下翼缘钢板之间,上翼缘钢板、下翼缘钢板与波形钢腹板均通过焊接连接,单个梁体结构之间通过连接端或钢绞索中的一种或一种以上的组合连接,形成连续梁结构,承压区域的翼缘板与混凝土组合形成组合结构。本发明具有结构轻,用钢量省,抗震性能好的优点,本发明的波形钢腹板通过转角三个过渡段的设置,能实现直线段与圆弧段的顺畅过渡,解决转角的应力集中问题,尤其是承压部位采用带有微型应变波的钢砼组合结构,具有良好的结构性能和经济性。

权利要求书

1.  波形钢腹板钢混组合结构连续工字梁,包括一块波形钢腹板(2)、上翼缘钢板(1)及混凝土组合结构(7)、下翼缘钢板(3),其特征在于:所述的波形钢腹板(2)设置在上翼缘钢板(1)与下翼缘钢板(3)之间,上翼缘钢板(1)与波形钢腹板(2)通过焊接连接、波形钢腹板(2)与下翼缘钢板(3)通过焊接连接,上翼缘钢板(1)、下翼缘钢板(3)表面粗糙度为70-350μm,单个梁体结构之间通过连接端或钢绞索(5)中的一种或一种以上的组合连接,形成连续梁结构,承压区域的翼缘板与混凝土组合形成组合结构。

2.
  根据权利要求1所述的波形钢腹板钢混组合结构连续工字梁,其特征在于:所述的波形钢腹板(2)为带过渡段(22)及圆弧转角(21)的连续梯形波折钢板,过渡段(22)位于直线段(23)与圆弧转角(21)之间,圆弧转角(21)半径为r,过渡段(22)的半径为R,R为渐变半径,R为∞—r。

3.
  根据权利要求1所述的波形钢腹板钢混组合结构连续工字梁,其特征在于:所述的波形钢腹板(2)沿波高方向的切点连线长度为LAB,沿波长方向的切点连线长度为LBC,LAB≥LBC

4.
  根据权利要求1所述的波形钢腹板钢混组合结构连续工字梁,其特征在于:所述的上翼缘钢板(1)带有外凸波峰的微型应变波(11)。

5.
  根据权利要求4所述的波形钢腹板钢混组合结构连续工字梁,其特征在于:所述的微型应变波(11)的波高为上翼缘钢板厚度的3-20倍,外凸部分的波峰长度小于300mm,波峰与波峰间的距离为大于1000mm。

6.
  根据权利要求1所述的波形钢腹板钢结构连续工字梁,其特征在于:所述的连接端为焊接连接。

7.
  根据权利要求6所述的波形钢腹板钢结构连续工字梁,其特征在于:所述的 连接端的焊接连接采用先简支,后连续的连接方式。

8.
  根据权利要求5所述的波形钢腹板钢结构连续工字梁,其特征在于:所述的上翼缘钢板(1)的厚度大于或小于下翼缘钢板(3)的厚度。

9.
  根据权利要求1所述的波形钢腹板钢结构连续工字梁,其特征在于:所述的上翼缘钢板(1)、下翼缘钢板(3)沿波形钢腹板(2)波长方向均为拱形。

10.
  根据权利要求1所述的波形钢腹板钢混组合结构连续工字梁,其特征在于:所述的上翼缘钢板(1)和下翼缘钢板(2)中,受压区域浇筑混凝土。

说明书

波形钢腹板钢混组合结构连续工字梁
技术领域
本发明涉及工字梁,尤其涉及了一种波形钢腹板钢混组合结构连续工字梁。
背景技术
传统的工字梁或钢箱梁根据抗剪屈曲的要求,腹板的高厚比一般在100:1左右,梯形波形钢腹板由于极强的抗剪和抗屈曲性能,其高厚比可大300:1。现有的波形钢腹板工字梁中采用的波形钢腹板,其腹板的波形都是由直线段与圆弧段组成,在直线段与圆弧段的连接部分容易产生应力集中。传统工字梁或钢箱梁受压翼缘也采用钢板,在受压区采用钢结构不能体现钢结构的经济性,如采用钢混组合结构,使受压区大部分的压应力由混凝土承担,虽然能体现经济性,但混凝土的收缩与徐变特性使得其与钢结构不能协同受力,造成应力重分布现象。
发明内容
本发明针对现有技术中工字梁抗剪性能差,整个结构容易产生应力集中,影响结构的寿命,同时以纯钢材作为承压构件,性价比低等缺点,尤其是组合结构中混凝土的收缩与徐变特性使得其与钢结构不能协同受力,造成应力重分布现象。提供了一种梁体的横截面刚度和连接端的强度高,腹板的波形通过直线段、过渡段、圆弧段三部分组成,其中过渡段能够有效的连接直线段与圆弧段,解决直线段与圆弧段直接连接时应力集中的问题以及采用混凝土组合结构作为承压构架,承压性能好,性价比高的波形钢腹板钢混组合结构连续工字梁。尤其采用了带有微型应变波的承压翼缘板,承压翼缘板上浇筑混凝土的波形钢腹板钢混组合结构简支工字梁,解决了混凝土的收缩与徐变造成的应力重分布 现象。
为了解决上述技术问题,本发明通过下述技术方案得以解决:
波形钢腹板钢混组合结构连续工字梁,包括一块波形钢腹板、上翼缘钢板及混凝土组合结构、下翼缘钢板,所述的波形钢腹板设置在上翼缘钢板与下翼缘钢板之间,上翼缘钢板与波形钢腹板通过焊接连接、波形钢腹板与下翼缘钢板通过焊接连接,上翼缘钢板、下翼缘钢板表面粗糙度为70-350μm,单个梁体结构之间通过连接端或钢绞索中的一种或一种以上的组合连接,形成连续梁结构,承压区域的翼缘板与混凝土组合形成组合结构。承压区域的翼缘板为上翼缘钢板或下翼缘钢板,承压区域的翼缘板在普通梁中主要是上翼缘钢板,在悬臂梁中则是下翼缘钢板。
作为优选,所述的波形钢腹板为带过渡段及圆弧转角的连续梯形波折钢板,过渡段位于直线段与圆弧转角之间,圆弧转角半径为r,过渡段的半径为R,R为渐变半径,R为∞—r。过渡段与直线段相连一端,半径为R为趋向无穷大;过渡段与圆弧转角相连一端,半径为R为趋向等于r,因此,由直线段至圆弧转角,过渡段的半径R为从无穷大逐渐减小至等于r,从而使得直线段与圆弧转角更加平稳过渡,减少应力集中。腹板的波形通过直线段、过渡段、圆弧段三部分组成,其中过渡段能够有效的连接直线段与圆弧转角,解决直线段与圆弧段直接连接时应力集中的问题,适合于工业化批量制造,模具及制造成本较低。
作为优选,所述的波形钢腹板沿波高方向的切点连线长度为LAB,沿波长方向的切点连线长度为LBC,LAB≥LBC。波形钢腹板沿波高方向的切点连线长度等于或略大于沿波长方向的切点连线长度,即LAB≥LBC的设计使波形钢板的抗剪强度和用钢量达到良好的性价比,如果波长方向过长,即LBC≥LAB则抗剪性能明显降低,而波长方向过短,则用钢量明显增大。因此,采用LAB≥LBC的设计, 既能够在保证抗剪强度,又能够尽量减少钢材用量。
作为优选,所述的上翼缘钢板带有外凸波峰的微型应变波。传统的波形钢板纵向基本无刚度,带有微型应变波的翼缘板纵向有刚度,能承压,且其微型应变波部分的纵向刚度减弱部分因混凝土外凸的截面而得到补强。
作为优选,所述的微型应变波的波高为上翼缘钢板厚度的3-20倍,外凸部分的波峰长度小于300mm,波峰与波峰间的距离为大于1000mm。微型应变波的波高采用翼缘板厚度的3-20倍,能使翼缘钢板受压时因微型应变波的存在而减弱的抗压能力,通过外凸增加的3-20倍翼缘板厚度所增加的混凝土截面来弥补,使翼缘板既能接受砼的纵向收缩与徐变,与砼协同受力,又在纵向收缩与徐变过程中及过程后保持整体结构强度。
因为在承压翼缘板上浇筑混凝土,混凝土存在短期收缩和长期徐变,上述变化均使混凝土出现总量千分之一左右的收缩状态,而与混凝土组合的传统平直翼缘板不能协同收缩,从而导致组合结构的实际受力状态与理想受力状态存在明显差异,不能协同收缩的翼缘板率先承担了压应力,导致组合结构中应力重分布现象。本专利采用平直翼缘板上设置微型应变波的办法,使其既能接受砼的纵向收缩与徐变,又在纵向收缩与徐变过程中及过程后保持结构强度,一举解决了组合结构的上述瓶颈问题。
作为优选,所述的连接端为焊接连接。
作为优选,所述的连接端的焊接连接采用先简支,后连续的连接方式。先简支后连续的连接方式,一方面是缘于车间制造、运输、起吊长度等因素限制,另一方面,本方法有利于各跨之间设置预拱度或施加预应力。
作为优选,所述的上翼缘钢板的厚度大于或小于下翼缘钢板的厚度。因受压区需考虑屈曲,受拉区则不用考虑屈曲,所以传统的受拉区与受压区的用钢 量或截面面积相同,使受拉区零件存在功能富余现象,是不科学和不经济的,受压区用钢量适当增大,有利于构件的受压、受拉零件的功能充分发挥,达到较高的性价比。上翼缘钢板的厚度大于下翼缘钢板的厚度时,其为普通工字梁,上翼缘钢板承受压力;上翼缘钢板的厚度小于下翼缘钢板的厚度时,其为悬臂梁,下翼缘钢板承受压力。
作为优选,所述的上翼缘钢板、下翼缘钢板沿波形钢腹板波长方向均为拱形。上翼缘钢板、下翼缘钢板均为拱形,有利于构件受力,抵消承载情况下构件下挠,提高工字梁的整体结构强度。
作为优选,所述的上翼缘钢板和下翼缘钢板中,受压区域浇筑混凝土。
本发明由于采用了以上技术方案,具有显著的技术效果:本发明采用波形钢板作为工字梁的腹板,具有结构轻,用钢量省,抗震性能好的优点,梁体的横截面刚度和连接端的强度高,腹板的波形通过直线段、过渡段、圆弧段三部分组成,其中过渡段能够有效的连接直线段与圆弧段,解决直线段与圆弧段直接连接时应力集中的问题以及采用混凝土组合结构作为承压构架,承压性能好,性价比高。尤其是承压部位采用带有微型应变波的钢砼组合结构,解决了组合结构中的应力重分布的问题,使组合结构钢与混凝土协同受力,具有良好的结构性能和经济性。
附图说明
图1是本发明实施例1的结构示意图。
图2是图1的中波形钢腹板结构示意图。
图3是图2的I部放大图。
图4是图1的左视图。
图5是带微型应变波的结构示意图。
图6是图5的主视图。
以上附图中各数字标号所指代的部位名称如下:其中其中1—上翼缘钢板、2—波形钢腹板、3—下翼缘钢板、5—钢绞索、7—混凝土、11—微型应变波、21—圆弧转角、22—过渡段、23—直线段。
具体实施方式
下面结合附图1至图6与实施例对本发明作进一步详细描述:
实施例1
波形钢腹板钢混组合结构连续工字梁,如图1至图6所示,包括一块波形钢腹板2、上翼缘钢板1及混凝土组合结构7、下翼缘钢板3,所述的波形钢腹板2设置在上翼缘钢板1与下翼缘钢板3之间,上翼缘钢板1与波形钢腹板2通过焊接连接、波形钢腹板2与下翼缘钢板3通过焊接连接,上翼缘钢板1、下翼缘钢板3表面粗糙度为70-350μm,单个梁体结构之间通过连接端或钢绞索5中的一种或一种以上的组合连接,形成连续梁结构,承压区域的翼缘板与混凝土组合形成组合结构。当普通梁时,承压区域的翼缘板为上翼缘钢板1,上翼缘钢板1上浇筑混凝土7。上翼缘钢板1、下翼缘钢板3表面粗糙度为250μm。高粗糙度能明显增加涂层的附着力。
波形钢腹板2为带过渡段22及圆弧转角21的连续梯形波折钢板,过渡段22位于直线段23与圆弧转角21之间,圆弧转角21半径为r,过渡段22的半径为R,R为渐变半径,R为∞—r。过渡段22与直线段23相连一端,半径为R为趋向无穷大;过渡段22与圆弧转角21相连一端,半径为R为趋向等于r,因此,由直线段23至圆弧转角21,过渡段22的半径R为从无穷大逐渐减小至等于r,从而使得直线段23与圆弧转角21更加平稳过渡,减少应力集中。腹板的波形通过直线段、过渡段、圆弧段三部分组成,其中过渡段能够有效的连接直 线段与圆弧转角,解决直线段与圆弧段直接连接时应力集中的问题,适合于工业化批量制造,模具及制造成本较低。
波形钢腹板2沿波高方向的切点连线长度为LAB,沿波长方向的切点连线长度为LBC,LAB≥LBC。波形钢腹板2沿波高方向的切点连线长度等于或略大于沿波长方向的切点连线长度,即LAB≥LBC的设计使波形钢板的抗剪强度和用钢量达到良好的性价比,如果波长方向过长,即LBC≥LAB则抗剪性能明显降低,而波长方向过短,则用钢量明显增大。因此,采用LAB≥LBC的设计,既能够在保证抗剪强度,又能够尽量减少钢材用量。
上翼缘钢板带有外凸波峰的微型应变波11。微型应变波11的波高为上翼缘钢板厚度的3-20倍,外凸部分的波峰长度为250mm,波峰与波峰间的距离为1200mm。微型应变波的波高采用翼缘板厚度的10倍,能使翼缘钢板受压时因微型应变波的存在而减弱的抗压能力,通过外凸增加的10倍翼缘板厚度所增加的混凝土截面来弥补,使翼缘板既能接受砼的纵向收缩与徐变,又在纵向收缩与徐变过程中及过程后保持整体结构强度。
普通的直平翼缘板纵向没有刚度,当混凝土发生收缩与徐变时,钢板纵向几乎不会发生收缩与徐变。这样,便会导致混凝土在发生收缩与徐变时,平直翼缘板与混凝土发生脱壳现象,尤为严重的是引起钢结构率先受力的应力重分布问题,影响结构的稳定性,使结构强度降低。
连接端为焊接连接,连接端的焊接连接采用先简支,后连续的连接方式,所形成连续的结构,能有效防止超载车及大荷载作用下或地震作用下的梁体掉落现象。
上翼缘钢板1的厚度大于或小于下翼缘钢板3的厚度。因受压区需考虑屈曲,受拉区则不用考虑屈曲,所以传统的受拉区与受压区的用钢量或截面面积 相同,使受拉区零件存在功能富余现象,是不科学和不经济的,受压区用钢量适当增大,有利于构件的受压、受拉零件的功能充分发挥,达到较高的性价比。上翼缘钢板1的厚度大于下翼缘钢板3的厚度时,其为普通工字梁,上翼缘钢板1承受压力;上翼缘钢板1的厚度小于下翼缘钢板3的厚度时,其为悬臂梁,下翼缘钢板2承受压力。
上翼缘钢板1、下翼缘钢板3沿波形钢腹板2波长方向均为拱形。上翼缘钢板1、下翼缘钢板3均为拱形,有利于构件受力,抵消承载情况下构件下挠,提高工字梁的整体结构强度。
上翼缘钢板1和下翼缘钢板2中,受压区域浇筑混凝土。
实施例2
如图1至图6所示,本实施例与实施例1的区别在于:
上翼缘钢板带有外凸波峰的微型应变波11。微型应变波11的波高为上翼缘钢板厚度的3-20倍,外凸部分的波峰长度为200mm,波峰与波峰间的距离为1500mm。微型应变波的波高采用翼缘板厚度的15倍,能使翼缘钢板受压时因微型应变波的存在而减弱的抗压能力,通过外凸增加的15倍翼缘板厚度所增加的混凝土截面来弥补,使翼缘板既能接受砼的纵向收缩与徐变,又在纵向收缩与徐变过程中及过程后保持整体结构强度。
总之,以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所作的均等变化与修饰,皆应属本发明专利的涵盖范围。

波形钢腹板钢混组合结构连续工字梁.pdf_第1页
第1页 / 共9页
波形钢腹板钢混组合结构连续工字梁.pdf_第2页
第2页 / 共9页
波形钢腹板钢混组合结构连续工字梁.pdf_第3页
第3页 / 共9页
点击查看更多>>
资源描述

《波形钢腹板钢混组合结构连续工字梁.pdf》由会员分享,可在线阅读,更多相关《波形钢腹板钢混组合结构连续工字梁.pdf(9页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN103422617A43申请公布日20131204CN103422617ACN103422617A21申请号201310308354822申请日20130718E04C3/293200601E01D19/00200601E01D2/0020060171申请人杭州博数土木工程技术有限公司地址311215浙江省杭州市萧山区经济技术开发区市心北路宁安大厦2幢1711室72发明人孙天明俞国良74专利代理机构浙江永鼎律师事务所33233代理人王梨华陈丽霞54发明名称波形钢腹板钢混组合结构连续工字梁57摘要本发明涉及工字梁,公开了一种波形钢腹板钢混组合结构连续工字梁,包括一块波形钢腹板、。

2、上翼缘钢板及混凝土组合结构、下翼缘钢板,所述的波形钢腹板设置在上翼缘钢板与下翼缘钢板之间,上翼缘钢板、下翼缘钢板与波形钢腹板均通过焊接连接,单个梁体结构之间通过连接端或钢绞索中的一种或一种以上的组合连接,形成连续梁结构,承压区域的翼缘板与混凝土组合形成组合结构。本发明具有结构轻,用钢量省,抗震性能好的优点,本发明的波形钢腹板通过转角三个过渡段的设置,能实现直线段与圆弧段的顺畅过渡,解决转角的应力集中问题,尤其是承压部位采用带有微型应变波的钢砼组合结构,具有良好的结构性能和经济性。51INTCL权利要求书1页说明书4页附图3页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书4。

3、页附图3页10申请公布号CN103422617ACN103422617A1/1页21波形钢腹板钢混组合结构连续工字梁,包括一块波形钢腹板(2)、上翼缘钢板(1)及混凝土组合结构(7)、下翼缘钢板(3),其特征在于所述的波形钢腹板(2)设置在上翼缘钢板(1)与下翼缘钢板(3)之间,上翼缘钢板(1)与波形钢腹板(2)通过焊接连接、波形钢腹板(2)与下翼缘钢板(3)通过焊接连接,上翼缘钢板(1)、下翼缘钢板(3)表面粗糙度为70350M,单个梁体结构之间通过连接端或钢绞索(5)中的一种或一种以上的组合连接,形成连续梁结构,承压区域的翼缘板与混凝土组合形成组合结构。2根据权利要求1所述的波形钢腹板钢混。

4、组合结构连续工字梁,其特征在于所述的波形钢腹板(2)为带过渡段(22)及圆弧转角(21)的连续梯形波折钢板,过渡段(22)位于直线段(23)与圆弧转角(21)之间,圆弧转角(21)半径为R,过渡段(22)的半径为R,R为渐变半径,R为R。3根据权利要求1所述的波形钢腹板钢混组合结构连续工字梁,其特征在于所述的波形钢腹板(2)沿波高方向的切点连线长度为LAB,沿波长方向的切点连线长度为LBC,LABLBC。4根据权利要求1所述的波形钢腹板钢混组合结构连续工字梁,其特征在于所述的上翼缘钢板(1)带有外凸波峰的微型应变波(11)。5根据权利要求4所述的波形钢腹板钢混组合结构连续工字梁,其特征在于所述。

5、的微型应变波(11)的波高为上翼缘钢板厚度的320倍,外凸部分的波峰长度小于300MM,波峰与波峰间的距离为大于1000MM。6根据权利要求1所述的波形钢腹板钢结构连续工字梁,其特征在于所述的连接端为焊接连接。7根据权利要求6所述的波形钢腹板钢结构连续工字梁,其特征在于所述的连接端的焊接连接采用先简支,后连续的连接方式。8根据权利要求5所述的波形钢腹板钢结构连续工字梁,其特征在于所述的上翼缘钢板(1)的厚度大于或小于下翼缘钢板(3)的厚度。9根据权利要求1所述的波形钢腹板钢结构连续工字梁,其特征在于所述的上翼缘钢板(1)、下翼缘钢板(3)沿波形钢腹板(2)波长方向均为拱形。10根据权利要求1所。

6、述的波形钢腹板钢混组合结构连续工字梁,其特征在于所述的上翼缘钢板(1)和下翼缘钢板(2)中,受压区域浇筑混凝土。权利要求书CN103422617A1/4页3波形钢腹板钢混组合结构连续工字梁技术领域0001本发明涉及工字梁,尤其涉及了一种波形钢腹板钢混组合结构连续工字梁。背景技术0002传统的工字梁或钢箱梁根据抗剪屈曲的要求,腹板的高厚比一般在1001左右,梯形波形钢腹板由于极强的抗剪和抗屈曲性能,其高厚比可大3001。现有的波形钢腹板工字梁中采用的波形钢腹板,其腹板的波形都是由直线段与圆弧段组成,在直线段与圆弧段的连接部分容易产生应力集中。传统工字梁或钢箱梁受压翼缘也采用钢板,在受压区采用钢结。

7、构不能体现钢结构的经济性,如采用钢混组合结构,使受压区大部分的压应力由混凝土承担,虽然能体现经济性,但混凝土的收缩与徐变特性使得其与钢结构不能协同受力,造成应力重分布现象。发明内容0003本发明针对现有技术中工字梁抗剪性能差,整个结构容易产生应力集中,影响结构的寿命,同时以纯钢材作为承压构件,性价比低等缺点,尤其是组合结构中混凝土的收缩与徐变特性使得其与钢结构不能协同受力,造成应力重分布现象。提供了一种梁体的横截面刚度和连接端的强度高,腹板的波形通过直线段、过渡段、圆弧段三部分组成,其中过渡段能够有效的连接直线段与圆弧段,解决直线段与圆弧段直接连接时应力集中的问题以及采用混凝土组合结构作为承压。

8、构架,承压性能好,性价比高的波形钢腹板钢混组合结构连续工字梁。尤其采用了带有微型应变波的承压翼缘板,承压翼缘板上浇筑混凝土的波形钢腹板钢混组合结构简支工字梁,解决了混凝土的收缩与徐变造成的应力重分布现象。0004为了解决上述技术问题,本发明通过下述技术方案得以解决0005波形钢腹板钢混组合结构连续工字梁,包括一块波形钢腹板、上翼缘钢板及混凝土组合结构、下翼缘钢板,所述的波形钢腹板设置在上翼缘钢板与下翼缘钢板之间,上翼缘钢板与波形钢腹板通过焊接连接、波形钢腹板与下翼缘钢板通过焊接连接,上翼缘钢板、下翼缘钢板表面粗糙度为70350M,单个梁体结构之间通过连接端或钢绞索中的一种或一种以上的组合连接,。

9、形成连续梁结构,承压区域的翼缘板与混凝土组合形成组合结构。承压区域的翼缘板为上翼缘钢板或下翼缘钢板,承压区域的翼缘板在普通梁中主要是上翼缘钢板,在悬臂梁中则是下翼缘钢板。0006作为优选,所述的波形钢腹板为带过渡段及圆弧转角的连续梯形波折钢板,过渡段位于直线段与圆弧转角之间,圆弧转角半径为R,过渡段的半径为R,R为渐变半径,R为R。过渡段与直线段相连一端,半径为R为趋向无穷大;过渡段与圆弧转角相连一端,半径为R为趋向等于R,因此,由直线段至圆弧转角,过渡段的半径R为从无穷大逐渐减小至等于R,从而使得直线段与圆弧转角更加平稳过渡,减少应力集中。腹板的波形通过直线段、过渡段、圆弧段三部分组成,其中。

10、过渡段能够有效的连接直线段与圆弧转角,解决直线段与圆弧段直接连接时应力集中的问题,适合于工业化批量制造,模具及制造成本较低。说明书CN103422617A2/4页40007作为优选,所述的波形钢腹板沿波高方向的切点连线长度为LAB,沿波长方向的切点连线长度为LBC,LABLBC。波形钢腹板沿波高方向的切点连线长度等于或略大于沿波长方向的切点连线长度,即LABLBC的设计使波形钢板的抗剪强度和用钢量达到良好的性价比,如果波长方向过长,即LBCLAB则抗剪性能明显降低,而波长方向过短,则用钢量明显增大。因此,采用LABLBC的设计,既能够在保证抗剪强度,又能够尽量减少钢材用量。0008作为优选,所。

11、述的上翼缘钢板带有外凸波峰的微型应变波。传统的波形钢板纵向基本无刚度,带有微型应变波的翼缘板纵向有刚度,能承压,且其微型应变波部分的纵向刚度减弱部分因混凝土外凸的截面而得到补强。0009作为优选,所述的微型应变波的波高为上翼缘钢板厚度的320倍,外凸部分的波峰长度小于300MM,波峰与波峰间的距离为大于1000MM。微型应变波的波高采用翼缘板厚度的320倍,能使翼缘钢板受压时因微型应变波的存在而减弱的抗压能力,通过外凸增加的320倍翼缘板厚度所增加的混凝土截面来弥补,使翼缘板既能接受砼的纵向收缩与徐变,与砼协同受力,又在纵向收缩与徐变过程中及过程后保持整体结构强度。0010因为在承压翼缘板上浇。

12、筑混凝土,混凝土存在短期收缩和长期徐变,上述变化均使混凝土出现总量千分之一左右的收缩状态,而与混凝土组合的传统平直翼缘板不能协同收缩,从而导致组合结构的实际受力状态与理想受力状态存在明显差异,不能协同收缩的翼缘板率先承担了压应力,导致组合结构中应力重分布现象。本专利采用平直翼缘板上设置微型应变波的办法,使其既能接受砼的纵向收缩与徐变,又在纵向收缩与徐变过程中及过程后保持结构强度,一举解决了组合结构的上述瓶颈问题。0011作为优选,所述的连接端为焊接连接。0012作为优选,所述的连接端的焊接连接采用先简支,后连续的连接方式。先简支后连续的连接方式,一方面是缘于车间制造、运输、起吊长度等因素限制,。

13、另一方面,本方法有利于各跨之间设置预拱度或施加预应力。0013作为优选,所述的上翼缘钢板的厚度大于或小于下翼缘钢板的厚度。因受压区需考虑屈曲,受拉区则不用考虑屈曲,所以传统的受拉区与受压区的用钢量或截面面积相同,使受拉区零件存在功能富余现象,是不科学和不经济的,受压区用钢量适当增大,有利于构件的受压、受拉零件的功能充分发挥,达到较高的性价比。上翼缘钢板的厚度大于下翼缘钢板的厚度时,其为普通工字梁,上翼缘钢板承受压力;上翼缘钢板的厚度小于下翼缘钢板的厚度时,其为悬臂梁,下翼缘钢板承受压力。0014作为优选,所述的上翼缘钢板、下翼缘钢板沿波形钢腹板波长方向均为拱形。上翼缘钢板、下翼缘钢板均为拱形,。

14、有利于构件受力,抵消承载情况下构件下挠,提高工字梁的整体结构强度。0015作为优选,所述的上翼缘钢板和下翼缘钢板中,受压区域浇筑混凝土。0016本发明由于采用了以上技术方案,具有显著的技术效果本发明采用波形钢板作为工字梁的腹板,具有结构轻,用钢量省,抗震性能好的优点,梁体的横截面刚度和连接端的强度高,腹板的波形通过直线段、过渡段、圆弧段三部分组成,其中过渡段能够有效的连接直线段与圆弧段,解决直线段与圆弧段直接连接时应力集中的问题以及采用混凝土组合结构作为承压构架,承压性能好,性价比高。尤其是承压部位采用带有微型应变波的钢砼组合结构,解决了组合结构中的应力重分布的问题,使组合结构钢与混凝土协同受。

15、力,具有良说明书CN103422617A3/4页5好的结构性能和经济性。附图说明0017图1是本发明实施例1的结构示意图。0018图2是图1的中波形钢腹板结构示意图。0019图3是图2的I部放大图。0020图4是图1的左视图。0021图5是带微型应变波的结构示意图。0022图6是图5的主视图。0023以上附图中各数字标号所指代的部位名称如下其中其中1上翼缘钢板、2波形钢腹板、3下翼缘钢板、5钢绞索、7混凝土、11微型应变波、21圆弧转角、22过渡段、23直线段。具体实施方式0024下面结合附图1至图6与实施例对本发明作进一步详细描述0025实施例10026波形钢腹板钢混组合结构连续工字梁,如图。

16、1至图6所示,包括一块波形钢腹板2、上翼缘钢板1及混凝土组合结构7、下翼缘钢板3,所述的波形钢腹板2设置在上翼缘钢板1与下翼缘钢板3之间,上翼缘钢板1与波形钢腹板2通过焊接连接、波形钢腹板2与下翼缘钢板3通过焊接连接,上翼缘钢板1、下翼缘钢板3表面粗糙度为70350M,单个梁体结构之间通过连接端或钢绞索5中的一种或一种以上的组合连接,形成连续梁结构,承压区域的翼缘板与混凝土组合形成组合结构。当普通梁时,承压区域的翼缘板为上翼缘钢板1,上翼缘钢板1上浇筑混凝土7。上翼缘钢板1、下翼缘钢板3表面粗糙度为250M。高粗糙度能明显增加涂层的附着力。0027波形钢腹板2为带过渡段22及圆弧转角21的连续。

17、梯形波折钢板,过渡段22位于直线段23与圆弧转角21之间,圆弧转角21半径为R,过渡段22的半径为R,R为渐变半径,R为R。过渡段22与直线段23相连一端,半径为R为趋向无穷大;过渡段22与圆弧转角21相连一端,半径为R为趋向等于R,因此,由直线段23至圆弧转角21,过渡段22的半径R为从无穷大逐渐减小至等于R,从而使得直线段23与圆弧转角21更加平稳过渡,减少应力集中。腹板的波形通过直线段、过渡段、圆弧段三部分组成,其中过渡段能够有效的连接直线段与圆弧转角,解决直线段与圆弧段直接连接时应力集中的问题,适合于工业化批量制造,模具及制造成本较低。0028波形钢腹板2沿波高方向的切点连线长度为LA。

18、B,沿波长方向的切点连线长度为LBC,LABLBC。波形钢腹板2沿波高方向的切点连线长度等于或略大于沿波长方向的切点连线长度,即LABLBC的设计使波形钢板的抗剪强度和用钢量达到良好的性价比,如果波长方向过长,即LBCLAB则抗剪性能明显降低,而波长方向过短,则用钢量明显增大。因此,采用LABLBC的设计,既能够在保证抗剪强度,又能够尽量减少钢材用量。0029上翼缘钢板带有外凸波峰的微型应变波11。微型应变波11的波高为上翼缘钢板厚度的320倍,外凸部分的波峰长度为250MM,波峰与波峰间的距离为1200MM。微型应变说明书CN103422617A4/4页6波的波高采用翼缘板厚度的10倍,能使。

19、翼缘钢板受压时因微型应变波的存在而减弱的抗压能力,通过外凸增加的10倍翼缘板厚度所增加的混凝土截面来弥补,使翼缘板既能接受砼的纵向收缩与徐变,又在纵向收缩与徐变过程中及过程后保持整体结构强度。0030普通的直平翼缘板纵向没有刚度,当混凝土发生收缩与徐变时,钢板纵向几乎不会发生收缩与徐变。这样,便会导致混凝土在发生收缩与徐变时,平直翼缘板与混凝土发生脱壳现象,尤为严重的是引起钢结构率先受力的应力重分布问题,影响结构的稳定性,使结构强度降低。0031连接端为焊接连接,连接端的焊接连接采用先简支,后连续的连接方式,所形成连续的结构,能有效防止超载车及大荷载作用下或地震作用下的梁体掉落现象。0032上。

20、翼缘钢板1的厚度大于或小于下翼缘钢板3的厚度。因受压区需考虑屈曲,受拉区则不用考虑屈曲,所以传统的受拉区与受压区的用钢量或截面面积相同,使受拉区零件存在功能富余现象,是不科学和不经济的,受压区用钢量适当增大,有利于构件的受压、受拉零件的功能充分发挥,达到较高的性价比。上翼缘钢板1的厚度大于下翼缘钢板3的厚度时,其为普通工字梁,上翼缘钢板1承受压力;上翼缘钢板1的厚度小于下翼缘钢板3的厚度时,其为悬臂梁,下翼缘钢板2承受压力。0033上翼缘钢板1、下翼缘钢板3沿波形钢腹板2波长方向均为拱形。上翼缘钢板1、下翼缘钢板3均为拱形,有利于构件受力,抵消承载情况下构件下挠,提高工字梁的整体结构强度。00。

21、34上翼缘钢板1和下翼缘钢板2中,受压区域浇筑混凝土。0035实施例20036如图1至图6所示,本实施例与实施例1的区别在于0037上翼缘钢板带有外凸波峰的微型应变波11。微型应变波11的波高为上翼缘钢板厚度的320倍,外凸部分的波峰长度为200MM,波峰与波峰间的距离为1500MM。微型应变波的波高采用翼缘板厚度的15倍,能使翼缘钢板受压时因微型应变波的存在而减弱的抗压能力,通过外凸增加的15倍翼缘板厚度所增加的混凝土截面来弥补,使翼缘板既能接受砼的纵向收缩与徐变,又在纵向收缩与徐变过程中及过程后保持整体结构强度。0038总之,以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所作的均等变化与修饰,皆应属本发明专利的涵盖范围。说明书CN103422617A1/3页7图1图2说明书附图CN103422617A2/3页8图3图4说明书附图CN103422617A3/3页9图5图6说明书附图CN103422617A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 固定建筑物 > 建筑物


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1