具有可压缩热沉结构的电子封装 本发明涉及用于半导体器件的电子封装,尤其涉及利用热沉作为其一部分的封装。
通常,电子封装的一个目标是提高半导体器件的性能以提供更快的速度和编程特性,同时提供具有更小、更轻的物理尺寸的产品。对给定的半导体工艺,例如CMOS或砷化镓工艺,这种倾向导致引起更高的功耗和更高的热通量。通常半导体器件和电子封装的可靠性与工作温度相关,温度越低,可靠性越高。因此,为了在不牺牲可靠性的前提下使半导体器件得到更好的工作性能,获得更好的温度特性是必要的。在半导体器件工业开始时就已经观察到这种趋势,在可预见的将来预期这种趋势也将继续。
已经提出了各种改善电子封装热耗散的方法来实现这个目的,一些实例在以下美国专利和其它相关文献中详细定义和说明:
4,034,468-Koopman 4993,482-Dolbear等
4,254,431-Babuka等 5,088,007-Missele
4,825,284-Soga等 5,444,300-Miyauchi
Jap.pub.App.3-77355(A)-Omura研究公报340110(8/92,No.340)4,034,468和4,254,431都转让给本发明的受让人。
一般,电子封装使用一个或多个半导体器件。这些器件(例如芯片或管芯),在工作过程中产生热量。热产生的速率就是芯片地功率,对于给定的半导体工艺,发热率和芯片的速度及复杂程度成正比。
提供从芯片向外的导热路径是电子封装技术的主要挑战之一。必须提供具有尽可能低热阻的热路径,并且满足严格的经济因素、组件加工和操作约束以及环境因素。如我们所知,芯片电连接到封装的外电路,而外电路反过来可以形成整个更大结构例如微处理器的一部分。在这种组件中保持可靠连接是最重要的。而且,芯片必须用工业界众所周知的方法和材料提供涂层、保护层、过模塑(overmolding)、球顶封(glob-top)、密封、或者密封所连接的管芯来保护以防被损坏,粉碎及化学侵蚀。芯片可以这样一种方式封装,使得芯片组件可随后固定到电路化基底(印刷电路板或者柔性电路),该基底形成前述结构的一部分。芯片或者电子器件也可以用众所周知的芯片直接焊接法电连接到电路化基底,随后芯片用一定量的保护材料封装、密封或者保护。这样,耗散功率的电子器件通过直接焊接或作为封装器件电连接到电路化基底。
在任何情况中,热量必须从器件耗散而不干扰到电路化基底的电连接。已经知道,一些热量可以通过电连接从器件发散而进入电路化基底。然而,这些热量随后必须从电路化基底去除,这样的处理可能不能提供最有效的热路径。众所周知,热有效路径是从器件直接到附近的通常称为热沉的结构,并且随后到热沉周围的外部空气。优化热沉性能的各种热沉设计(如热沉散热片的大小、形状和间距)和材料(如铝)在技术上是已知的;然而,对散热而言,热沉到器件的连接经常存在很多需要改进的地方。
一般,热沉直接粘连到半导体器件表面上。这种固定方法使用一种以薄层形式提供的高效热粘接剂,一般是热固环氧树脂。一般在器件电连接到电路化基底之后,热沉固定到器件以使之不干扰连接过程(一般是波峰焊或焊接回流过程)。
这种固定方法的一个主要限制在于一旦固化了热粘接剂就不能把它去除。因为热沉不能单独被移去,这样整个器件必须在应用热沉之后从电路卡上移去。如果元件重新工作、附近器件改变、或者存在其它因素需要特定的现存热沉不能满足的热处理时,整个器件必须拆散,这显然在经济上是不希望的。
为了避免这个限制,在器件和热沉之间需要可分离的连接。在业界,通常已知的是把平板热沉基片安置到平板元件表面并且用螺丝钉、簧片或其它定位硬件把它固定在其上,这样使热沉可按需要移去。然而,在实际中,这种“干界面(dry interface)”散热效率低。由于生产器件和热沉不可避免的容差,它们都不是完全平的。这样干界面在器件和热沉表面之间将有间隙,这些间隙大大减低热传输效率。
为了提高热传输效率,也已知包含一定量的热传输增强材料例如热油脂或适合的导热材料。由于油脂泄漏可能沾污电路板,并且促使油脂干燥和油脂界面热效率的损失,用热油脂(一个例子是填充氧化铝的硅油脂),在界面区域加油脂是设计和制造上的课题。已经知道导热的合适材料,例如氧化铝或者填氮化铝的硅合成橡胶的运用,但是这些材料具有有限的热效率(和固体金属例如焊料相比)和有限的填充间隙以及无过压地与热沉和器件表面一致的能力。也要注意到合适油脂的开发和密封需要相当大的研究和开发经费。
进一步的考虑是随着温度变化,电子器件可以几种方式改变大小。器件可以简单地膨胀,在此情况下无论起始形状如何,器件以均匀尺寸变化。它也可以以不均匀形式变化尺寸,例如,翘曲,在这种情况下,热沉和器件之间的界面可以以复杂的方式改变尺寸。这些改变可能很小或很大,而且尽管存在这些“间隙变化”,界面必须能提供良好的热接触。由于电子器件的一般操作在高温下长期进行,适合高温界面结构的界面在使用过程中将成功地允许元件的冷却。
因此,可以相信确保“干燥”、可分离(例如,在分离后不需要进行油脂或材料残余物的清洗工作、以及没有油脂密封问题)、合适的热连接(适应热沉和/或器件表面的平整变化)的热沉界面便于组件和应用于现有的电子器件和热沉,费用相对较低,以及提供相对低的热阻,这将构成业界的重要进步。
因此,本发明的主要目的是提高电子封装的冷却技术。
本发明的更特别的目的是提供一种作为电子封装一部分的将电子器件热耦合到热沉的界面器件。
本发明的另一个目的是提供这种具有可分离性的电子器件到热沉的热连接的界面器件。
本发明的另一个目的也是提供这种相对便宜的、能用以现有电子封装和热沉以及组装相对简单的界面器件。
本发明的另一个目的是提供使用这种界面器件的电子封装。
本发明的另一个目的也是提供使用以这种界面器件作为其一部分的这种电子封装的电子封装组件。
根据本发明的一个实施方式,所提供的电子封装组件包括:在第一表面上具有多个导体的电路化基底,安置在电路化基底上并且电连接到多个导体的电子器件,热连接到电子器件的热沉,多个安置在电子器件和热沉之间并且以可分离方式热连接到其上的可压缩导热单元,和在热沉和电子器件之间提供压缩力和把压缩力加到可压缩导热单元上的装置。由于在热沉和电子器件之间提供可分离的连接的压缩力的结果,选择的一些可压缩导热的单元受到压缩并且永久性形变。
根据本发明的另一个实施方式,提供的电子封装包括:电子器件、热连接到电子器件的热沉,安置在电子器件和热沉之间并且以可分离方式热连接到其上的多个可压缩导热单元,和在热沉和电子器件之间提供压缩力并把压缩力加到可压缩导热单元的装置。由于在热沉和电子器件之间提供可分离的连接的压缩力的结果,选择的一些可压缩导热单元受到压缩并且永久性形变。
根据本发明的另一个实施方式,提供的制作电子封装组件的方法包括以下步骤:提供在其第一表面上具有多个导体的电路化基底,在电路化基底上安置电子器件并且电连接该器件到多个导体,以可分离的方式热耦合热沉到该电子器件,在电子器件和热沉之间安置多个可压缩导热单元以在其间形成热连接,和在热沉和电子器件之间提供压缩力并把压缩力加到可压缩导热单元以压缩和使压缩导热单元永久变形,以在热沉和电子器件之间提供可分离的连接,从而得到了电子封装组件。
根据本发明的另一个实施方式,提供的制作电子封装的方法包括步骤:提供电子器件,以可分离方式热连接热沉到电子器件,在电子器件和热沉之间安置多个可压缩导热单元形成它们之间的热连接,以及在热沉和电子器件之间提供压缩力并把压缩力加到可压缩导热单元以压缩和使可压缩导热单元永久变形以在热沉和电子器件之间提供可分离的连接,从而得到了电子封装。
也是根据本发明的另一个实施方式,提供的制作导热结构的方法包括步骤:提供具有第一和第二对立边的柔性单元,在柔性单元内提供多个开口,该开口在柔性单元的第一和第二对立边之间外延,在柔性单元的第一边上安置多个第一可压缩导热单元以使选择的可压缩导热单元对准各自的开口,在柔性单元的第二边上安置多个第二可压缩导热单元以使得选择的多个第二可压缩导热单元对准各自的开口基本上直接面对选择的多个第一可压缩导热单元,并且直接与其物理接触,以及热连接多个第一和第二可压缩导热单元。
根据本发明的另一个实施方式,确定制作导热结构的方法包括步骤:提供具有第一和第二对立边的柔性单元,提供至少一层掩模材料,该掩模材料层坚固地粘到柔性单元的第一边,在掩模材料层中提供多个孔,以及在柔性单元的第一边上在各自的掩模材料层的孔内安置多个第一可压缩导热单元。
也是根据本发明的另一个实施方式,提供的制作导热结构的方法包括步骤:提供具有至少一个表面的坚固的热沉,提供至少一层掩模材料,该掩模材料层坚固地粘连到热沉的表面,在掩模材料层中提供多个孔以及在热沉表面安置多个可压缩导热单元以使得选择的可压缩导热单元被安置在各自的掩模材料层的孔内。
根据本发明的又一个实施方式,确定的制作导热结构的方法包括步骤:提供具有至少一个表面的单元,在单元表面安置一粘连材料层,以及在粘连材料层上安置多个可压缩导热单元从而把多个可压缩导热单元固定到该单元上。
也是根据本发明的又一个实施方式,确定的制作导热结构的方法包括步骤:提供多个可压缩导热单元,提供一定量的粘连材料,粘连材料坚固地粘到各个可压缩导热单元的至少一个预先选择好的部分上,提供具有至少一个表面的单元,把粘连材料粘连的多个可压缩导热单元安置到该单元表面以使得粘连材料把多个可压缩导热单元固定到该单元的表面。
图1A中,图示了根据本发明的一个实施方式的电子封装组件,这个电子封装组件是在加压缩力之前显示的。
图1B中,图示了图1A中所示的电子封装组件在图1A中标号为1B的部分的放大视图。
图2中,图示了图1A中加压缩力后的电子封装组件。
图3中,图示了根据本发明的另一个实施方式的电子封装组件,这个电子封装组件和固定到柔性单元上的可压缩导热单元一起显示。它是在加压缩力之前显示的。
图4中,图示了图3中根据本发明的实施方式的具有固定到柔性单元上的多个可压缩导热单元的放大视图。
图5中,图示了根据本发明的另一个实施方式的电子封装,这个电子封装和固定到柔性单元上的可压缩导热单元一起显示。图5中的电子封装是在加压缩力之前显示的,并且示成固定到具有多个电导体的电路化基底上。
图6A中,图示了包括固定到柔性单元的多个可压缩导热单元的导热结构,其可用于如图5所示的本发明的实施方式。
图6B中,图示了包括根据本发明的另一个实施方式的固定到柔性单元的多个可压缩导热单元的导热结构。
图6C中,图示了包括依然是根据本发明的另一个实施方式的固定到柔性单元的多个可压缩导热单元的导热结构。
图6D中,图示了包括也是根据本发明的另一个实施方式的固定到柔性单元的多个可压缩导热单元的导热结构。
图7A和7B中,显示了相对于外部平面安置本发明的可压缩导热单元的方法的一个实例。以及
图8A和8B,显示的也是在外部平面上安置本发明的可压缩导热单元的另一个实例。
参考以下的说明和上述附图以及后附的权利要求,可更好地理解本发明、以及其它的目的、优点和性能。应明白图中同样的数字表示同样的元件。
在图1A和1B中,显示了根据本发明的一个实施方式的电子封装组件10。该电子封装组件10包括具有带有电导体14(例如,铜压焊块)的第一表面16的电路化基底12(例如,印刷电路板)。在电子工业中都知道设计、制造和电路化基底的各种实施方式的使用,例如印刷电路板,印刷连线板,柔性电路等等,因而不需要更进一步的定义。也知道把电子器件18(例如,半导体芯片)电连接到这种电路化基底12的各种装置。这种连接装置的实例包括针孔焊接,网格焊球阵列(BGA)焊接,可控熔塌芯片连接(C4),无引线芯片连接,和电子器件表面安装(如果器件包含一些突出引线)。根据本发明,最好的连接装置是使用多个C4型的焊接球20,每个焊接球粘到各自的导体14。类似的,有许多可以电连接到电路化基底12的电子器件18的已知的实施方式,包括半导体芯片(如所示),网格焊球阵列(BGA)组件,引线元件(例如,双列直插封装(DIP)),无引线元件,存贮器件,转换器等等。这些电子器件在电子工作时产生热量,并且能有效地用本发明所教的方法连接到热沉或类似的结构。
在电子技术中知道热沉的使用具有降低诸如芯片18的电子器件的温度的好处。成功实现这种热沉的主要考虑是热沉到器件的有效热耦合以产生低的热阻通路。更低的热阻通路允许通过热沉耗散更多的发热率从而在工作中可以使电子器件产生更多的发热率。当然,有其它的电子封装组件的热处理考虑,例如在热沉上的空气流,热沉叶片的设计,电子器件内热阻,从器件到底下的电路化基底的热通路设计等等。如所能理解的,本发明直接考虑从器件到热沉或类似物体的热传输。本发明的实施可以结合以上其它的考虑的实际组合完成,确保任何这种组合都有有效的结果。
在附图中,热沉由数字22表示,并且最好是金属的(例如,铜或铝)。这个热沉可以包括具有一个或更多(最好是几个)从底部突出的直立的叶片24的平面基部23。这些叶片以一定间距放置以促进空气从中流通。然而,本发明不仅限于上述这种热沉的使用,因为其它的散热单元(包括液体冷却板)也是可接受的。
在图1A和更详细的图1B中,图示了还没有被压缩的多个可压缩导热单元26。在图示的实施方式中,单元26直接固定在热沉22的表面(面)92部分上。用于这些单元的一般材料包括各种比率的锡:铅焊料,包括63∶37锡∶铅焊料(a/k/a共熔合金焊料),3∶97锡∶铅焊料和其它包括其它材料的焊料,例如铟和钼(即,在63∶37锡∶铅中,铅含量大约为全部焊料重量的百分之37。)。这些材料具有相对高的热导率和漂移率随温度变化的特性(温度越高漂移率越高,温度越低漂移率越低)。由于共熔合金焊料在任何锡∶铅比下具有最低的大约为183摄氏度的凝固温度,通常认为它是“低熔点”焊料。用以本发明目的的“低熔点”焊料一般是凝固温度低于大约200摄氏度的焊料,特征在于焊料具有的铅含量大约在百分之30到43而其余成分为锡。“高熔点”焊料一般认为是凝固温度高于大约290摄氏度的焊料,特征在于铅重量含量为百分之80或更高,而其余成分为锡。在本发明中这两种焊料都是可接受的。
单元26以一定间距放置在热沉22和器件18之间,以使得当热沉压向电子器件时,标号为26的单元直接与器件和热沉热接触,从而形成多个平行热通路。在一个实例中,一共400个球形焊接球单元26可以成功的用以具有18毫米(mm)侧边尺寸的芯片。总之,在器件18和热沉22之间的热阻是这几个“小”热通路的并联总和。通过使用几百个可压缩单元26,只要数量足够产生在器件和热沉之间形成足够总热通路的热接触,可压缩单元也可不必接触热沉和/或器件。已经确定通过本发明,在每平方毫米芯片面积(直接接触这些球的表面)使用大约一到四十个焊接球就可以实现有效的热传输。直径从大约0.10到大约1.5mm的焊接球可以以这种数目成功使用以保证芯片热量有效地传输到上述的热沉。
单元26的可压缩性质可用以在非平面的电子器件和/或非平面热沉表面相互正对的那些情况中提供一致的界面。这是通过调整本发明的一些设计因素而实现的。通常,使用装置30加小但足够大的压缩力,使得单元26经受漂移产生的压力。由于可能有几百个(或几千个)单元26,以及由于间隙的尺寸公差,实际产生初始接触的单元数可能很低。这些单元因而经受相对高的压力,这种压力可以使单元形变和漂移相对迅速。换句话说,界面间隙尺寸随这些可压缩单元的压缩而减小。继续加应力,界面间隙尺寸的减少最终导致更多的单元26产生接触。随着更多单元26形成接触和承担压缩负荷,在可压缩单元中的压力大大减小从而形变过程减慢。加应力一段时间之后,几乎所有的可压缩单元26都可以和单元18以及22接触。另外,由于可压缩单元被压缩,随着接触器件18和热沉22的单元面积相应地变大,每个单元的高度减小。值得再次提出的是随着这个过程的发生,单元26上的高压力由于接触和单元面积的增加而减小。
由于漂移率主要依赖于温度,可以通过提高温度加快该过程(例如,通过压缩过程中器件18的操作,通过外加热量(例如,把组件放在烤箱里或使用热空气流,等等))。然而,不需要(不期望)为获得一致的界面而超出可压缩单元26的熔化温度,这是因为在低于这些材料熔点的温度下易于发生漂移。由于这个原因,在可压缩单元与器件18和/或热沉之间没有足够的粘力因此可以从电子器件18简单地分解和移去热沉22和可压缩单元26。这是本发明的特别重要的特征,因为它允许存取电子器件(例如,测试,重工作,重安置等等)。它也避免用以连接器件18到基底12的焊接球20回流发生的可能性。可以理解,这些球20的熔点大于在前述压缩中使用的高温。
通过选择可压缩单元26的合适材料和尺寸、这些单元的合适数目、正确的压缩负荷和工作温度,用合理大数目的产生一系列有效热通路热接触的单元,在相对短的时间内,相对很大的间隙公差可以被本发明的可压缩单元吸收。在一个实例中,使用共熔合金焊接球在1.27mm节距28×29行(总共812个单元)的矩形阵列上安置可压缩单元(每个的直径约为0.80mm),使用大约仅为十到三十磅总负荷就可能形成有效压缩。注意使用众多的可压缩单元代替具有类似材料和厚度的实心平板使得可压缩单元的变形压缩负荷比固定板变形所需负荷大大减小。
如图1A所示,提供以上压缩应力的装置30包括一定位簧片58,两个有一定间距的固定器60,和一对螺栓62。在图2中,图示了经过预定一段时间加压缩应力后的电子封装组件,可压缩单元已经形变到余隙装置(clearance feature)64(可以是简单包括附于(例如,被焊接)热沉表面92的一个或多个金属元件)允许的程度。在以上给出的实例中,在相对低的温度下(例如,80摄氏度)需更相当长的时间形变元件26。然而,在大约100到140度的高温下,将需要少数几分钟(例如,5)使元件26变形到足够补偿共面失配的几密尔。这些时间足够可压缩单元产生充分接触,以在器件18和热沉22之间形成良好的总的热通路(实际上是几个独立的通路)。
为了避免由于在单元26施加压缩力时压缩和加压力于器件18和基底12之间的焊接球20,使用了密封剂材料44如在图1A、1B和2中所示。这种密封剂材料44比焊接球20要硬,它可以是一种已知的材料例如环氧树脂类粘合剂4510,可从Dexter Electronic Materials,Industry,California(Hysol是Dexter Electronic Materials,Industry的注册商标)获得,它一般几乎承受电子器件18和电路化基底12之间的所有压缩力,以使这种电子连接遭受极小的或免受应力。对于芯片直接焊接方案(这里器件18是半导体芯片),一般还有其它原因(例如,消除在芯片和印刷电路板之间的热膨胀失配)需要使用密封剂材料44并且因此和本发明可以最佳配合。
在图3中,图示了根据本发明的另一个实施方式的电子封装组件10′。这个电子封装组件和由固定到柔性单元68(见后面图4)上的多个可压缩导热单元26′构成的导热结构66一起显示。单元26′最好用类似于图1A、1B和2中单元26的材料。柔性单元68显示为安置在热沉22和电子器件18之间,它是在用图2中类似装置加压缩力之前显示的。有支架的余隙装置64′显示为固定到柔性单元68以把可压缩单元的形变限制在预定的数量。
图4中,图示了如图3所示的包括固定到柔性单元68上的多个可压缩导热单元26′的导热结构66的放大视图(其实,为了更好图示仅显示了三个26′单元)。对这个实施方式,柔性单元68的材料最好是具有1密尔(0.001)或更小厚度的退火(软)铜箔,以除去有效键和到单元26′外,还保证好的导热和低的弯曲硬度。也可以接受其它金属材料,包括铜合金或铝合金箔。带有孔89的掩模材料88可用以限定可压缩单元26′的位置,但是这并不需要。另外,可用热粘接剂把可压缩单元26′固定到柔性单元68。这种粘接剂的一个例子是RTK7455,可从New Jersey,Lawrenceville的AI Technology,Inc.获得。间隙器装置64′也在图3中示出,可压缩单元的形变将被限制在预定的数值。类似图1A、1B和2中的装置64,装置64′最好是一金属单元并且键合到柔性单元68,例如,也是利用合适的粘接剂例如EG7655,它也可从AI技术有限责任公司获得。装置64′也可以作为焊料,尤其是作为具有大于单元26′和20熔点的焊料。装置64′也可以直接固定到器件18的表面,而不是象在这里描述的一样。
图5中,图示了根据本发明的另一个实施方式的电子组件10″,电子组件10″显示为包括类似于图1A、1B、2和3中的那些元件的焊接球单元20和电路化基底12。这个电子封装也和根据图6A、6B、6C或6D的方法固定到柔性单元68′上的可压缩导热单元26″一起显示。图5中的电子封装是在加压缩力之前显示的,可压缩单元26″被安置在电子器件18和热沉22之间。柔性单元和可压缩单元26″的更进一步的描述将和图6A、6B、6C与6D的描述一起在此后提供。
图5中,在热沉22和电子器件18之间提供压缩力的装置包括:拉长的定位簧片58′和把簧片58′加到热沉22底部23的外部装置,例如一对簧片夹60。簧片58′最好用和簧片58一样的材料,而夹60可以是不锈钢。关键是注意到图5中提供压缩力的装置没有导致在电子器件18和基底12之间的电连接元件20上严重的应力,从而不需要密封剂材料(类似图3所示)来减轻在单元20上的压力。其上没有应力的单元20因此可以是焊球(如所示)、焊柱、针孔单元(例如,如果器件18是电子模块的话)等等。固定到柔性单元68′的可压缩单元26″通过使在器件18和热沉22之间界面间隙尺寸一致而在其间提供良好的热通路。如以下解释,在本发明的实施方式中使用两个对立的多个这种单元26″。
图6A中,图5的导热结构示成包括固定到中间柔性单元68′的多个可压缩导热单元26″。提供开口86,热连接的单元26″,通过该开口可以传导热量。柔性单元68′的优选材料是聚酰亚胺或者类似聚合物的非导电(电学)材料薄层(例如,0.025mm厚)。因为单元68′主要和导热有关,它也可以是金属材料,例如薄层形式的铜或者铝。单元26″的材料和上面单元26的材料类似,并且在图示的成对方向上对准并且然后经过单元68′中的孔86部分回流键合成各自的一对。
图6B中,图示了类似图6A中本发明的实施方式的固定到柔性单元68″的多个可压缩导热单元26″。其中带有孔89的掩模材料88′(类似图4中材料88)显示成和相关的在柔性单元68″中的开口86′相连。在这个实施方式中一种柔性单元68″的优选材料是铜薄层。掩模材料88′辅助单元26″经过中间开口安置在单元68″的两面。
图6C中,还是根据本发明的另一个实施方式的多个可压缩导热单元26″被固定到中间的柔性单元68。在这个实施方式中,柔性单元68不需要开口(86′);而掩模88′具有孔89′以允许在实心中间柔性单元68两边的导热单元之间的热接触。在实心柔性单元68的两边的可压缩单元26″的准确对准也可以用如图6C所示的一对相应的对准孔89′保证。单元68显然是有效的导热材料,最好的例子是铝或铜或它们的合金薄层。
图6A-6D的所有实施方式中,单元26″的最好材料是前述焊料中的一种。做为选择,对在中间单元各自一边上的多个单元,使用不同熔点的焊料是可能的。支架64″也用类似材料(和支架64和64′类似)并且以和图1A-2或图3本质一样的方法固定到中间柔性单元。
其它对准方案,例如本发明的在中间柔性单元68两边的可压缩单元局部对准失配和全异相对准(full out-of-phase alignment)(如图6D示)可以有利于用来增加图示热沉22的表面和电子器件18之间的热接触。在图6D中图示了本发明的一个实施方式,其中可压缩单元26″以异相对准在实心柔性单元68两面上的对立单元26″。很显然,压缩之后,柔性单元和单元26″的压缩和漂移一起的作用就象簧片一样。因此,随着热阻的很小增加,很大的界面间隙和使用中显著改变尺寸的间隙可以被迅速调节。图6D中的薄柔性单元68的优选材料是和可压缩单元26″一起作为弹性簧片的铜薄层。这个实施方式的多个层可以放置在器件18和热沉22之间以提供更进一步的可塑性和容差调节。也明白在图6D中,在单元68″一边上的单元26″的代号不必和相对面上的代号相同。这种单元26″甚至可以随机地分布在各自的相对面上。可以使用掩模材料88′,包括其中具有孔89′的掩模材料。在图6B和6C中使用两层材料层88′。
图7A-8B中,显示了固定多个导热可压缩单元例如焊球26″到一个表面(例如热沉22或柔性单元68的表面)的各种方法。在图4和6B-6D的实施方式中,焊膏和/或焊球26″(例如,0.025英寸直径的共熔合金焊球)可以被安置在孔89中,而把周围的温度升高到大约焊料熔点,引起焊料的回流和然后浸润到热沉22的相应表面。这些焊接单元在温度降低到焊料熔点之下,焊料冷却(固化)之后将粘贴到热沉。在图7A和7B中,简单地在焊球26″涂上导热粘接剂90(而球保持在模板91里)并且然后轻轻把其上有粘接剂的焊接球按在热沉或柔性单元上,这是既有效又经济的。轻压焊球的作用是在孔中填充足够的粘接剂(图7B中没有示出)和因此保证直接的焊球到热沉(或柔性单元)的接触。最好的粘接剂是柔滑的导热粘接剂,一个例子是来自Waterford,New York通用电气公司的GE32XX硅酮粘接剂。作为选择,这种粘接剂的“点”可以放置在柔性单元或热沉上预定的位置,通过在这些点的粘贴粘着焊球然后轻轻压到位置上。也可以经济地用未被处理的焊接掩模材料作粘接剂,或以类似焊接掩模的方式屏蔽热粘接剂到柔性单元。图8A和8B中,传导单元26″可以随机分散在热沉22或柔性单元68(以虚框形式示出)上的粘接剂层90上,然后压入到其间的直接接触(没有示出)。作为选择,粘接剂90的“点”可以在各自表面(许多和上面描述的一样),藉此单元26″连接这些材料,并且再加压力完成焊料到表面的直接接触(没有示出)。
尽管在此显示和描述了本发明优选实施方式,显然对熟练的技术人员可以在不离开附加权利要求书限定的本发明的范围作各种改变和修改。