半导体封装件 本发明涉及一种半导体封装件,特别涉及一种既扩大容量又具有轻、薄、短、小型化的多芯片封装件。
以往,一般认为塑性半导体封装件是用环氧树脂模压化合物等树脂模塑一个半导体芯片构成的,并且利用具有用于安装于基板上的外引线的、称为引线框架的部件构成信号传送体系。
图1为依据现有技术用树脂进行半导体封装件封装的剖面图。
参照图1,标号1为半导体芯片,2为在支承半导体芯片1的同时、用作外部电信号传送路径的引线框架,3为将引线框架2的内引线2a与半导体芯片1进行电连接的金属引线,4分别为芯片1、引线框架2的内引线2a和金属引线3的密封壳。
如图所示,半导体芯片1通过粘接剂被粘接并被固定在引线框架2地垫片2c上,半导体芯片1与引线框架2的内引线2a通过金属引线3而电连接。用塑性树脂密封这样形成的包括半导体芯片1、引线框架2的内引线2a和金属引线3的一定区域,形成大致呈长方形的封装壳,即封装壳4。并且,在封装壳4的两侧保持一定间隔地突出形成用于向基板安装的外引线2b。
像这样的现有半导体塑封装件通过下列工艺制造:在引线框架2的垫片2c上粘接半导体芯片1的小片粘接工艺;用金属引线3电连接垫片2c上的半导体芯片1和引线框架2的内引线2a的金属布线连接工艺;密封包括芯片1、内引线2a和金属引线3的一定区域,形成封装壳4的模压工艺;切断支承引线框架2的各引线的连接杆等(图中未示出),在各自独立的封装件上相互分开,同时在封装壳4两侧形成预定弯曲形状的、突出的外引线2b的修整/成形工艺。这样制造出来的半导体封装件,通过软熔发亮处理将外引线2b与基板的图形一致地装配,以便起到输入、输出电信号等作用。
但是,如上所述,现有的普通半导体封装件存在这样的问题,即在芯片对封装件尺寸的占有率上有限制,难以实现大容量的封装件。
还有,现有的单个塑封件,用金属布线连接方法将用作芯片与外部电通路的铝或金等金属引线焊接在引线框架或基板上,因而存在因引线可靠性等问题而导致的质量低劣的问题。
并且,为实现大容量,在一个封装壳中内装两个以上的芯片而构成多级封装件时,现有结构的半导体封装件因引线回路高度在封装件的轻、薄、短、小型化方面受到限制。在两个芯片对置构成时,一个芯片必须使用设计不同的镜像芯片(mirror chip),从而在制造工艺上产生问题。另外,现有半导体封装件,在设计导电用内引线和多芯片组件时,管脚排列结构的自由度受到限制,还存在难与用户管脚对应的问题。
本发明的目的在于提供一种能够实现大容量化和轻薄短小型化的半导体封装件。
本发明的半导体封装件包括:(a)至少两个以上的半导体芯片,各芯片上有多个粘接焊盘;(b)绝缘电路膜,包括:有多个通孔的绝缘性底膜;形成于所述底膜上、下面上的多条第一金属线;形成于所述各第一金属线上、与所述各半导体芯片的粘接焊盘电连接的多个突出的导电性内焊盘;形成于所述各第一金属线上、与所述内焊盘相距预定间隔的多个突出的导电性外焊盘;为电气互连各芯片的同一端子而置于所述底膜上、下位置、沿所述通孔的壁面形成的、与所述各芯片的内焊盘电连接的多条第二金属线;(c)引线框架,包括将所述绝缘电路膜的外焊盘与外部装置电连接用的内引线;
其中,各半导体芯片按其上面相对的方式粘接在所述绝缘电路膜上。
此外,本发明中,由于绝缘电路膜上的内焊盘和外焊盘从金属线表面突出预定高度地形成,故半导体芯片和引线框架的内引线可电连接,用包含颗粒的各向异性导体可粘接绝缘电路膜、半导体芯片,以及引线框架的内引线。此时,所述绝缘电路膜的厚度为10μm~100μm,内焊盘和外焊盘高为1μm~20μm、大小为5μm×5μm~200μm×200μm。并且,与绝缘电路膜的外焊盘连接的引线框架的内引线上涂敷有导电率为10-8Ω/cm以上的金属,如Ag、Sn或In等。再者,各向异性导体是包括液态和固态的树脂,是选自:环氧树脂或变形环氧树脂、聚酯或变形聚合物、丙烯酸树脂或变形酯、硅酮树脂、苯氧基树脂、聚氨酯、聚硫化物、氨基丙烯酸酯、聚补体(alexin)以及其它经加热、紫外线、室温而硬化的聚合物等中的树脂。各向异性导体中所含的颗粒,其大小为3μm~15μm,由Ag、Ni、In、Sn、铟锡氧化物或它们的合金构成,或由导电率为10-8Ω/cm的金属构成,其形状可为球形、四角形、三角形、六面体、四角锥和三角锥等。
另外,本发明中,可与金属线同一平面地形成绝缘电路膜上的内、外焊盘;在半导体芯片的粘接焊盘上形成预定高度的金属粘接剂,以与绝缘电路膜电连接;通过包含颗粒的各向异性导体粘接绝缘电路膜与半导体芯片;绝缘电路膜的外焊盘和引线框架的内引线用热压粘接。
粘接剂的高度为5μm~20μm,宽度为30μm~200μm,由金、焊料、传导性聚合物等具有导电性的金属和聚合物组成。
另一方面,构成绝缘电路膜的金属线包括Cu、Ni、Au或Cu、Ni、Cr、Au或Cu、Ni、Co、Au,形成为1mil以内。通孔的直径为10μm~200μm。
按照本发明的封装件,利用上述结构的绝缘电路膜,将两个芯片面对面地粘接而形成,因而具有不必使用镜像芯片,用同样设计的芯片就可构成的效果。
此外,还有下列效果:因绝缘电路膜取代了现有的引线框架的小片粘接和金属布线粘接,因而可提高可靠性,可自由地排列引线框架的管脚。
并且,由于省略了布线粘接工艺,可提高可靠性,又由于以芯片面对面的方式进行粘接,可防止由环氧树脂模塑化合物而产生的α颗粒的影响。
再者,本发明还具有下列优点:可实现既大容量又有多层结构的轻薄短小型化的封装件,易满足用户的需求。
附图的简要说明如下:
图1是表示现有技术的普通半导体封装件结构的剖面图。
图2是表示本发明第一实施例的半导体封装件的整体结构的剖面图。
图3是表示图2所示半导体封装件中的芯片、绝缘电路膜以及引线框架的连接关系的详细示意图。
图4A是图3所示半导体封装件中所使用的绝缘电路膜结构的部分平面图,图4B是沿图4A中A-A线剖切的剖面图,图4C是沿图4A的B-B线剖切的剖面图。
图5是表示本发明第二实施例的半导体封装件的整体结构的剖面图。
图6是表示图5所示半导体封装件中,芯片、绝缘电路膜以及引线框架的连接关系的详细的示意图。
图7A~7C是图6所示半导体封装件中使用的绝缘电路膜结构的部分剖面图、部分平面图和表示通孔的剖面放大图。
图8是表示芯片、绝缘电路膜以及引线框架之间连接关系的其它结构的剖面图。
图9是表示本发明第三实施例的剖面图。
下面,参照附图说明本发明的最佳实施例。
图2是展示本发明第一实施例的半导体封装件的整体构造的剖视图,图3详细示出图2所示半导体封装件中,芯片、绝缘电路膜和引线框架间的连接关系,图4A是表示图3所示半导体封装件中所使用的绝缘电路膜的构造的部分平面图,图4B是沿图4A的A-A线切断的剖面图,图4C是沿图4A的B-B线切断的剖面图。
附图中,参考标号10和10′指半导体芯片,20指绝缘电路膜,31指内引线,32指外引线,40指各向异性导体,50指封装件壳。
参照图2和图3,半导体芯片10、10′粘在绝缘电路膜20的上、下面上,粘接面与芯片的上面即排列电极的面相对。绝缘电路膜20中,形成导电用的金属图形,绝缘电路膜20的两侧连接引线框架的内引线31,构成与芯片外部电连接的通路。
用各向异性导体40粘接半导体芯片10、10′、绝缘电路膜20以及内引线31,用封装壳50密封包括半导体芯片10和10′、绝缘电路膜20和内引线31的一定区域,在封装壳50的下面,从内引线31延伸形成的外引线32露出,安装在基板(图中未示出)上。
亦即,为实现高可靠性,本发明将芯片直接粘接在弹性绝缘电路膜上,将该绝缘电路膜的端点与引线框架的内引线粘接。不仅如此,为了大幅度增加芯片对封装件的占有率,使限定容量能至少扩大两倍以上,在除去引线框架的垫片后,在绝缘电路膜的两面上安装芯片。
按照一般制作弹性电路板的方法,或稍加变更,即可制作绝缘电路膜20。下面参照图4A~4C具体进行描述。
参照图4A~4C,在底膜21大致中间的上下面上,涂敷或电镀预定厚度的Cu、Ni和Au,形成金属线22,其厚度为10μm至200μm左右,从而构成本发明用的绝缘电路膜20。其中,最好是所述底膜21厚度为25μm,在其上依序涂敷或电镀的镍和金属的厚度为0.3μm和0.1~0.15μm。
金属线22上,从其表面突出预定高度地形成与半导体芯片10、10′的粘接焊盘连接用的多个内焊盘23,和与引线框架的内引线31连接的多个外焊盘24。上述焊盘23、24的突出高度最好在1μm~20μm范围内,大小最好为5μm×5μm~200μm×200μm。并且,在所述金属线22上形成互连上下粘着的半导体芯片10、10′同一端子的通孔25,例如互连芯片的CAS(列地址选通)端子、互连RAS(行地址选通)端子等。该通孔25中,沿其内壁面的预定部分分别形成预定的传导金属26,以电连接上下芯片。该实施例中,上述通孔25的大小在直径10μm~200μm的范围内。按相对的两个内焊盘23共用的方式形成上述通孔25。
另一方面,图中示出由Cu、Ni、Au构成金属线22的实例,但并不限于此,也可由Cu、Ni、Cr、Au或Cu、Ni、Co、Au构成,还可由其导电率在10-8Ω/cm以上的金属等构成。
为使上述结构的绝缘电路膜20与半导体芯片10、10′以及使绝缘电路膜20与内引线31粘接而涂敷的各向异性导体40包括树脂和导电用的预定颗粒。该树脂为液态或固态,例如为环氧树脂或变形环氧树脂、聚酯或变形聚合物、丙烯酸树脂或变形酯、硅酮树脂、苯氧基树脂、聚氨酯、聚硫化物、氨基丙烯酸酯、聚补体(polgalexins)及其它由于加热、紫外线、室温而硬化的聚合物等多种形式。并且,含在上述树脂中的颗粒为由银、金、镍、铟、锡、铟锡氧化物等单独的金属或合金构成,也可由导电率为10-8Ω/cm以上的金属构成,该颗粒大小为3μm~15μm。
另一方面,与上述绝缘电路膜20的外焊盘连接的引线框架的内引线31上,涂敷银、锡、铟或导电率大于10-8Ω/cm的金属,可提高其导电性。
下面,对上述本发明的半导体封装件的制造方法及其作用效果进行说明。
首先,绝缘电路膜20的制造方法与制造普通印制电路板(PCB)的方法相似。具体地说,在形成多个通孔25的底膜21的上、下面上涂敷预定厚度的Cu和电镀预定厚度的Ni、Au之后,进行构图,形成金属线22、内焊盘23和外焊盘24,然后,进行金属电镀,形成穿过通孔25的传导金属线26,从而制成有多个焊盘的绝缘电路膜。此时,绝缘电路膜20上的焊盘、即与芯片的粘接焊盘和引线框架的内引线粘连的上下面上的内焊盘23和外焊盘24,比周边的金属线22的高度高约5μm以上。
将这样制作的绝缘电路膜与无垫片的引线框架同时置于粘接机之后,用各向异性导体粘接半导体芯片和内引线。这时,使用液态各向异性导体时,用分散槽或丝网印刷法涂敷各异性导体,然后用加热或紫外线硬化的方法粘接。若为固态的各向异性导体时,则用加热和压力进行粘接。
用上述方法粘接一个芯片之后,用相同的方法对相对侧面上的芯片进行粘接。
上述工艺结束后,进行与普通半导体封装件的制造工艺相同的模压、修整和成形等工艺,制成图示的半导体封装件。
另一方面,图5~7示出本发明半导体封装件的第二实施例,下面对此进行说明。
图5是本发明第二实施例的半导体封装件的整体结构的剖视图,图6是表示在图5所示半导体封装件中,芯片、绝缘电路膜以及引线框架的连接关系的详细示意图,图7A~7C分别是表示图6所示半导体封装件所使用的绝缘电路膜的结构的部分剖面图、部分平面图和表示通孔的剖面放大图。图中,与上述实施例相同的部分用相同的符号表示。
如图所示,本发明的该实施例的结构与上述第一实施例的构造大体相同,但用形成于芯片粘接焊盘上的金属粘接剂60连接绝缘电路膜20和半导体芯片10、10′来构成。再者,半导体芯片10、10′和绝缘电路膜20用各向异性导体40连接,而引线框架的内引线31和绝缘电路膜20的外焊盘没用各向异性导体40支承,采用其它粘接。
换言之,本发明的该实施例,形成于绝缘电路膜20的金属线22上的内、外焊盘不从表面上突出,而是与表面为同一平面地构成。另一方面,芯片的粘接焊盘上形成预定高度的金属粘接剂60,用各向异性导体40粘接半导体芯片10、10′和绝缘电路膜20来构成,并且绝缘电路膜20与引线框架的内引线31不是用各向异性导体40的方法,而是用合金结合来构成的。此外,与图4A的实施例不同,通孔25与各内焊盘23一一对应地形成。
这种结构中,上述金属粘接剂60的高度为5μm~20μm,宽度为30μm~200μm。并且,上述金属粘接剂60由主要成分为金、焊料、传导性聚合物等所有具有导电性的金属以及聚合物等构成。
用与第一实施例大体相同的工艺制造上述结构的该实施例。只是在制作绝缘电路膜20之后,首先用热压法将上述绝缘电路膜20的外焊盘与引线框架的内引线合金结合,然后将其放在适当的工作台上,用各向异性导体将半导体芯片10粘接于绝缘电路膜20上。此后,经硬化,粘接相对侧面的半导体芯片10′后,进行普通封装装配工艺中的后部工艺,制成图5所示的半导体封装件。
像这样按本发明第二实施例制作的半导体封装件的作用效果与上述第一实施例相同,故省略。
图8是本发明第三实施例的示意图,仅示出其中重要部分。
如图所示,半导体芯片10、10′与绝缘电路膜20通过绝缘电路膜20上的焊盘和芯片上的金属粘接剂连接。其它结构与上述第二实施例的结构相同,作用效果也与该第二实施例相同,因而这里省略其详细说明。
图9A和9B是本发明第三实施例的示意图,它们示出不同的引线框架的外引线。亦即,上述封装件中,其外引线从封装壳的下面露出,而本实施例的封装件中,基板安装用的外引线从封装壳的两外侧突出,形成预定的弯曲形状。图示实施例中,仅示出两种外引线的形状,外引线可具有其它多种结构。其它部分的构成及其作用效果与上述实施例相同。
这样制作的本发明的半导体封装件,与普通半导体封装件相同,将向封装壳外部突出外露的外引线焊在基板上而装配,起输入、输出电信号的作用。并且由于实现了大容量且轻薄短小型化,所以能提高安装率。
按照上述详细说明,本发明的半导体封装件利用绝缘电路膜,该绝缘电路膜形成有上下芯片电气导通用的金属图形和同样的端子互连用的通孔,将两个芯片以面面相对的方式粘接而构成,构成既大容量又轻薄短小的封装件,不必使用镜像芯片,就能够取得易满足用户要求的效果。
再者,本发明的半导体封装件,用上述绝缘电路膜代替现有的引线框架的小片粘接和金属布线粘接,因而可提高可靠性,并可自由地排列引线框架的管脚。通过采用芯片的面面相对的方式,可防止因环氧树脂模型化合物而产生的α颗粒。