直流电机 本发明涉及一种直流电机。
既可用作电动机又可用作发电机的直流电整流子电机是大家熟悉的(例如DE3324617A1),其中在一个机壳内装有可旋转的转子,它带有许多具有相同角度间隔、有相同直径的由导线构成的空心线圈。线圈两侧在机壳正前面内侧上对着在圆周方向上相继有相反极性的永磁体。构成线圈的导线在其端点侧面连接到与转子一起旋转地相互绝缘的换向器接触表面上,机壳中与机壳壁绝缘的接触环被压在换向器接触表面上,接触环电气连接到外面的接线端子。接入直流电源则如此构造的电机作为电动机工作,通过转子轴带动转子旋转则作为发电机工作,即可以接线端子输出直流电流。这种熟知的直流电机作为例如小型的、非常坚固的小功率电动机或传动装置电动机用于视频信号显示设备中。由于转子线圈和永磁体的特殊结构及由此导致的永磁体和转子线圈相互作用场的分布,这种电动机也称作轴向场电机。由于可达到高效率及它们原则上好的一致性,这样的具有大的尺寸和相应较高功率的轴向场电机也被推荐作为汽车的发动机(WO95/17779)。
本发明的目的在于优化这种大功率直流电机,它适于用作汽车的发动机,这种电机结构简单,成本低廉并具有高效率。
按照本发明上述目的通过以下技术方案实现,直流电机具有一个可在机壳中旋转的转子,转子具有多个在与旋转轴有一定距离处排列的电磁体,它们各有一个由一根或多根导线绕在线圈芯子上的线圈绕组,其中构成线圈的导体的端点径向引向内部并且用一个相应的接触表面电连接到一个聚集到一起构成换向器的接触单元上,固定在机壳中的多个连接于直流电源或直流电用电设备的接触环被压在接触单元上,此电机还具有以相等的角度间隔排列在机壳内壁、极面对着线圈芯子的正前面、在圆周方向上相继有相反极性的永磁体,其中每一个线圈芯子与其相应的线圈绕组一起构成一个单独生产的电磁结构单元,它被固定在一个与转子轴一起旋转的套筒支座中,永磁体的极面在圆周方向上有一个覆盖多个对着的线圈芯子的延伸,换向器的两个对应于一个径向上位于永磁体外面的接触环在圆周方向上如此延伸,使它们覆盖对应于一个永磁体极面的接触单元的接触面约一半面积,并且具有与构成换向器的接触单元的接触面错开的、与各个换向器侧的接触表面有电气连接的接触表面,在圆周延伸中基本对应于换向器-接触环的接触环压在上述接触表面上,这些接触环在它们侧电气上相互成对地连接。
预加工电磁结构单元和然后装入套筒支架中保证了所希望的简单结构和低成本的安装,而且通过使每个永磁体对应于多个电磁结构单元,转子旋转时进入永磁体场中的电磁结构单元被换向器如此控制,它们有一个相反的极性并且被电磁铁在圆周方向吸引。一旦各个电磁结构单元的线圈芯子同心地对准永磁体,则通过对着换向器-接触面的接触面线圈芯子改变极性,这样电磁结构单元与对着的永磁体有相同极性,并且在旋转方向上继续向前推进。
如果换向器接触环的接触表面和属于换向器-接触环、成对地相互电气连接的接触环的接触表面在转子旋转方向上可移动一个规定的尺寸,是合乎目的的。这样,在圆周方向上换向器-接触环的有效接触表面能改变,从而改变直流电机的性能。
线圈芯子的形状最好是在径向上及平行于转子轴的方向上的基本矩形的片,其径向走向的正边缘的边沿部分超过其所载有的线圈绕组而凸出,此线圈芯子的凸出周边区-尤其是当它对准径向方向时-像一个鼓风机的径向叶片那样起作用,它使得转子冷却可通过在径向吸入机壳内部范围中的空气并在径向排放到机壳外部实现。线圈芯子的径向的、叶片形结构还使得可在规定的直径上实现大量的电磁结构单元,尤其当难以设计按轴向场原理工作的、具有相对大的直径和较小的轴向延伸的电机时。如果线圈芯子的垂直通过转子轴的截面有从径向内部界边向径向外部界边发散的横截面,可实现最佳的空间利用率。
电磁结构单元的导线可由一根在长度上延伸的至少绕在线圈芯子上半匝的导线例如铜合金制成的金属条构成。一个由这样的电磁结构单元集成的转子具有充够的性能稳定性,即具有必要的小或仅仅一个骨架状的转子构架,这样流过电流的导线良好地与空气对流,实现良好转子冷却。
另外,电磁结构单元的导线也可由多根侧面紧挨着的、长度上延伸的、至少绕在线圈芯子上半匝的导电金属线构成。
电磁结构单元的线圈芯子可放置在径向与转子轴有一定距离并基本平行于转子轴的地方。
另外,电磁结构单元的线圈芯子也可放在径向与转子轴有一定距离并相对转子轴倾斜一个角度的地方,使得其指向永磁体的相反方向的正前面在圆周方向上相互错开。而且线圈芯子的相反的正前面在径向方向上与转子轴有相同距离。
此外也可以这样设计,电磁结构单元的线圈芯子在径向与转子轴有一定距离并相对转子轴倾斜一个角度,使得其朝向永磁体的相反方向的正前面在径向方向上与转子轴有不同距离。
下面的结构不仅能提高转子中的电磁结构单元的稳定性,而且能按照鼓风机方式在机壳前壁侧面端接用于冷却的径向可流通的小室:所有电磁结构单元的线圈芯子两侧通过一个由非磁性材料构成的、位于线圈芯子邻近正前面的端部中的环形片相互连接。线圈芯子相反方向的正前面穿过相应的环形片是合乎目的的,这样线圈芯子正前面与永磁体极面之间的间隙能尽量的小。
如果永磁体在圆周方向上相继面向转子的有不同极性的两个极表面由一个按照蹄形铁磁体方式形成的永磁体的两个朝向机壳内部的平行的极面构成,这种永磁体的结构是合乎目的和有益的。
这种以蹄形铁磁体方式形成的永磁体可由从由非磁性材料构成的机壳一正面壁穿出的软磁极靴的对着转子的正前面构成,它在相应机壳正面壁外与永磁体的一个极耦合。永磁体可简单地设计成通常的磁棒。
极靴合乎目的地由一捆在厚度方向上相互迭在一起的电绝缘的变压器铁片构成,以减小涡流损耗。在永磁体由具有磁棒的极靴构成时这是推荐的:相反的棒端分别固定在一个至少部分地与棒端互补的各自极靴中的接收部中。
朝着机壳正面壁的极靴若具有平行于转子旋转轴可移动并且可固定在规定的移动区域内的结构,则转子的电磁结构单元的线圈芯子的正前面与由机壳内部极靴的正前面构成的永磁体极面间的距离可以调整到刚好还可靠的小尺寸上,并且最佳化电机自身的效率。
下面结合附图所示多个实施例详细说明本发明,附图中:
图1以所谓的半截面方式,即在下半部是侧视图,在上半部是沿着径向平面的截面,示出一个以本发明方法构成的直流电机的实施例,
图2是从图1中箭头2-2方向看去一个载有永磁体的机壳正面壁内侧视图;
图3是从图1中箭头3-3方向看去由多个电磁结构单元构成的直流电机转子的视图;
图4是本发明的直流电机的转子的相继电磁结构单元的换极电路示意图;
图4a是换极电路的相互对应的接触环向接触面看去的示意图;
图5是本发明电磁结构单元第一实施例的侧视图;
图6是从图5中箭头6方向看去电磁结构单元的视图;
图7是本发明电磁结构单元变形的实施例的侧视图;
图8是从图7中箭头8方向看去的视图;
图9是一个变形的电磁结构单元,其中多根平行走向的导线代替条形金属线作为线圈芯子上的线圈绕组;
图10是从图9中箭头10方向看去的视图;
图11也是一个变形的电磁结构单元的侧视图,它也是基于应用多根并联连接且紧挨着排列的金属线而构成的;
图12是从图11中箭头12方向看去的视图;
图13是以与图2相同方向看去的,具有变形的结构和配置的永磁体的机壳正前面内侧的视图;
图14是本发明直流电机图1的实施例的变形实施例的机壳正面壁和转子在图13中箭头14-14示出的弧上的部份剖视图。
图1至3示出以标号10表示的本发明直流电机的实施例全貌,此直流电机可用作电动机和发电机。电机10具有一个在特殊情况下轴向相对较短的机壳12,它由两个直径相对大的圆盘形机壳正面壁14a,14b和有相对小的长度的变形的圆柱形环形状的机壳圆周壁16组成。机壳正面壁14a,14b和机壳圆周壁16通过图中未示出的螺钉或其它固定件可拆卸地相互连结起来。
正面壁14a,14b上的中心通孔15a,15b被机壳盖18a,18b封闭起来,在机壳盖上同心地构造了一个用于放置径向轴承22的轴承容纳部20,在轴承中放置一个可旋转的通过机壳盖18a的轴24。轴24带动拧在其上的转子26(图3)。
在机壳正面壁14a,14b内侧上安放了有相等角度间隔、径向上尽可能向外安放的永磁体28,它们相对于机壳中心轴有相同的半径。在所示(图2)情况下正面壁14a,14b各带有总共12个永磁体,它们在圆周方向上前后相邻时有相反安放的极性。
转子26(图3)由多个首先作为单个构件生产的电磁结构单元30组成,在所示情况下共有72个结构单元。图5和图6专门示出一个这样的结构单元。每个电磁结构单元30具有一个由软磁材料构成的用作垫片的线圈芯子32,在它上面绕总共两匝的金属条作为线圈绕组34,金属条由高导电率铜合金制造是合乎目的的。金属条上在线圈芯子上构成绕组的部分利用通常的方法,例如通过涂不导电的漆,与线圈芯子和相邻的结构单元30绝缘。线圈芯子32以通常抑制涡流的方法由相互绝缘的叠在一起的变压器铁片构成。每个电磁结构单元30的金属条36的两个终端36a,36b以径向向内的方向引向轴24并且在那里固定在一个磁筒座38中,它例如以图1所示方式具有两个轴向相互错开的由绝缘材料构成的塑料-环形体38a,38b,它们每一个放置结构单元30的终端36a和36b中的一个。同一电磁结构单元30的金属条终端36a,36b相互绝缘地固定在这些环形体38a,38b中。通过一个例如图1中用键槽40表示的销连结,转子26与轴24相连结。由套筒座38和多个电磁结构单元构成转子26在适当选择金属条36的材料和尺寸时是自悬挂的,但也可通过部分地涛注径向走向的金属条36之间的中间空间来进一步加固转子。垫片形状的线圈芯子32在轴向经过线圈绕组34伸出,这样当转子在机壳中旋转时一个径向由内向外的气流在机壳中形成。通过(图中未示出的)在正面壁14a和/或14b上的适当的空气输入通道和在机壳16上的空气输出孔,在电机运行中可强迫产生保证电机冷却的周围空气的循环流通。通过在线圈芯子32的轴向从线圈绕组34伸出的区域上放置的由非导磁材料构成的环形片41,周围空气的循环流通可集中于电磁结构单元30之间的中间空间上并且优化冷却功能。同时这些环形片41还稳定电磁结构单元;它们以规定的径向与转子旋转轴距离以及周边方向上的距离互相相对地固定结构单元。
电磁结构单元30至外部直流电源,例如蓄电池的连接,或在用作发电机时与直流电用电设备的连接在电机10中通过接触环42实现,如图1所示接触环可构造为通过弹簧44直接非绝缘地压在金属条36径向部分对着正面壁的正边上的碳刷。所有电磁结构单元30的金属条36的非绝缘正边聚集起来构成电机10的转子26上的换向器。此外换向器当然也可由专门装在构成线圈绕组导体上的接触单元构成,如果鉴于接触表面的磨损而希望这样做的话。结合图9,10和11,12后面还要说明电磁结构单元,在那里构成线圈绕组的导体连接例如焊接到换向器的专门接触单元上。从上述对直流电机10的说明可见,机壳正面壁上的对着电磁结构单元30的线圈芯子32的永磁体28在圆周方向上有这样一个延伸,使在每一时刻它们的每一个对着多于三个的电磁结构单元。通过换向器如此给电磁结构单元供给电流,一个进入一对组合永磁体之间的电磁结构单元的线圈芯子的极性与相应的永磁体的极性相反,这样结构单元30通过永磁体之间磁场交变作用而移动。当到达永磁体圆周延伸一半处时电磁结构单元30改变极性,这样通过导致的线圈绕组的极性改变产生排斥力,从而强迫转子继续旋转。这是通过图4所示电路实现的。图中示出两个在圆周方向上相互错开、在圆周上延伸而且对着同一个永磁体的电磁结构单元30,它通过导线46连接到相应直流电源48,例如一个蓄电池。这里接触环42有一个圆周延伸,它最大相应于永磁体28圆周延伸的一半,力求这样经过导体36激励线圈芯子32:在结构单元30进入永磁体28的一组合对的第一半时它被吸引。在线圈芯子32经过此永磁体28的组合对的中心继续向前时从直流电源48经过一对电气上相互连接的接触环50的电流改变方向,这样,在线圈芯子32中产生的磁场的极性改变并与对着的永磁体对的极性相同。线圈芯子32及电磁结构单元30从此永磁体28的组合对排斥开,即转子26得到一个使其在旋转方向上向前的推动脉冲。
图4a示意地画出在其接触面的正视图上约呈梯形、相互并列的接触环42和52可以在转子旋转方向上相互交错配置。在所示情况下电流可仅在电磁结构单元30中流动,在其换向器表面上压着交叉断面线部分42a,在此部分接触面42和52相交。通过改变接触环42、52的接触表面相对相互错开的配置可以放大或缩小有效接触面,并且改变直流电机有关转速/转距关系的特性和用这种方法适应各种不同的要求。而且甚至于可以设想设计成在运行时用人工或自动控制的方法改变相互对着的接触环的相对错开位置的可能性,以强制地或自动地适应不同条件对转速和转矩的要求。
图7和图8示出已经说明过的图5和6所示的电磁结构单元30的一种变形,其总体用标号130表示。它具有其上仅绕有半匝导电体的线圈132,导电体仍是等宽的由高导电率金属构成的金属条136,其在相对的正边处的终端136a,136b如此被处理,在每个侧面上仅仅两个终端中的一个的正边是被一个接触环142的装置接触到的。电磁结构单元130的被处理的终端部分136a,136b也集成为换向器。重要的是导电条136相互对着的内表面通过适当的表面涂复相互间并与线圈芯子132绝缘。
图9和10示出不同于结构单元30的一个变形的电磁结构单元230,其区别在于,线圈绕组234用一定数量的并联连接的铜导线234来代替条形导体36而构成。在特殊情况下它在线圈芯子232上绕两匝。径向引向内部的终端固定例如焊接在专用金属接触单元236a,236b上。电磁结构单元230的这些金属接触单元一起构成换向器。此外它们可设计成适于固定结构单元230于转子的套筒座中。线圈芯子232自身在此情况下由一组层间相互绝缘并相互叠在一起的变压器铁片通过以下处理形成的:它在径向方向上向外扩展并使得芯子横截面最佳地利用机壳中的有用空间。芯子超出线圈绕组234向外的侧面部分相对于绕有线圈绕组234的部分大一些,这样线圈绕组相对线圈芯子232上的侧壁被固定。
图11和12接着示出一个以标号330表示的电磁结构单元130的变型,其中条状导体136也被多根并联铜线336所替代。绕在线圈芯子232上的相互密集排列的导线终端也被例如焊接或电焊到自身一侧的接触单元336a,336b上,在相反侧的接触单元位于相反的方向上,其正面构成与换向器-接触环的接触表面。利用常用的涂绝缘漆的方法可使铜线相互间并与所经过的线圈芯子332的部分绝缘,同时接触单元336a和336b之间的绝缘隔离层337进一步延伸于两个并联的铜线-区域之间直至线圈芯子232处。除了安全性之外,接触单元336a,336b间的绝缘以及铜线间的相互绝缘增大了绝缘厚度,也提高了电磁结构单元330的强度。为阻止铜线336从线圈芯子332上滑脱,在延伸部分有凸出一点的肩333。
图13和14示出一个与图1至3所说明的本发明直流电机的实施例有关的,有优点的机壳12结构的变形实施例。其中的改动主要与永磁体的构造有关。在前述实施例中相继改变极性的永磁体28排列在转子26对着的机壳正面壁14a,14b的内侧,而在变形的实施例中两个在圆周方向上相邻的永磁体由一个按照蹄形磁铁方法构成的永磁体60的磁极构成。在特殊情况下由专门的极靴62a,62b构成的永磁体60的磁极本身是由重迭的变压器铁片构成的软磁结构单元,它们穿过由非磁性材料-例如塑料-构成的机壳正面壁14a,14b上的过孔64。在与转子隔着的外侧中两个极靴62a,62b与被设计为磁棒66的永磁体连接起来。通过合适的设计,即在极靴62a,62b中适配地复制恒磁体66的末端的复制物68,保证了磁棒66对极靴62a,62b的最佳磁耦合。通过一个在图中未详细表示的支撑正面壁14a,14b上过孔64中的极靴62a,62b的可调节和可选择调整位置固定的支架,电磁结构单元30的线圈芯子32的正前面与对着的极靴正前面之间的结构间隙能被最佳化,以保证尽可能好的效率。
显然对所说明的实施例可进一步变形和开发,它们不仅涉及电磁结构单元的结构,而且也涉及其在套筒座中的支撑和固定以及换向器的结构。
电磁结构单元的线圈芯子的形状,尤其是横截面形状,也可以与所说明的片状结构不同。如果较少数量的电磁结构单元集成为一个转子,也可以用具有例如圆形横截面的简单的棒状线圈芯子。
不同于上述的线圈芯子相对于转子旋转轴并行排列,这也是有意义的:线圈芯子在圆周方向和/或径向方向上略微倾斜地斜着排列。