可调外腔激光器 【发明背景】
光纤通信的增加带宽的需求驱动可用于密集波分复用(DWDM)系统的高级激光发射器的开发,其中在DWDM系统中,多个分离数据流在一个单光纤中传播。每个数据流由特定信道频率或者波长的半导体激光器的调制输出产生,并且多个调制输出被合并到单光纤中。国际电信联盟(ITU)目前提出近似0.4纳米或者约50GHz的信道间隔的要求,以便允许在当前可用光纤和光纤放大器的带宽范围内由单光纤承载高达128个信道,将来,更大的带宽需求将很可能导致更小的信道隔离。
电信DWDM系统主要以分布式反馈(DFB)激光器为基础。DFB激光器通过在早期制成预定的波长选择光栅得到稳定性。不幸的是,关联单个DFB激光器制造的统计变化导致(波长)信道中心的散布。因此,为了满足对电信波长的固定格栅(grid)(ITU格栅)操作的需求,DFB已经通过外部基准校准器(etalon)得到加强,并且需要反馈控制环。DFB操作温度的变化允许一个操作波长启用伺服控制的范围;然而,高光功率、长寿命和低电功率耗散的不一致需求已经阻碍了在需要多于单信道或者少量相邻信道的应用方面的使用。
连续可调外腔激光器已经被开发出来,以克服单个DFB器件的局限性。许多激光调谐机构已经被开发用于提供外腔波长选择,比如用于传输和反射的机械式调谐光栅(grating)。外腔激光调谐必须能够在选择的波长上提供一个稳定的单模输出,同时有效地抑制处于腔体增益带宽之内与外腔模相关联地激光作用,
实现这些目的通常导致可调外腔激光器的尺寸、成本、复杂性以及灵敏度的增加。
所以,存在一种具有以下性能的外腔激光器和调谐机构的需求:通过有效抑制与选择波长相异的波长的传输波峰来避免多模激光作用;设计简单、紧凑;能够直接实施。本发明满足了这些以及其它的需求,并且克服了在背景技术中发现的缺陷。
【发明内容】
本发明涉及一种激光器设备及方法,利用双可调元件来提供光束波长调谐。本发明的设备概括地说包括:一个第一可调波长选择元件,位于光束中并具有第一可调自由光谱范围(spectral range);一个第二可调波长选择元件,位于光束中并具有第二可调自由光谱范围;第一和第二可调波长选择元件被配置成定义一个可根据第一和第二可调元件的调谐来同相(in phase)调节的联合传输波峰(jointtransmission peak)。
更具体地说,第一可调波长选择元件在选择波长范围之内定义(define)第一多个传输波峰,第二可调波长选择元件在选择波长范围之内定义第二多个传输波峰,第一和第二多个传输波峰被配置成在可通过双可调元件的调谐进行调节的选择波长范围之内联合定义单联合传输波峰。可调波长选择元件的调谐提供元件的自由光谱范围的调节,进而调节两组传输波峰,以便经由微调效应(vernier effect)提供波长选择。在某些实施例中,具有第三自由光谱范围的第三可调波长选择元件可以被定位在光束中。
本发明的方法概括地说包括:提供具有第一可调自由光谱范围的一个第一可调波长选择元件和具有第二可调自由光谱范围的一个第二可调波长选择元件;将所述可调波长选择元件定位在光束中;依据两个元件的第一和第二自由光谱范围定义一个联合(joint)自由光谱范围;通过调谐第一和第二可调波长选择元件调节联合自由光谱范围。联合自自由光谱范围的调节可以包括:调节由联合自由光谱范围定义的传输波峰的相位。
本发明可以被实施于一个激光器设备中,该激光器设备包括:一个增益媒介(gain medium),具有第一和第二平面(facet)并从第一平面中发射光束,其末端反射镜定位在光程中并且被配置成与增益媒介的第二平面一起定义一个外腔;一个定位在光束中并具有第一可调自由光谱范围的第一可调波长选择元件;一个定位在光束中并具有第二可调自由光谱范围的第二可调波长选择元件;第一和第二可调元件被配置成定义一个联合传输波峰,该联合传榆波峰可根据第一和第二可调元件的调谐来同相调节。
双可调波长选择元件所定义的联合自由光谱范围在某些实施例中可以大于增益媒介的增益波长。增益媒介的多个平面可以定义一个可调波长选择元件,使增益媒介具有自由光谱范围,并且在某些实施例中第一可调波长选择元件的第一自由光谱范围可以近似等于多个增益媒介自由光谱范围。在其它实施例中,第二可调波长选择元件的第二自由光谱范围也可以近似等于多个增益媒介自由光谱范围。
作为非限制的实例,第一和第二可调波长选择元件可以包括:校准器,光栅,干涉滤光片和/或其它可调器件,并且可以通过热-光、电-光、声-光、压电-光、机械或其它调谐机构或者效应来操作。增益媒介可以包括:发光二极管或者闪光灯可泵激或者电可泵激晶体,染料、气体或者其它增益媒介。
在某些实施例中,第一和第二可调元件分别包括热光可调校准器如具有第一和第二表面的半导体基底,每个表面具有一个或多个沉积在其上的薄膜介电层。介电层可以包括,例如,四分之一波长介电层对。这里使用的“热光”调谐是指通过校准器材料折射率方面的温度诱导变化、校准器物理厚度方面的温度诱导变化,或者两者来进行调谐。校准器材料在某些实施例中可以具有温度依赖折射率以及热膨胀的系数,使热光调谐通过选择性加热或者制冷伴随着校准器材料折射率的同步热控制以及校准器物理厚度的热控制。对每个校准器的自由光谱范围进行选择,使校准器的整个选择温度范围的校准器的热控制经由热光效应提供基本等于自由光谱范围的范围上的调谐。
在本发明的使用双可调校准器的外腔激光器的操作中,增益媒介发射的光束经过双可调校准器,从末端反射镜反射,并且经过校准器返回到增益媒介。每个校准器的自由光谱范围提供不同组的传输波峰,使来自两个校准器的传输波峰只有一个重合或者对准出现在选择的波长范围如增益媒介的增益带宽上。这在该波长范围中提供了仅仅一个波长的选择并避免了外腔激光器造成的多模激光作用。通过两个校准器温度的选择性变化,每个校准器的自由光谱范围通过热光效应而变化,以允许对准的校准器的传输波峰的控制,从而选择外腔激光器输出波长。选择校准器的锐度(finesse)和校准器自由光谱范围之间的差异,以避免与校准器关联的邻近传输波峰上的多模激光作用。选择双校准器的全宽度半最大值(half maximum),以避免邻近于所选择波长的外腔模的激光作用。
本发明提供了一种用于外腔激光器和其它光学器件的调谐系统,具有以下特点:直接实施、设计简单并且在宽波长范围提供选择波长上的快速、有效调谐。调谐以提供波长选择的双可调元件的使用允许较短的外激光腔的使用和有效侧面模抑制,并且提供了一个外腔激光器的调谐机构,该调谐机构可以被容易地采用或者重新配置,以满足不同DWDM网络之需求。本发明的这些和其它目的以及优点从下面的详细说明中而更加清楚。
【附图说明】
下面参考仅仅用于说明目的的附图对本发明进行更充分地说明。
图1是本发明的可调外腔激光器的示意图;
图2A是图1的可调外腔激光器设备的第一和第二可调元件所提供的第一和第二组传输波峰的曲线图;
图2B是图2A的传输波峰的组合集所定义的联合传榆波峰的曲线图;
图3是本发明的可调校准器对的横截面示意图;
图4是图3的校准器所定义的传输波峰的曲线图,该校准器被调谐为提供1550nm的联合传输波峰;
图5是图4的联合传榆波峰的光谱线宽的曲线图,该联合传输波峰由图3的校准器的组合效应提供;
图6是具有热控制元件的硅校准器的示意图;
图7是本发明的频率变化与硅校准器角度调谐的倾斜程度的关系曲线;
图8是本发明的具有三可调元件的外腔激光器设备的示意图;
图9是本发明的具有双可调光栅的外腔激光器设备的示意图;
图10是本发明的具有光栅和校准器可调元件的外腔激光器设备的示意图;
图11A是本发明的另一个外腔激光器设备的示意图,其中可调校准器和可调外腔操作以提供微调调谐;
图11B是由图11A的可调校准器和可调外腔定义的传输波峰的示意图;
图11C是由图11A可调校准器和可调外腔所提供的微调调谐的示意图,被显示为相应增益与波长的曲线图;
图12A是本发明的另一个外腔激光器设备的透视图,其中可调校准器和可调外腔被设置在MEMS器件中;
图12B和图12C是图12A的外腔激光器设备的俯视图,示出了图12A的锥形校准器的调谐;
图13A是本发明的外腔激光器设备的另一个实施例的示意图,其中按平行配置利用双可调元件;
图13B是图13A的外腔激光器设备所提供的微调调谐的曲线图,被显示为相应增益与波长的关系;
图14A是用于图13A的设备的可调气隙校准器的俯视图;
图14B是图14A的可调气隙校准器的侧视图,显示出沿剖面线A-A的剖面;
图15是本发明外腔激光器设备的另一个实施例的示意图,其中单个双折射校准器提供被平行利用的双可调方向;
图16是本发明的外腔激光器设备的另一个实施例的示意图,其中可调外腔被用来提供可调校准器的被减少的锐度需要;
图17A是本发明的另一个外腔激光器设备的透视图,其中可调校准器和可调外腔被设置在MEMS器件中;
图17B和图17C是图12A的外腔激光器设备的俯视图,示出了图17A的锥形校准器的调谐。
【具体实施方式】
更具体地引用附图是为了说明在图1至图17所示的设备中具体体现的本发明。应当理解的是,该设备可以改变配置和部件的细节,方法也可以改变细节和行动的顺序,而又不背离所公开的基本构思。本发明主要是以外腔激光器使用的方式公开的。然而,发明可以供各种类型的激光装置和光学系统使用。应当理解的是,这里所使用的术语仅仅用于说明特定实施例的目的,而不是进行限制,因为本发明的范围仅由权利要求限定。附图所示的各部件的相对大小以及之间的距离是为了清楚而放大的许多例子,因此不应当认为是限定。
参见图1,图中示出了本发明的激光器设备10。设备10包括增益媒介12和末端或者外部反射元件14。增益媒介12可以包括一个传统的Fabry-Perot二极管发射器芯片,并具有抗反射(AR)涂层前平面16和反射或部分反射后平面18。反射元件14可以包络一个反光镜或其它反射或者反向反射元件。外激光器腔由后平面18和末端反射镜14表示。增益媒介12从前平面16发射相干光束19,该相关光束由限定光程22的透镜20准直。传统的输出光耦合器(未示出)可以与后平面18相关联,用于把后平面的输出耦合到光纤(未示出)中。
第一和第二可调元件24、26被定位在由尾端反光镜14和平面18限定的外腔之内。可调元件24、26共同操作,在激光器设备10的操作期间优先地把所选择波长的光反馈到增益媒介12。为了示范性目的,可调元件24、26以第一和第二可调Fabry-Perot校准器的形式示出,包括平行板固体、液体或气体隔离的校准器,并且可以通过光学厚度或路径长度的精确量度来调谐。在其它实施例中,校准器24和/或校准器26可以用一个光栅、可调薄膜干涉滤光片或者其它可调元件替代,如下所述。第一校准器24包括表面28、30,并且具有与表面28、30的间距和校准器24的材料折射率相适应的第一自由光谱范围FSR1。第二校准器26包括表面32、34,并且具有由表面32、34和校准器26的材料折射率定义的第二自由光谱范围FSR2。校准器24、26可以包括相同的材料或者具有不同折射率的不同材料。
校准器24、26的每个通过调节它们的光学厚度来调谐,以提供FSR1和FSR2的调节或调谐,还提供下面将进一步说明的激光器设备10的调谐。校准器24、26的调谐可以包括表面28、30与表面32、34之间距离的调节和/或校准器材料的折射率的调节,并且可以采用以下技术实现,包括:改变折射率的热-光、电-光、声-光和压电-光调谐,以及改变校准器表面间距的机械角度调节和/或热调谐。可以将一个以上的这种调谐效应同时应用于一个或两个校准器24、26,这取决于本发明的特定实施例。
在图1所示的实施例中,第一和第二校准器24、26分别通过热电效应调谐。术语“热光”调谐是指通过校准器材料折射率的温度感应变化、校准器的物理厚度的温度感应变化或者两者进行的调谐。某些实施例中使用的校准器材料具有温度依赖折射率以及热膨胀系数,这样通过选择性加热或者制冷,使热光调谐同时伴随校准器材料折射率的热控制以及校准器物理厚度的热控制。下面进一步说明用于有效热光调谐的校准器材料的选择。
为了提供热光调谐,热光控制元件36可操作地耦合到校准器24,热控制元件38可操作地耦合到校准器26,以便凭借热条件提供加热或制冷。热控制元件36、38也可操作地耦合到控制器40。控制器40可以包括一个传统的数据处理器,并根据查找表中存储的可选择波长信息或者其它波长选择标准向用于校准器热调节或调谐的热控制元件36、38提供调谐信号。校准器24、26还包括操作耦合到控制器40的温度监视元件37、39,用于在激光器操作期间监视校准器温度以及将校准器温度信息传递给控制器40。每个热控制元件36、38包括一个允许根据控制器40的指令调节温度的加热元件(未示出)。
热控制元件36、38执行的校准器24、26的热控制可以通过传到、对流或者两者实现。在许多实施例中,热传导是校准器24、26的热流和温度调节的主要途径,并且应当抑制可能导致校准器24、26中有害或假热起伏的对流效应(convective effect)。外腔激光器设备10可以被设计或另外配置成允许或者补偿在整个激光器的操作温度上由热对流导致的热流效应。例如,设备10可以被配置成限制校准器24、26附近的气流。在其它实施例中,校准器24、26可以在低传导环境或者真空中被单独隔离。到达邻近校准器24的不同温度的结构的大的气路,以及最接近校准器24、26的部件的热绝缘材料的使用还可以用来抑制到达或来自校准器的热传递。设备10的设计可以被附加地配置成提供最接近校准器的分层空气和大气流,从而避免与紊流有关的潜在的有害热效应。
热控制元件36、38允许每个校准器24、26置于独立热控制。热控制元件36、38可以用来提供共同或并行加热(以基本相同的温度变化率对多个校准器加热和制冷)以及差动加热(以基本不同的温度变化率对多个校准器加热或者制冷),用于下述的波长调谐。如下所述,热控制元件36、38可以被集成到每个校准器24、26的一个表面或者多个表面上,热控制元件36、38可以对应于散热器或者储热器(thermal reservoir),以允许快速加热或者冷却校准器24、26。
在某些实施例中,校准器24、26被构成和配置成使单个热控制器或者散热器可以同时提供两个校准器24、26的有效调谐。热传感器或者监视器(未示出)安置在校准器24、26上或者安置在远方,以监视控制器40的校准器温度。校准器24、26可以通过一个组件(未示出)联接或者结合,其中采用避免校准器24、26之间的有害光耦合方式安置校准器24、26或者使校准器24、26间形成角度。安装具有合适热特性的材料的校准器24、26可以在调谐期间避免校准器24、26之间的不希望的热耦合。
增益媒介12的平面16、18限定Fabry-Perot校准器,热控制元件42操作地耦合增益媒介12,以便保持平面16、18之间距离的热稳定和提供增益媒介12的稳定输出。热控制元件42被操作耦合到控制器40。还可以经由操作耦合到尾端反光镜14和控制器42的热控制元件(未示出),调节由尾端反光镜14和平面18限定的外激光器腔的光程长度,并根据误差检测系统或者操作地耦合到控制器42的系统进行调节尾端反光镜14和/或增益媒介12的热控制。外腔光程长度的热控制在2001年6月6日递交的美国专利申请第09/900,443中进行了充分说明,该公开作为参考文件在此引用。
校准器24、26经由微调效应提供用于设备10的选择性波长调谐。参见图2A,第一校准器24的结构和配置定义第一组或者多组通信带、模或者传输波峰P1(用实线显示),相隔一个距离的最大值等于FSR1。同样第二校准器26定义第二组或者多组通信带、模或者传输波峰P2(被显示为虚线),相距一个距离的波峰P2的传输最大值等于FSR2。第一和第二校准器24、26在许多实施例中被构成和配置成:在激光器操作期间,FSR1和FSR2地振幅相似但不相等。
通过为校准器24、26的每一个提供光程长度的差来实现FSR1与FSR2之间的自由光谱范围的差异。提供不同自由光谱范围的校准器24、26的结构和配置可以由不同技术方案实现。例如,可以从加工和抛光得到预期厚度之后再划分的单个平行基底以获得两个校准器的自由光谱范围的小净差。然后对基底的一半进行附加操作,其中通过减小厚度的研磨、抛光或者蚀刻提取材料,或者通过增加厚度的普通材料沉积技术增加附加基底材料层。这样,原基底的二对分将提供稍微不一致的光程长度和不同自由光谱范围的两个校准器。应当指出的是,对于相同材料和相同标称厚度的两个校准器,也可以通过两个校准器之间的温度差或者角度差或者作用于校准器的调谐效应的其它差别实现自由光谱范围的小差别。
两个校准器24、26的自由光谱范围之差δFSR是使两组传输波峰的限定的或者选择的波峰P1和P2重合或对准,同时使剩余P1和P2彼此不重合或者不对准。在图2A中,波峰P1和P2的重合或者对准点在波长λ0上。波峰P1和P2的附加重合点出现在图2A所示的区域之外。波峰P1和P2的重合定义或者导致联合传输波峰Pj(如图2B所示),使两个校准器24、26具有由联合(joint)光谱范围或者FSRj分割波长的联合传榆波峰Pj。
校准器24、26可以被连续调谐,使包括联合传输波峰的(分别是校准器24、26的)校准器次序M1和校准器次序M2以相同速率改变频率。这可以在例如校准器24、26以实质上相同的温度变化速率同时加热或者冷却两个校准器24、26时实现。在此情况下,在单个联合自由光谱范围之内调节联合波峰Pj的波长位置。向每个校准器施加一个不同温度变化速率的校准器24、26的差动加热,可允许模之间的拍差的微调位移,从而使不同波峰P1和P2得以对准,以便在实质上大于FSRj的一个范围上不连续地调节联合传榆波峰Pj的波长位置。
这样,联合传输波峰Pj的波长对应于设备10的可选激光波长,并且可以根据校准器24、26的调谐进行控制和选择。未相互对准的各个传输波峰P1和P2在激光器操作期间被抑制。联合传输波峰Pj的波长可以例如对应于一个通信频带的特定传输信道。FSRj的振幅(并且因而是δFSR的振幅)可以被选择,使单个联合传输波峰Pj仅发生在关心的波长范围内,如增益媒介12的增益带宽内或者其选择的部分内,以避免多个联合传输波峰Pj上同时发生多模激光作用。作为选择,当一个以上的联合传榆波峰Pj存在于增益媒介12的带宽之内时,可以在设备10中使用一个或多个合适的滤波器(未示出),以抑制校准器24、26在多个波长上对增益媒介12的反馈。
选择校准器24、26的锐度和FSR1和FSR2的振幅,以避免邻近联合传输波峰Pj的未对准波峰P1和P2的多模激光作用。校准器24、26的锐度在某些实施例中是等值的或者实际上相等,而本发明的其它实施例则不相等。
由尾端反光镜14和增益媒介12平面18代表的激光器外腔定义在图2A中被显示为外腔模波峰PEC的多个外腔模。外腔模波峰PEC扩展到图2A的整个波长范围,但为了清楚起见仅显示了一部分外腔模波峰PEC。选用联合传输波峰Pj的全宽度半最大值(根据校准器24、26的配置),以防止邻近联合传输波峰Pj的腔模波峰PEC处的有害激光作用。
校准器24、26可以被配置成使FSR1和FSR2每一个近似等于增益媒介12的自由光谱范围(未示出),以便保持关于增益媒介12的平面反射系数的近似匹配条件(commensurate condition)。然而,在平面反射系数足以被抗反射涂层抑制时,不需要这样一种条件。选择校准器24、26的绝对厚度,使热控制元件36、38能够提供在联合自由光谱范围FSRj之内调谐或者调节联合传输波峰Pj的位置所需的温度范围。校准器厚度还取决于下面进一步说明的校准器材料选择。
校准器24、26提供的微调间距的差异,即FSR1与FSR2之差或者δFSR的振幅可以根据波长选择性预期等级、关心的波长范围和设备10的特殊使用来改变。在许多实施例中,校准器24、26被构成和配置成使FSR1将落入FSR2的几个百分比之内。因而,例如在某些实施例中,FSR1可以为FSR2的近似99%至101%之间,而在其它实施例中,FSR1可以为FSR2的近似98%至102%之间。在某些实施例中,校准器24、26的自由光谱范围之差可以较大,使FSR1为FSR2的近似90%至105%之间,在某些情况下,FSR1可以为FSR2的近似90%至110%之间或者更多。
在某些实施例中将选择校准器24、26的FSR1和FSR2(以及因而FSRj),以避免增益媒介12的增益带宽或者关心的其它波长范围之内的多模激光作用,如上所述。也就是,校准器24、26仅仅提供波长范围之内的单联合传输波峰Pj,使FSRj等于或大于关心的波长范围,并提供对邻近联合传榆波峰Pj的传输波峰的抑制。在某些实施例中,所选择的波长范围可以包括特定通信带,比如“C”带,借助校准器24、26的选择性调谐,在通信带内的预期波长上定位联合传输波峰Pj。
校准器24、26的FSR1和FSR2之差还可以根据所选波长范围内离散传输信道或者波长的数量来限定。因此,FSR1和FSR2可以有以下关系式:
FSR≈(M/M±N) (FSR2)
其中M是选用波长范围内的可调波长或者传输信道的总数量,N是根据本发明的不同实施例选择的非整数或者整数。换言之,FSR1可以近似等于可调谐波长的数量与可调谐波长数量加或减数量N的商再与FSR2相乘之积。数量N可以是在例如约0.01或更小与约10或更大之间的范围之内。通常,自由光谱范围的任何有理比可以提供一个微调效应。在某些实施例中,N可以落入近似0.1与近似5之间的范围之内,在某些实施例中,N也许落入近似1与近似2的范围之内。
本发明还利用“宽带”微调调谐,其中校准器24、26之一的自由光谱范围定义通常与于传榆格栅的可选波长相对应的多个传输波峰,而其它校准器具有一个自由光谱范围,使该光谱范围仅仅定义传输格栅之内的单个传输波峰。校准器24、26的调谐允许采用多个由其它校准器定义的传输波峰选择性对准诸多校准器之一的单传输波峰。
在设备10的操作中,光束19离开增益媒介12的平面16,经过校准器24、26,从尾端反射镜14反射,并经由校准器24、26返回到增益媒介12。自由光谱范围24、26中的差别导致上述的由校准器24、26定义的单个联合传榆波峰,并且联合传输波峰的波长上光从校准器24、26返回或者返回到增益媒介12,以便在联合传输波峰波长提供设备10的激光作用。同时,每个校准器24、26的并行调谐导致在其自由光谱范围FSRj或者模内位移或者调谐联合传输波峰Pj。每个波峰Pj的差动调谐导致模或者传输波峰P1和P2之间的微调差拍的位移,以在实际上大于FSRj的一个范围上提供波长位移。这样设备10可以提供较宽分离波长之间调谐的快速位移。
在激光器设备10操作期间,校准器24、26的联合传输波峰的调谐可以根据特定的一组通信信道如国际电信联盟(ITU)通信格栅来实现。一个波长基准(未示出)如一个格栅生成器(grid generator),或者其它波长基准可以与设备10结合使用,并且可以安置在设备10的外腔之内或者之外。然而,DWDM系统实际上是日益动态的或可重新配置的,并且固定波长格栅的可调外腔激光器的操作越来越不理想。本发明的激光器设备10可以在宽波长范围上以不依赖于固定、预定波长格栅的方式提供连续、可选波长调谐,从而允许DWDM系统的快速再配置。
用于外腔激光器的波长选择的双热光可调校准器24、26的使用消除了目前在光栅可调外腔激光器中进行机械调谐之需要,因为。热光调谐实际上是固态的,因而允许比光栅可调激光器中可能的情况更紧凑的实施,并具有更快的调谐和相应时间、对震动和振动更好的阻抗、以及增加的模耦合效率。双可调校准器的同时调谐提供了比单可调校准器与静态校准器一起使用可以实现的激光器调谐更好的激光器调谐。
本发明的两个同时可调校准器的使用提供了超过基于单可调校准器或者其它单可调元件的激光器调谐机构的实质优点。一个重要的优点是简化了校准器制造。波长选择的双(或者更多)可调校准器的使用允许反射覆盖层(下面进行进一步说明)的构造更加简单,并且提供了用于基底缺陷的更大容差。该简单的覆盖层通常比单调谐校准器所需的更薄,因此允许调谐操作的较宽带宽。
采用本发明的两个或多个可调校准器进行的微调调谐,与使用单可调校准器的可能情况相比,具有在更小操作温度范围上允许热光调谐的优点。该较低的整体操作温度减小了上述的不理想对流效应,减小了功率消耗,并且避免了当材料在较大温度范围上加热或者冷却时在许多校准器材料中升高的温度耗散效应。这种耗散升高也许来自以下变化:材料热光系数变化、热膨胀的材料系数的变化诱发的应力或应变的变化、以及温度升高时热激发自由载子的释放变化。例如,当调谐所需的高温度因校准器中热激发自由载子导致过量损耗时,单校准器元件的热光调谐可以根据大温度范围之需要,仅在有限带宽范围上提供波长调谐。
有效热光调谐需要进行校准器材料或者展现良好热光效应的材料(即随温度变化提供较大折射率变化的材料)的选择。高折射率和高温度灵敏度材料将提供关于可调校准器的可用工作温度范围的较宽调谐范围。高折射率材料也提供有效的角度调谐,校准器材料的高折射率有助于抑制热梯度并允许更快的调谐和更好的温度控制。适当的热膨胀系数使校准器材料的加热和冷却提供了校准器物理厚度的增加或者减少,该热膨胀系数也有助于热光调谐。
半导体材料如Si、Ge和GaAs展现了较高的折射率、折射率的高温度灵敏度、以及高热扩散率,从而为本发明的热光可调实施例提供了良好的校准器材料。许多微制造技术对半导体材料是有效的,因此半导体校准器材料的使用允许将热控制和其它电功能直接集成到校准器中,由此提供更高的调谐精度、降低的功率消耗、更少的组件操作和更紧凑的实施。硅作为校准器材料具有显著的优点,它在环境温度下具有近似3.478的折射率和近似2.62×10-6/°K的热膨胀系数(CTE)。硅是分散的并且具有组折射率Ng=3.607。这里还存在大量硅处理技术,以允许热控制元件直接集成到硅校准器之上或者之内,如下所述。
经由一个自由光谱范围的硅校准器的温度调谐需要在校准器光程长度OPL中增加或者减少等于λ/2的量。光程长度OPL等于校准器材料的折射率与跨越校准器的物理厚度或者距离之积,即OPL=nL,其中n是校准器材料的折射率,L是跨越校准器的物理距离。关于温度的光程长度的变化可以被表示为:
dOPLdT=ndLdT+LdndT]]>
其中T是温度(°K),α=热膨胀系数(1/°K),以及
dOPL/dTOPL=1LdLdT+1ndndT=α+1ndndT]]>
所以光程长度ΔOPL的变化可以由下式表示:
ΔOPL=ΔT(dOPLdT)=OPL(α+1ndndT)ΔT]]>
在温度为25℃时,硅具有近似3.48的折射率,因此
α+1ndndT=49.2×10-6]]>
在1500纳米处,λ/2=750纳米的波长范围上的100微米厚度的硅校准器的调谐,
ΔOPL=OPL(α+1ndndT)ΔT]]>
相当于(3.48)(0.0001m)(49.2×10-6/°K)(ΔT),或者Δ≈43.8°K。
这又相当于约20℃-64℃的温度范围,改变温度范围可以由商用热控制元件提供。
参见图3,热光可调校准器对44被配置成供电信发射器外腔激光器的调谐使用。校准器对44包括被安置在光束50中的第一校准器46和第二校准器48。校准器46、48与激光器外腔(未示出)相关联使用,如上所述和图1所示。图3所示的校准器46、48的各层的相应厚度为清楚起见被扩大,而且也不必显示其尺度。
第一校准器46包括设置在波长(λ/4)电介层反光镜54、56之间的100微米厚硅层52。介质镜54被显示为包括一对高折射率和低折射率λ/4层58、60,低折射率层60邻近硅层52。介质镜56同样包括一对高折射率和低折射率λ/4层62、64,低折射率层62邻近硅层52。硅层52可以包括例如:传统的商用100微米厚抛光硅晶片,在其上通过蒸渡、溅射或其它传统的层形成技术沉积四分之一波层58、60、62、64。
在图3所述的实施例中,介质镜54、56每一个仅包括单对λ/4层,尽管在其它实施例中可以使用大量的这种四分之一波长层。低折射率层60、62包括二氧化硅(SiO2),而高折射率层58、64包括硅。各种其它高和低折射率材料是本领域所公知的,并且可以选择用于四分之一波长层58-64。硅具有高折射率,并且允许在每个介质镜54、56中仅采用单对四分之一波层制造较高锐度的热光可调校准器。
第二校准器48包括设置在四分之一波(λ/4)层介质镜68、70之间的102微米厚的硅层66。介质镜68包括高折射率λ/4层72和低折射率λ/4层74,其中低折射率层74邻近硅层52。介质镜56还包括一对高折射率和低折射率λ/4层76、78,其中低折射率层62邻近硅层66。在校准器48中,硅层66被显示为包括一个100微米厚的硅晶片80,以及沉积在其上的二微米硅覆盖层82,为层66提供102微米的整个厚度。硅层82以及四分之一波长层72、74、76、78可以经由各种传统的层形成技术来沉积,如上所述。低折射率四分之一波层74、76被显示为包括SiO2,而高折射率层72、78被显示为硅,但是可以用其它高和低折射率材料替代或者互换。可以在反射镜68、70中使用比所示的单层对数量更多的高和低折射率波层。如上所述,使用作为高折射率四分之一波长层的硅允许仅采用单对四分之一波层而具有较高校准器锐度。
校准器46、48的中心硅层52、66的不同厚度(100微米对102微米)提供了校准器的自由光谱范围中的2%差异。校准器46、48被构成和配置成提供近似1528纳米与近似1561纳米之间的电信带内的波长调谐。参见图4,校准器46、48定义被分别显示为系列1和系列2的一系列传输波峰或者顺序,在图4的曲线中,水平轴上显示波长,而垂直轴上显示相应的增益。校准器46、48的自由光谱范围彼此相差δFSR,以建立微调距,使系列1和系列2的传榆波峰的单个重合点出现在约1525与约1575纳米之间的波长范围之内(包围上述的电信带)。系列1和系列2的波峰重合点被显示在1550纳米的波长上。1550纳米与1575纳米(图4中未示出)之间的系列1和系列2的波峰的关系近似为图4所示的1525与1550纳米之间波峰关系的镜像。
这样,校准器46、48在上述的1531纳米与1563.5纳米之间的电信带内的单波长上提供传输,而校准器46、48提供的联合自由光谱范围超过了该波长范围。国际电信联盟(ITU)目前提出近似0.4纳米或约50GHz的信道隔离的要求,这一要求很容易通过校准器46、48的热调谐予以实现。该信道隔离允许在当前可用的光纤和光纤放大器的带宽范围内由单根光纤承载多达128个信道。
在宽波长范围上校准器46、48的热调谐中,应当作出提供精确调谐的各种附加考虑。在折射率和折射率的温度灵敏度两个方面,硅具有上述的电信红外带中的较高分散。然而硅的性质是公知的,因此可以绘制和标识呈现在任何特定波长范围的校准器46、48的温度调谐中的分散,并作出适当调谐调节以补偿该分散。此外,沉积硅层的折射率与大块硅片的折射率略微不同,因此在某些实施例中,该折射率差的区别必须在校准器设计中予以考虑。
图5用图形示出了关于单个校准器46与校直的校准器46、48的单通过平面波传输或者响应,波长被显示在水平轴上,传输被显示在垂直轴上。如图5所示,通过校准器46、48的系列1和系列2的重合以1550纳米建立的联合传榆带(如图4所示)具有比校准器46的对应单个传输带更窄的光谱线宽。
如上所示,微制造技术能够允许将调谐功能直接集成到校准器上。参见图6,这里显示了硅校准器84与位于校准器84的表面88上的热控制元件86。所示的热控制元件86是取经过热控制元件86调节光束(未示出)通道的圆环。热控制元件86包括一个传导材料,该材料应用电流加热以向校准器84提供上述热光调谐所需的温度变化。导体90、92将热控制元件86电连接到电流源(未示出)。温度监视装置如电热调节器(未示出)可以被集成到校准器86上或者远离校准器86设置。
热控制元件86和导体90、92可以通过照相平版印刷和材料沉积技术在校准器表面上88形成。例如,可以把光刻胶(未示出)涂在表面88上根据控制元件86和导体90、92的配置形成图案,然后显影以去除暴光的光刻胶。然后可以在显影的图案中沉积导体材料,并从表面剥离剩余光刻胶,以提供热控制元件86和导体90、92,如图6所示。作为选择,可以按相应于热控制元件86和导体90、92的图案蚀刻表面88,导体材料被沉积在槽中以便提供相对于表面88下凹的热控制元件86和导体90。在另一个实施例中,热控制元件88可以包括由氧化铟锡(ITO)制作的透明传到层。使用已知技术将扩散电阻和各种配置的描图直接形成到硅校准器84。
校准器86可以被安装在框架(frame)94中。框架94同样是由硅微细加工的,所以,框架94和校准器86的热膨胀系数相匹配。框架94中的高热扩散率提升或者增强校准器86的温度的对称性,并且防止调谐期间对校准器86的不均匀加热和冷却。框架94和校准器86可以得自于同批硅材料或者得自于不同硅材料。框架94便于校准器86的操作和安装。框架94还便于监视校准器框架94的温度的温度探针95的定位,校准器框架94充当校准器86的热控制的蓄热库。
除了上述的热光调谐外,双可调校准器的波长选择同样可以通过机械角度调谐来实现。角度调谐包括相对于所通过的光束旋转或者倾斜校准器,以增加或者降低校准器中连续反射的相位差,从而增加和减少自由光谱范围。参见图7,这里用图形示出了对于50GHz厚硅校准器的频率变化(赫兹)的倾斜(毫弧度)效应,零倾斜的波长在近似1550纳米处。校准器的角度调谐可以使用各种传统的精细微定位或者平移(translation)装置实现,为波长调谐提供校准器的精确角度定位。
通过实质上同时向两个校准器的每个提供相同的角度调谐,图1的双校准器的连续调谐允许在校准器规定的联合自由光谱范围之内调谐校准器的联合传输波峰。差动角度调谐提供微调距内的位移,用于在大于联合自由光谱范围的范围上进行调谐。硅的高折射率为校准器的角度调谐提供良好的裕度,而双硅校准器的调谐提供宽波长范围上的有效波长调谐。具有高折射率的其它材料也可以用于角度可调的校准器。如上所述,在一个或者两个校准器中也能够结合热光调谐使用校准器的角度调谐。可以通过以下方式另外或者替代地实现校准器的调谐,这些方式包括:施加应变以改变校准器折射率、向校准器材料注入电流,或者向校准器表面施加电势以改变校准器折射率,或者可以提供校准器光程长度的变化以允许本发明的校准器调谐的任何其它现象或者效应。
为了避免利用双可调校准器的多模激光作用现象,校准器可以被配置成仅仅使单联合传输波峰出现在供校准器使用的增益媒介的增益带宽之内,如上所述。该要求尽管容易实现,但对两个校准器来说带来了设计限制。在某些实施例中,最好具有第三可调校准器,它可用于在执行由第一和第二可调校准器的调谐时控制波长范围。参见图8,这里示出了一个激光器设备96,其中相似的参考标号用于表示相同的部件。该设备包括一个第三可调校准器98,它与第一和第二校准器24、26通过三重微调效应共同被用来选择设备10的输出波长。校准器98包括平面100、102,并且类似于校准器24、26包括允许校准器98的热光调谐的材料,类似于校准器24、26,校准器98可以替代地或者另外通过角度或者倾斜、应变、电光效应或者其它调谐机构或者效应进行调谐。
校准器98备配置成抑制一个或者多个由校准器对24、26建立或者定义的联合传输波峰。类似于校准器24、26,校准器98备配置成在腔的增益带宽内建立多个传输波峰。通过联合使用,三个校准器24、26、98仅允许三个校准器建立的一个联合传输波峰出现在腔的增益带宽之内。在某些实施例中,可调校准器98可以用传统的静态干涉滤光片如带通滤光片代替,以允许使用增益带宽的一部分。然而,使用带通滤光片的这种实施例不允许选择使用如设备96提供的增益带宽的不同部分。
在图8的设备96中,三个校准器24、26、98的每一个被操作地耦合到公共散热或者储热器104。校准器24、26、28分别包括热控制元件106、108、110,这些元件以结合图6所述的方式集成到校准器材料上。热控制元件106、108、110分别被操作地耦合到控制器40,控制器40通过选择加热或者冷却经由元件106、108、110提供选择波长控制。控制元件106、108、110分别提供校准器24、26、98的独立温度控制,而储热器104通过传导允许校准器24、26、98快速重新调节到由储热器104定义的基础温度上。
用于本发明微调调谐的双可调元件的使用可以通过不同于校准器的各种可调元件来实现。参见图9,这里示出了一个双光栅可调激光器设备112,其中用相似的参考标号表示相似部件。设备112包括安置在光程22上并进行反射操作的第一和第二光栅114、116。光栅114、116向光束119提供衍射,与光栅114、116的组合衍射效应导致上述方式的联合传输波峰。联合传输波峰的波长以及由此带来的设备112的输出波长可以通过光栅114、116的旋转和/或平移定位来调节。
光栅114、116的连续或者并行调谐(其中光栅114、116同时置于基本相同的旋转和/或平移的速率)在光栅114、116的联合光谱范围内提供光栅114、116的联合传输波峰的位移或调谐。光栅的差动旋转和/或平移提供实际上大于联合自由光谱范围的波长范围上的调谐。各种传统的定位装置和系统是公知公用的,从而为设备112的波长调谐提供光栅114、116的精确旋转和平移调谐。
光栅114、116在图9中被显示为两个反射操作。在其它实施例中,光栅114、116的一个或两个可以用于传输,而不是反射。在两个光栅用于传输的实施例中,尾端反射镜(未示出)被定位在光栅之后的光程22中。
参见图10,该图示出了本发明的另一个激光器设备118,其中相同的参考标号代表相同地部件。双调谐元件被设置在设备118中以作为校准器24和光栅114。校准器24可以通过热光调谐、角度调谐和/或其它调谐效应进行调节。光栅114可以通过旋转进行调谐;或者也可以固定而按照传统的Littman-Metcalf安排移动尾端反射镜14,通过光栅114提供调谐。校准器24和光栅114共同定义上述的联合传输波峰,经由校准器24和光栅的连续调谐在校准器24和光栅114限定的联合自由光谱范围之内调谐该联合传输波峰。校准器24和光栅114的差动调谐提供较大范围上的波长调谐的微调位移,如上所述。
能选择可用于微调调谐的各种其它可调波长选择元件。例如,通过相对于光束中心平移而调节的锥形校准器和锥形干涉滤光片也可以供本发明使用,2001年3月21提出的美国专利申请09/814,464公开了这方面的技术,该公开作为参考引用。也可以在该公开范围内考虑用于本发明的微调调谐的这类其它可调元件的使用。
参见图11A,该图示出了本发明的另一个外腔激光器设备120,其中相似的参考标号代表相似的部件。设备120包括从抗反射涂层平面16向尾端反射镜14发射光束19的增益媒介12,其中可调校准器12定位在尾端反射镜14之后的光束19中。尾端反射镜14和增益媒介12的平面18共同限定上述的外激光腔124。校准器122通过电光效应调谐来改变其光程长度OPL以及由此改变自由光谱范围,并且包括电光材料的一个区域或者层126。经由透明电极(未示出)向层126表面施加电势将导致层126的折射率变化,由此改变校准器122的光程长度和自由光谱范围。尾端反射镜12被显示为部分反射,所以光束19离开反射镜14并且可以被耦合到光纤(未示出)中。
在设备120中,外腔124充当第二可调元件,它与可调校准器122共同提供本发明的激光器微调调谐的双调谐元件。换句话说,尾端镜14和增益介质表面18限定一个校准器。就此而言,尾端反射镜14或者外腔通常可以被机械、热、电光或者控制腔长度的其他机制调谐。施加到层128上的电压改变外腔124的光程长度。从可调校准器122和外腔124到增益媒介12的组合反馈提供用于设备120的可调波长选择。
参见图11B,激光器外腔124具有限定多个模或者传榆波峰130的一个自由光谱范围FSRCavity。如图所示,每第四个外腔传输波峰对应于可选择传输信道132、134、136、138、140、142,或者与其对准。信道132-142可以对应于上述的ITU格栅的波长信道。外腔124的自由光谱范围FSRCavity和校准器的自由光谱范围FSREtalon可以有以下关系式:
K(FSREtalon)≈(M/M±N)(FSRCavity)
其中K是有理分式,M是选用波长范围内的可调波长或者传输信道的总数,N是可根据本发明不同实施例选择的非整数或者整数。参见图11C,外腔激光器120的微调调谐被显示为用于K=3的ITU信道格栅,为微调距的每个位移提供每个第三外腔模波峰上的调谐平移。
如图11C所示,校准器122定义被FSREtalon分离的多个传输波峰PEt。图11C显示了用于校准器122和外腔124的六个不同调谐配置A、B、C、D、E和F,其每一个分别对应于信道132-142之每个上的波长选择。附加可选信道(未示出)存在于各个信道132-1.42之间。这样,在调谐调节A处,单校准器传输波峰PEt与信道142上的腔模波峰130对准,如图11C所示,信道142对应于1563.5纳米的波长。调谐A上的其它校准器传输波峰PEt不与任何腔模130对准。在调谐调节B处,单校准器传输波峰PEt与信道140上的腔模波峰130对准。同样,在调谐配置C、D、E和F上,校准器传输波峰PEt分别与对应于信道138、136、134和132的腔模波峰对准。外腔124和校准器的差动调谐提供微调距的位移,以提供图11C所示的调谐A-F。上述的并行调谐允许更精细调谐,从而在图11C所示的各调谐A-F之间的范围内实现信道选择。
参见图12A至图12C,这里显示了外腔激光器设备144的另一个实施例,其中相似的标号代表相似的部分。设备144是微机电或者微电子机加工的(MEMS)装置,由单片半导体基底146制成。基底146包括容纳增益媒介12的凹槽148,容纳锥形校准器152的凹槽150,和容纳尾端反光镜14的凹槽153,其上具有电光元件128。基底146的材料在增益媒介12整个增益带宽上是透明的,并且从增益媒介12的平面发射的光束19经过基底146。
锥形或者楔形校准器152被用来通过改变呈现到光程22的校准器152的厚度或者校准器152的局部反射平面之间的距离,在多个通信信道之间选择信道。这可以通过沿垂直或者基本垂直于光程22的方向平移或者驱动校准器152来实现。当校准器152前进或者平移到光程22中时,沿光程传播的光束19经过校准器152渐厚部分,该渐厚部分支持较长波长信道上的相对面154、156间的相长干涉。当校准器152离开光程22时,光束16将经过校准器152的渐薄部分,并且向光程22暴露通带或传输波峰,以支持逐渐缩短的波长信道。
校准器152通过柔性臂或者绞接件158、160连接到基底146上。绞接件158、169可移动地支持基底146的凹槽150内的校准器152。校准器152还连接多个电极件162。连接基底146的多个电极件164在电极162之间交错。电极162、164被容置在基底146的凹槽150内。电触点166经由导体路径168电连接电极162,电触点170经由导体路径172电连接电极164。改变电极162、164上的电压,从而相对于电极164驱动或者平移电极162。该动作相应地相对于光程22驱动或平移校准器152。
在设备144操作中,通过相对于光程22的平移调谐校准器152以改变自由光谱范围,从而改变由校准器152限定的传榆波峰的关系。图12B显示了按照使平面154、156之间的校准器152的最薄部分被定位在光程22之内的方式定位的校准器152,而图12C示出了按照使校准器152的较薄部分被定位在光程22内的方式定位的校准器152。如上所述,校准器152相对于光程22的定位通过经由触点166、170和导体路径168、172选择性对交错电极162、164施加电压来实现。绞接件158、160根据校准器152的定位折曲或者弯曲。
邻近校准器152的凹槽150的表面174、176可以涂有抗反射层,使校准器152的整个调谐效应由校准器152本身提供。在其它实施例中,表面174、176可以是局部反射的,使调谐得自于校准器152的表面154、156和凹槽150的表面174、176的组合反馈,以实现波长选择。在校准器152调谐期间,还可以通过向电光元件128选择性施加电压对其进行调谐,以改变外腔路径光程长度124。因此,可以按照上述方式实现,使用校准器152定义的传榆波峰以及对应于外腔模的传输波峰共同进行的微调调谐。
MEMS设备144可以采用公知的半导体材料处理技术制作。校准器152、绞接件158、160和电极件162、164采用与校准器152和基底146相同的材料制作,并且通过基底144半导体材料的微切削加工,从基底146定义校准器152、绞接件158、160和电极件162、164。用于MEMS部件动作的交错电极的使用是公知技术,并且被公开在ArtechHouse公司(Norwood MA(2000))所出版的作者为Nadim Maluf的“Introduction to Microelectromechanical SystemsEngineering”一文中,该公开作为参考引用。增益媒介12可以包括安装在凹槽148内的分离装置,凹槽148是对基底146机加工后形成的。
上述的各种外腔激光器设备利用了串行定位或配置的双调谐元件。也可以按平行而不是串行使用调谐元件,来调谐本发明的外腔激光器。参见图13A,这里显示了外腔激光器设备178,其中相似的参考标号用来表示相似的部件。设备178包括沿光程22从抗反射涂层平面发射光束19的增益媒介12。偏振光束分光器/光组合器(combiner)180被定位在光程22中,使光束分光器180的局部反射层182对光束19分光,使光束19a沿光程22a传播到尾端反射器14a,以及使光束19b沿光程22b反射到尾端反射器14b。尾端反射器14a可以是局部反射的,以使光束19a的一部分通过,并且可以将其收集为设备178输出的光。增益媒介的后平面18可以加之或者替代成具备部分反射,以便可以安置光纤184以接收由此输出的光。
第一可调波长选择元件186被定位在分光器180与尾端反光镜14a之间的光程22a中,第二可调波长选择元件188被定位在分光器180与尾端反光镜14b之间的光程22b中。可调元件186、188可以包括光栅、校准器、干涉滤光片,或者其它与上述有关的可调波长选择装置,可以根据上述的其它机构驱动或调谐MEMS。在图13A所示的实施例中,可调元件186是固态校准器,可以根据热光、电光、机械致动、或者上述的其他调谐机构进行调谐。第二可调元件188是一个可调气隙校准器,下面进行详细说明。从校准器186、188沿光程22a、22b到分光器/光组合器180的组合反馈,因而是沿光程自分光器/光组合器的反馈向增益媒介12提供可调反馈,它用来提供波长选择。
校准器186、188是可操作的,以便提供本发明的微调调谐。图13B图形示出了这样一种微调调谐的形式,其中第一校准器186具有限定多个传榆波峰P1的第一自由光谱范围FSR1,第二校准器188具有限定多个传输波峰P2的第二自由光谱范围FSR2。第二自由光谱范围FSR2与第一自由光谱范围在振幅上相差可根据校准器186、188的配置选择的一个量。传输波峰P2被显示为位于可选波长信道190、192、194、196、198和200的中心,这些信道可以对应于上述的ITU格栅的信道。图13B的调谐配置A、B、C、D、E、F对应于不同的校准器调谐配置,其每个配置是为信道波长190-200其中之一选择的。这样,例如在调谐A,调节校准器186、188,使波峰P1与波峰P2对准,提供可选波长信道200上的传输,在图13B的特定实例中,该信道200被显示位于1563.5纳米。在可选波长信道190-200的范围内不出现波峰P1和波峰P2的其它对准。调谐关系B实现了波长198的波峰P1和波峰P2的单个对准。同样,调谐C、D、E、F分别显示信道波长196、194、192和190上的波峰P1和波峰P2的对准。
校准器186、188的差动调谐提供微调距地位移,以提供图13B所示的调谐A-F。上述的并行调谐允许更细调谐实现图13B所示的各个调谐A-F之间的范围内的信道选择。在图13A和图13B所示的实施例中,尾端反光镜14a、14b被定位为使外腔模波峰PEC呈现在可选波长信道190-200的每一个上,并且使一个外腔模波峰PEC被定位在可选波长信道190-200的每一个之间。由尾端反光镜14a和/或尾端反光镜14b定义的外腔可以使用上述技术来调节,以便需要时改变外腔模波峰PEC与可选波长信道的关系。
参见图14A和图14B,这里显示了一个本发明的可调气隙校准设备188。校准设备188被显示为用单个大决半导体基底202制作。固态校准元件204连接四个柔性臂206,该柔性臂又连接基座208。基座208安装在基底202上。基底202还通过支架211(如图14B所示)支持平面电极部210,电极部210与校准元件204分离并且平行。校准元件204与电极部210相隔第一气隙212,与基底202相隔第二气隙214。电极部分210和校准元件204被配置成可以将电位差分别施加到电极部分210和校准元件204。改变电位差可以控制校准元件204相对于电极元件210的位置,从而控制气隙212、214的尺度。校准元件204的表面216和基底202的表面218可以成镜像,使气隙214充当能够向用于波长选择的增益媒介12提供反馈的可调气隙校准器。
在其它实施例中,基底202的表面218上可以包含一个导体(未示出),以允许电位调节和相对于基底202对校准元件204进行位置控制。此外,校准元件204和电极部210的表面220、222可分别被局部成镜像,使气隙212充当可调气隙校准器。
如图15更详细的图示,也可以在单双折射波长选择元件中实现可调元件的平行方式使用,其中示出了本发明外腔激光器设备224的再一个实例,这里相似的参考标号代表相似的部件。设备24包括增益媒介12,它具有一个第一抗反射涂层平面16和一个第二反射或者局部反射平面18。平面16沿光程向尾端反光镜14发射光束19,尾端反光镜14与平面18共同限定上述的外腔。尾端反光镜14被显示为局部反射,所以光束19的一部分可以离开反射镜14并且被收集进入光纤(未示出)作为输出。
双折射校准元件226被定位在尾端反射镜14之前的光程22中。校准元件226可以包括提供高能级双折射的液晶材料。可以使用各种均匀和不均匀向列型和近晶型液晶。可以包括研磨的聚酰亚胺薄片的对准层228、230被包含在所示的校准器226的表面上,以便于各个液晶分子(未示出)的对准。透明电极232、234邻近于对准层228、230,以允许在校准器226上施加电压。
双折射校准元件226沿不同光轴具有不同折射率。在图15中,第一普通光轴236(虚线)具有折射率n0,第二特别光轴238(实线)具有折射率ne,其中ne>n0。这些光轴相对于激光的偏振轴旋转40度。偏振光被有效分成沿双折射校准器的光轴的多束分离光束。第一光轴236上的校准器226的光学厚度具有自由光谱范围FSRe,而第二光轴238上的校准器226的光学厚度具有自由光谱范围FSR0,由于双折射校准材料中呈现的不同折射率,因此FSRe不等于FSR0。换言之,“e”光线和“o”光线光程236、238在校准器226的相同物理厚度上分别经历不同光程长度,因为折射率ne与no之间存在差异。
在电极232、234上选择施加电压和/或校准器226定向倾斜调节,允许以提供本发明的微调调谐的方式独立调节FSRe和FSRo。也就是,不同的自由光谱范围FSRe和FSRo导致两组传输波峰Pe和Po(未示出),这两组传输波峰可调节以选择控制波峰重合的位置,从而以上述方式提供微调调谐。提供微调距位移的FSRe和FSRo差动调谐,以及提供自由光谱范围内的波长调谐的的FSRe和FSRo并行调谐,可以通过在校准器226上施加电压以改变折射率ne来实现。此外,或者作为选择,可以通过倾斜调节或者热调节校准器226改变FSRo,以提供差动和并行调谐。因此,单个双折射校准器226提供与使用上述实施例的双可调校准器相同的效果。
参见图16,这里显示了另一个外腔激光器设备240,其中相似的参考标号表示相似的部件。设备240包括沿着光程22从抗反射涂层平面向尾端反射镜14发射光束19的增益媒介12,尾端反射镜14与平面18共同定义如上所述的外激光腔124。第一和第二可调可调校准器242、244被定位在增益媒介12与尾端反光镜14之间的外腔124之内。在该实施例中,校准器242包括上述的热光材料,并且被配置用于由上述类型的热光控制元件(未示出)进行热光调谐。校准器242被操作地连接到控制器或者调谐器40。第二校准器244包括电光校准器材料并且具有在其表面上的透明电极246、248,用于根据校准器244上施加的电压选择性控制校准器244的折射率(从而控制校准器光程长度)。校准器244还可以操作地耦合到调谐器40。
平面18和尾端反射器14限定的外腔124提供了设备240中的第三可调元件。也就是,尾端反光镜14和增益媒介平面18限定可调校准器,并且在腔124内定位具有电压依赖折射率的电光材料的一部分或者层128。通过电极(未示出)在层128上施加电压改变了外腔124的光程长度。从可调校准器242、244和可调外腔124对增益媒介12的组合反馈经由结合图8的设备96所述的三重微调效应向设备240提供可调波长选择。
可调外腔124与双可调校准器242、244的共同使用降低了用于抑制与未选用波长对应的传输波峰的校准器242、244的传输波峰的锐度要求。这又增加了校准器242、244的容差,并简化了校准器242。244表面上的局部反射涂层的性质,这对于本发明的某些实施例是非常理想的。因此,在设备240中,校准器242、244的传输波峰组所限定的联合传输波峰(未示出)的锐度可能不足以在激光器操作期间提供对未选用信道波长的有效抑制。然而,通过外腔124经由电光元件128调节的三重微调效应而提供的附加滤光,允许外腔模(未示出)与所选择信道对准,从而采用比较简单配置的可调校准器提供有效微调调谐。
具有三个可调波长选择元件的外腔激光器设备可以实施在图17A至图17C的设备250所示的MEMS装置中,其中相似参考标号代表相似部件。设备250用单片半导体基底146制作。基底146包括:容纳增益媒介12的凹槽148,容纳第一可调校准器242的凹槽252,容纳第二可调校准器152的凹槽150,和容纳尾端反光镜14的凹槽153,该反光镜具有电光元件128。基底146的材料在整个增益媒介12的增益带宽上是透明的,并且从增益媒介12发射的光束19经过基底146。
校准器152形成上述的楔形或者锥形形状,并且用来以上述方式改变呈现到光程上的校准器152的厚度或者校准器152的局部反射平面154、156之间的距离,进行多个通信信道之间的选择。校准器152通过柔性臂或者绞接件158、160连接到基底146,所述绞接件可移动地支持基底146的凹槽150内的校准器152。根据上述的经由电触点166、170和导体168和172引入的电压,多个连接校准器152的电极件162与连接基底146的多个电极件164发生如上所述的相互作用,使电极162、164上的电压的选择性变化而驱动或者平移电极162,使其相对于电极164移动,所以校准器152相对于光程驱动或者平移。
图17B显示了按照使平面154与156之间的校准器152的最薄部分被定位在光程22上的方式定位的校准器152,而图17C图示说明了按照使平面154与156之间的校准器152的较厚部分被定位在光程22上的方式定位的校准器152。邻近于校准器152的凹槽150的表面174、176可以有抗反射涂层,使校准器152自身提供校准器152的整个调谐效应。在其它实施例中,表面174、176可以是局部反射的,使调谐得自于校准器152的表面154、156和凹槽150的表面174、176的组合反馈,以实现波长选择。在校准器152的调谐期间,电光元件128还可以按照上述方式通过经由触点对其选择性施加电压来调谐,以改变用于三重微调调谐的外腔径光程长度124,该三重微调调谐利用了由校准器242和152定义的传输波峰以及对应于外腔模的传输波峰。
尽管本发明已经结合特定实施例予以说明,但是本领域熟练技术人员将会明白,在不背离本发明精神和范围的条件下,可以对本发明作出各种修改以及进行等同替代。此外,可以进行各种更改,以使特定情况、材料、材料合成、处理、工序适应于本发明的主题、精神和范围。所有此类修改都意味着落入所附权利要求的范围之内。