电压检测电路和使用 它的内部电压发生电路 【技术领域】
本发明涉及检测对象电压是否达到了给定电压电平的电压检测电路和使用它的内部电压发生电路,特别是涉及利用绝缘栅型场效应晶体管作为电压检测元件的电压检测电路和使用它的内部电压发生电路。更具体地说,本发明涉及能把检测电压电平设定在任意电压电平上且不受检测用绝缘栅型场效应晶体管的阈值电压的影响,来正确地检测电压电平的电压检测电路和使用它的内部电压发生电路。
背景技术
在半导体集成电路装置中,经常利用与电源电压和接地电压不同的电压电平的内部电压。作为这样的内部电压,有比电源电压还高的升压电压和比接地电压还低的负电压。在DRAM(动态随机存取存储器)中,一般升压电压用于驱动选择字线,另外,负电压用于使存储器阵列的衬底偏置,减少存储单元晶体管的阈值电压的稳定化和寄生电容。在DRAM中,负电压有时也用于把未选择字线维持未选择状态。
在闪存(闪速存储器)等非易失性存储器中,为了数据的写入/删除而利用这些升压电压和负电压。外加这些升压电压和负电压的存储单元晶体管的节点根据写入/删除方式而不同。
另外,在液晶显示装置中,为了驱动象素晶体管地栅极,利用这些升压电压和负电压。
为了减少连接端子数和晶体管全体的消耗电流,在半导体电路装置内部生成这些内部电压。作为产生这些内部电压的电路,一般广泛使用利用电容器的充电泵动作的充电泵电路。
图1是表示以往的产生负电压的内部电压发生电路的结构一例的图。在图1中,内部电压发生电路包含:在活性化时,利用电容元件的充电泵动作产生负电压的充电泵电路100;检测充电泵电路100的输出节点9的电压电平,生成表示该检测结果的信号的电压检测电路102;根据该电压检测电路102的输出信号,有选择地使充电泵电路100活性化的充电泵控制电路101。
充电泵电路通常由至少一个充电泵用电容元件、至少两个单向性元件(整流元件)构成。至少两个单向性元件具有整流功能,只沿着一个方向供给电荷。之所以至少需要两个单向性元件是因为来自输出节点的电荷放出和电荷积蓄用的内部节点的预充电。
在图1中,充电泵电路100包含:连接在节点4和节点8之间的电容元件5;连接在节点8和接地节点之间,并且栅极连接在节点8上的N沟道MOS晶体管(绝缘栅型场效应晶体管)6;连接在节点8和输出节点9之间,并且栅极连接在输出节点9上的N沟道MOS晶体管7。MOS晶体管6和7的栅极和漏极彼此连接,作为二极管(单向性元件)工作。
电压检测电路102包含:连接在电源节点2和节点14之间的高电阻的电阻元件13;串联在节点14和充电泵电路100的输出节点9之间的N沟道MOS晶体管10和12。MOS晶体管10的一方导通节点(源极)连接在充电泵电路100的输出节点9上,并且栅极和漏极连接在节点11上。MOS晶体管12的源极连接在节点11上,漏极连接在节点14上,并且栅极连接在接地节点上。
充电泵控制电路101包含:接受提供给时钟节点1的重复信号(泵时钟信号)和电压检测电路102的节点14的信号的2输入AND电路3。从该AND电路3通过节点4对充电泵电路100提供充电泵用的时钟信号(重复信号)。
图2是表示图1所示的内部电压发生电路的动作的信号波形图。下面,参照图2说明图1所示的内部电压发生电路的动作。现在,MOS晶体管6、7、10和12具有阈值电压VTN。节点14的电位为逻辑高(H)电平时,即MOS晶体管10和12的至少一方为断开状态时,在充电泵控制电路101中,AND电路3作为缓冲电路工作,把提供给时钟节点1的重复信号传达给节点4。
根据提供给节点4的重复信号,电容元件5进行充电泵动作,使节点8的电位变化。即重复信号如果上升为H高电平,则通过电容元件5的充电泵动作,节点8的电压电平上升。如果该节点8的电压电平,则MOS晶体管6导通,把该节点8的电压电平箝位在该阈值电压VTN上。此时,输出节点9的电压电平是接地电压电平以下,MOS晶体管7维持断开状态。
如果重复信号下降到L电平,则通过电容元件5的充电泵动作,节点8的电压电平下降。当由该重复信号提供的节点4的电压振幅为VDD时,节点8的电压电平下降到VTN-VDD电压电平。在该状态下,MOS晶体管6是断开状态。而如果输出节点9的电压电平为2·VTN-VDD以上的电压电平,则MOS晶体管7,从输出节点9向节点8供给正电荷,该输出节点9的电压电平下降。
通过重复以上的动作,从输出节点9抽出正电荷,输出节点9的电压电平下降。该充电泵电路100具有在输出节点9产生以下的电压V9的能力。
V9=-VDD+2·VTN…(1)
在电压检测电路102中,如果节点9的电压V9和节点11的电压差变为VTN以上,则MOS晶体管10导通,另外,MOS晶体管12在栅极接受接地电压,节点11的电压电平为-VTN以下时,导通。因此,来自该充电泵电路100的电压如果变为-2·VTN,则MOS晶体管10和12导通,节点14的电压电平下降。即在电压检测电路102中,当满足以下的电压条件时,MOS晶体管10和12都变为导通状态。
V9=VG12-VTN12-VTN10
=0-VTN-VTN
=-2·VTN …(2)
在此,VG12表示MOS晶体管12的栅电压。VTN10和VTN12分别表示MOS晶体管10和12的阈值电压,它们等于VTN。
如果MOS晶体管10和12的导通电阻(沟道电阻)设定为比高电阻电阻元件13的电阻值小很多时,MOS晶体管10和12都导通,则节点14的电压电平变为L电平。据此,在充电泵控制电路101中,AND电路3的输出信号固定在L电平,充电泵电路100的泵动作停止。因此,充电泵电路100的输出节点9的电压V9维持在-2·VTN。
如图1所示,在电压检测电路102中,通过利用MOS晶体管10和12作为电压电平检测元件,能按照充电泵电路100的输出节点9的电压电平,有选择地使充电泵电路100活性化,能生成与该电压检测电路102的检测电压电平相应的电压电平的内部电压。
但是,如以上表达式(2)所示,来自输出节点9的电压V9的检测电压电平是-2·VTN,由MOS晶体管的阈值电压决定。因此,MOS晶体管10和12的阈值电压变动时,MOS晶体管10和12的阈值电压的变动直接表现在检测电压电平中。即在MOS晶体管10和12中,当阈值电压变动ΔV时,在检测电压电平中,产生2·ΔV的电压电平的变动。因此,在利用从充电泵电路100生成的内部电压的电路中,产生内部电压电平变动,动作界限下降的问题。
特别是在内置低温多晶硅TFT电路的液晶显示装置等中,为了保护衬底玻璃,进行低温处理,无法充分热处理多晶硅和栅绝缘膜,所以TFT(薄膜晶体管)的阈值电压的偏移大。因此,为了这样的液晶显示装置的有源矩阵元件的开关晶体管的驱动而产生内部电压时,为了检测内部电压电平,使用与有源矩阵元件同样的低温多晶硅TFT时,产生检测电压电平的偏移大,无法正确用交流驱动有源矩阵元件(无法向开关晶体管的栅极提供对称的波形,驱动)的问题。
在使用充电泵电路产生升压电压时,通过使用同样的检测电路,同样产生负电压作为上述的内部电压时阈值电压对于负电压的检测电压电平的阈值电压的影响问题。
另外,当使用图1所示的电压检测电路时,检测电压电平由MOS晶体管10和12的阈值电压VTN的整数倍决定。因此,能生成的内部电压的电压电平变为MOS晶体管的阈值电压阶梯,产生无法生成所需电压电平的内部电压的问题。因此,作为内部电压,会发生产生必要以上的大绝对值的内部电压的情形,产生元件的可靠性下降的问题。该内部电压的电压电平由MOS晶体管的阈值电压决定时,通常在阈值电压VTN是0.6V左右的电压电平,工作电源电压为1.8V到1.5V的低电源电压环境中,对于元件可靠性的影响进一步增大。
【发明内容】
本发明的目的在于:提供能稳定检测所需电压电平的电压检测电路。
本发明的其他目的在于:提供能正确生成所需电压电平的内部电压的内部电压发生电路。
本发明的其他目的在于:提供即使使用MOS晶体管作为检测元件,也不受阈值电压的影响,能稳定地把检测电压电平设定为所需的电压电平的电压检测电路。
本发明的其他目的在于:提供即使使用MOS晶体管作为电压检测元件,也提供能正确产生不由该检测MOS晶体管的阈值电压规定的电压电平的内部电压。
本发明的第一观点的内部电压发生电路包含:根据重复信号进行充电泵动作,在输出节点产生内部电压的充电泵电路;根据基准电压和内部电压的差,检测该内部电压是否达到了预定的电压电平的电压电平检测电路。该电压电平检测电路至少包含:由在栅极上接受基准电压,按照该基准电压和内部电压的差,有选择地导通的绝缘栅型场效应晶体管构成的检测晶体管。
本发明第一观点的内部电压发生电路还至少包含:产生基准电压,以便抵消检测晶体管的阈值电压对基准电压和内部电压的差的检测的影响的基准电压发生电路。
本发明第二观点的电压检测电路包含:连接在第一电源节点和输出节点之间的第一电阻元件;连接在第二电源节点和输出节点之间的第二电阻元件;按照输出节点和内部电压的差,检测内部电压是否达到了给定的电压电平的电压电平判定电路。
在使用按照该基准电压和内部电压的差,有选择地导通的绝缘栅型场效应晶体管,检测内部电压的电平的结构中,通过产生基准电压,以便抵消该检测晶体管的阈值电压的影响,即使检测晶体管的阈值电压由于制造参数的偏移和工作环境的变动而偏移,也能不受阈值电压变动,正确检测内部电压的电平,生成所需的电压电平的内部电压。
另外,能抵消阈值电压的影响,独立于阈值电压的变动而设定该内部电压的电平。当抵消该阈值电压的影响时,通过抵消阈值电压自身而产生基准电压,能把内部电压的电压电平设定为独立于阈值电压的电压电平,能生成所需的电压电平的内部电压。
另外,在检测电压电平时,通过电阻元件分割第一和第二电源节点的电压,生成基准电压,能通过调整电阻分割的分压比,生成所需电压电平的基准电压。根据该基准电压和内部电压的差,判定内部电压的电平,能把内部电压的判定对象电压电平设定为所需的电压电平。根据该判定结果控制内部电压发生动作,能生成所需的电压电平的内部电压。
从以下参照附图说明的实施例的详细说明中,本发明的目的和其他目的和特性变得进一步清晰。
【附图说明】
下面简要说明附图。
图1是表示以往的内部电压发生电路的结构一例的图。
图2是表示图1所示的内部电压发生电路动作的定时图。
图3是表示本发明实施例1的内部电压发生电路的结构的图。
图4是表示本发明实施例2的内部电压发生电路的结构的图。
图5是表示本发明实施例2的变更例的图。
图6是表示本发明实施例3的内部电压发生电路的结构的图。
图7是表示本发明实施例4的内部电压发生电路的结构的图。
图8是表示本发明实施例4的变更例的图。
图9是表示本发明实施例5的内部电压发生电路的结构的图。
图10是表示本发明实施例6的内部电压发生电路的结构的图。
图11是表示图10所示的内部电压发生电路的电源电路动作的定时图。
图12是表示本发明实施例7的内部电压发生电路的结构的图。
图13是表示本发明实施例7的变更例的图。
图14是表示本发明实施例8的内部电压发生电路的结构的图。
图15是表示本发明实施例9的内部电压发生电路的结构的图。
图16是表示本发明实施例10的内部电压发生电路的结构的图。
图17是表示本发明实施例11的内部电压发生电路的结构的图。
图18是表示本发明实施例11的变更例的图。
图19是表示本发明实施例12的内部电压发生电路的结构的图。
图20是表示本发明实施例13的内部电压发生电路的结构的图。
图21是表示图20所示的内部电压发生电路的电源电路动作的定时图。
图22是表示本发明实施例13的变更例的图。
图23是表示本发明实施例14的内部电压发生电路的结构的图。
图24是表示本发明实施例15的内部电压发生电路的结构的图。
图25是表示本发明实施例15的变更例的结构的图。
图26是表示本发明实施例16的内部电压发生电路的结构的图。
图27是表示本发明实施例16的变更例的图。
【具体实施方式】
[实施例1]
图3是表示本发明实施例1的内部电压发生电路的结构的图。在图3中,内部电压发生电路包含:在活性化时进行充电泵动作,在输出节点9产生内部电压V9的充电泵电路100;从分别提供给第一和第二电源节点21和22的电压V1+2·VTN和V2+2·VTN生成基准电压V25的基准电压发生电路110;根据该基准电压V25和内部电压V9的差,判定内部电压V9的电压电平是否达到了给定电压电平的电压电平判定电路112;根据电压电平判定电路112的判定结果,有选择地把提供给时钟输入节点1的重复信号提供给充电泵电路100的充电泵控制电路101 。
充电泵电路100包含:与图1所示的以往的内部电压发生电路同样进行充电泵动作的电容元件5;对内部节点8预充电的连接为二极管的N沟道MOS晶体管6;从内部节点8向输出节点9供给负电荷的N沟道MOS晶体管7。
充电泵控制电路101包含:接受电压电平判定电路112的判定结果信号V14和接受重复信号的AND电路3。该AND电路3的输出信号通过节点4提供给充电泵电路100的电容元件5。
基准电压发生电路110包含:连接在第一电源节点21和节点25之间的电阻元件23;连接在第二电源节点22和节点25之间的电阻元件24。电阻元件23和24分别具有电阻值R1和R2。在节点25生成基准电压V25。
电压电平判定电路112包含:连接在主电源节点2和节点14之间的高电阻的电阻元件13;连接在节点14和节点11之间,并且在栅极接受基准电压V25的N沟道MOS晶体管12;连接在节点11和充电泵电路100的输出节点9之间,并且栅极连接在节点11上的N沟道MOS晶体管10。
即在电压电平判定电路112的结构中,在图1所示的电压检测电路102的结构中,对MOS晶体管12的栅极,不提供接地电压,而提供来自基准电压发生电路110的基准电压V25。
MOS晶体管10和12分别具有阈值电压VTN。
从电源电路114向第一电源节点21提供电压V1+2·VTN,向第二电源节点22提供来自电源电路116的电源电压V2+2·VTN。关于电源电路114和116的结构,后面详细说明。
在电压电平判定电路112中,如果基准电压V25和充电泵电路100的输出电压V9的差变为2·VTN,则MOS晶体管10和12两者导通,在电阻元件13中产生压降,输出信号(电压电平判定结果信号)V14变为L电平。充电泵控制电路101的AND电路3的输出信号与重复信号无关,固定为L电平,充电泵电路100的泵动作停止。
基准电压V25和充电泵电路100的输出电压V9的差比2·VTN时,MOS晶体管10和12的至少一方为非导通状态,因为在电阻元件13中不产生压降,所以电压电平判定电路112的输出信号V14变为H电平,充电泵控制电路101把重复信号提供给充电泵电路100。
基准电压发生电路110是由电阻元件23和24构成的电阻分压电路,在节点25生成的基准电压V25由以下表达式(3)提供。
V25=2·VTN+(R2·V1+R1·V2)/(R1+R2) …(3)
以上表达式(3)的右边第一项等于MOS晶体管10和12的阈值电压的和。因此,当这些MOS晶体管10和12的阈值电压变动时,基准电压V25中包含的电压成分2·VTN也同样变化,抵消该MOS晶体管10和12的阈值电压的变动。例如,当MOS晶体管10和12的阈值电压VTN增加时,以上表达式(3)的右边第一项只增加相同的值。此时,MOS晶体管10和12的栅极电压增加阈值电压的上升部分。因此,当在栅源间产生阈值电压不变动时的阈值电压(目标阈值电压)的电位差时,这些MOS晶体管10和12导通。从充电泵电路100提供给输出节点9的电压V9由以下表达式(4)提供。
V9=(R2·V1+R1·V2)/(R1+R2) …(4)
从以上表达式(4)可知,在决定内部电压V9的电压电平的参数中不包含MOS晶体管10和12的阈值电压成分。即充电泵电路100生成的内部电压V9通过电阻元件23和24的电阻值R1和R2和电源电路114和116生成的电压成分V1和V2,能设定为所需的电压电平。
通常,电压V1和V2由电源电路114和116的电路结构和能使用的电源电压电平等外部要因决定。通过调整电阻元件23和24的电阻值R1和R2,能把该内部电压V9设定为所需的电压电平。因此,内部电压V9例如在DRAM中作为衬底偏压利用时,与衬底偏压的电压电平由阈值电压的阶梯决定时相比,能设定为更合适的值。另外,在使用TFT的图象显示电路装置中,能正确驱动象素晶体管的栅极。
当把充电泵电路100输出的内部电压V9设定为-2·VTN的电压电平时,如果基准电压V25是接地电压电平就可以了,因此,可以把电阻值R1和R2、电压V1和V2设定为满足以下表达式(5)。
V9=(R2·V1+R1·V2)/(R1+R2)=-2·VTN …(5)
即当为图3所示的结构时,作为内部电压V9,能生成-2·VTN+Va的电压电平的电压,抵消阈值电压VTN的变动的影响,能把内部电压V9设定为所需的电压电平。
须指出的是,在该充电泵控制电路101中,代替AND电路3,也可以使用NAND电路。在充电泵动作的停止时,对电容元件5提供H电平的信号,能使输出MOS晶体管7维持反偏置状态,能可靠地停止节点8的负电荷供给动作。
[实施例2]
图4是表示本发明实施例2的内部电压发生电路的结构的图。在图4所示的内部电压发生电路的结构中,在电压电平判定电路112中,在MOS晶体管12和充电泵电路100的输出节点9之间,串联两个连接为二极管的MOS晶体管10a和10b。虽然未表示电源电路114和116,但是分别对电源节点21和22提供电压V1+3·VTN和V2+3·VTN。图4所示的内部电压发生电路的其他结构,与图3所示的内部电压发生电路的结构相同,对于对应的部分付与同一参照符号,省略详细的说明。
在图4所示的内部电压发生电路的结构中,基准电压V25由以下表达式提供。
V25
=3·VTN+(R2·V1+R1·V2)/(R1+R2) …(6)
MOS晶体管10b当节点11b和输出节点9之间存在阈值电压VTN的电压差时,导通,另外,如果节点11a和11b之间产生阈值电压VTN的电压差,则MOS晶体管10a导通。如果节点11a的电压变为V25-VTN,MOS晶体管12就导通。如果MOS晶体管10a、10b和12都导通,则电流流过,由于电阻元件13的压降,来自节点14的电压V14设定为L电平。因此,此时,内部电压V9设定为V25-3·VTN的电压电平。
因此,此时,当MOS晶体管10a、10b和12各自的阈值电压VTN变动时,由于该基准电压发生电路110产生的基准电压V25中包含的电压成分3·VTN,抵消该变动。
据此,能不受阈值电压的变动,稳定地把充电泵电路100输出的输出电压V9的电压电平设定为所需的电压电平。在图4所示的内部电压发生电路的结构中,内部电压V9由以下表达式(7)表示。
V9=V25-3·VTN
=(R1·V2+R2·V1)/(R1+R2) …(7)
从以上表达式(7)可知,内部电压V9是独立于阈值电压VTN的电压。因此,能不受阈值电压的变动,稳定地把内部电压V9设定为所需的电压电平。
在图4所示的内部电压发生电路的结构中,基准电压V25设定为接地电压电平时,从以上表达式(7)可知,内部电压V9的电压电平变为-3·VTN。
[变更例]
图5是表示本发明实施例2的变更例的内部电压发生电路结构的图。在图5所示的内部电压发生电路中,在电压电平判定电路112中,在节点11a和充电泵电路100的输出节点9之间串联(n-1)个N沟道MOS晶体管10a-10n。MOS晶体管10a-10n分别是栅极和漏极相互连接。MOS晶体管10a-10n分别以二极管模式工作,导通时,产生阈值电压VTN的压降,另外,以电阻模式工作,导通时,由于导通电阻,产生压降。当MOS晶体管10a-10n都导通时,来自节点14的电压V14由AND电路3判定为L电平。
另外,对基准电压发生电路110的第一电源节点21提供电压V1+n·VTN,对第二电源节点22提供电压V2+n·VTN。图5所示的内部电压发生电路的其他结构与图4所示的内部电压发生电路的结构相同,对于对应的部分付与相同的参照符号,省略详细的说明。
当为图5所示的内部电压发生电路时,基准电压发生电路110生成的基准电压V25由以下表达式提供。
V25=n·VTN+(R2·V1+R1·V2)/(R1+R2) …(8)
如果内部电压V9变为电压V25-n·VTN,则MOS晶体管10a-10n和12导通,使节点14的电压V14下降,AND电路3的输出信号变为L电平,充电泵电路100的泵动作停止。因此,内部电压V9变为由以下表达式(9)表示的电压电平。
V9=V25-n·VTN
=(R2·V1+R1·V2)/(R1+R2) …(9)
因此,在图5所示的内部电压发生电路中,通过调整电阻元件23和24的电阻值R1和R2,能生成所需电压电平的内部电压V9。在该基准电压V25中包含有电压成分n·VTN,因此,即使MOS晶体管12和10a-10n的阈值电压分别变动,阈值电压的变动也由基准电压V25中包含的电压成分n·VTN抵消,能不受阈值电压的变动的影响,把内部电压V9的电压电平设定为所需的电压电平。当把基准电压V25设定为接地电压时,内部电压V9变为-n·VTN。
如上所述,当在内部电压的电压电平的检测中利用多个串联的MOS晶体管时,通过作为基准电压,生成包含这些MOS晶体管的阈值电压成分的电压,能抵消阈值电压的变动,稳定生成所需电压电平的内部电压。
[实施例3]
图6是表示本发明实施例3的内部电压发生电路的结构的图。在图6所示的内部电压发生电路中,在电压电平判定电路112中,在节点11a和节点11b之间以二极管连接或电阻连接方式连接P沟道MOS晶体管10c。另外,在基准电压发生电路110中,对第一电源节点21提供电压V1+2·VTN+|VTP|,对第二电源节点23提供V2+2·VTN+|VTP|。在此,VTP表现P沟道MOS晶体管10c的阈值电压。图6所示的内部电压发生电路的其他结构,与图4所示的内部电压发生电路的结构相同,所以对于对应的部分付与同一参照符号,省略详细说明。
在图6所示的电压电平判定电路112中,在节点11a和充电泵电路100的输出节点9之间产生VTN+|VTP|的压降时,MOS晶体管10b和10c都导通。如果基准电压V25和节点11a的电压差变为VTN,则MOS晶体管12导通。此时,来自电压电平判定电路112的节点14的输出电压V14变为L电平,充电泵电路100的充电泵动作停止。因此,内部电压V9变为由以下表达式(10)表示的电压电平。
V9=V25-2·VTN+|VTP| …(10)
基准电压V25由以下表达式(11)提供。
V25=2·VTN+|VTP|
+(R2·V1+R1·V2)/(R1+R2) …(11)
从以上表达式(11)可知,MOS晶体管10b和10c和12的阈值电压VTN和VTP变动时,在基准电压V25中也产生与阈值电压的变动相同的变动。因此,在电压电平判定电路112中,即使该内部电压V9的电压电平检测用MOS晶体管10b和10c和12的阈值电压产生变动,在基准电压V25中也抵消该变动,能正确地把内部电压V9设定为独立于阈值电压VTP和VTN的电压电平。
当把P沟道MOS晶体管10c和N沟道MOS晶体管10b作为压降元件使用时,能把它们的阈值电压VTP和VTN设定为不同的电压电平,能更细致地设定内部电压V9的电压电平。当基准电压V25设定为接地电压电平时,通过把MOS晶体管10b和10c阈值电压VTN和VTP设定为适当的值,能把内部电压V9的电压电平设定为所需的电压电平。
须指出的是,在图6所示的内部电压发生电路的结构中,在电压电平判定电路112中,MOS晶体管10b和12的合计数为n个,P沟道MOS晶体管10c的数量为p个时,对电源21和22分别提供V1+n·VTN+p·|VTP|和V2+n·VTN+p·|VTP|的电压。
须指出的是,在电压电平判定电路112中,作为压降元件使用的P和N沟道MOS晶体管的连接顺序是任意的。
如上所述,根据本发明实施例3,在电压电平判定电路中,使用导电类型不同的MOS晶体管作为压降元件,能分别设定它们的阈值电压,能更细致地设定内部电压的电压电平。
[实施例4]
图7是表示本发明实施例4的内部电压发生电路的结构的图。在图7所示的内部电压发生电路中,在电压电平判定电路112中,在节点11和充电泵电路100的输出节点9之间,从节点11观察,在正向串联d个二极管元件15。
在基准电压发生电路110中,对第一电源节点21提供电压V1+VTN+d·VF,另外,对第二电源节点22提供电压V2+VTN+d·VF。在此,VF表示二极管元件15的正向压降。
图7所示的内部电压发生电路的其他结构与图5所示的内部电压发生电路的结构相同,对于对应的部分付与相同的参照符号,省略详细的说明。
在图7所示的内部电压发生电路的结构中,在电压电平判定电路112中,如果节点11和输出节点9的电压差变为d·VF,则d个二极管15导通。如果栅源间电压变为VTN,MOS晶体管12就导通。因此,充电泵电路100产生的内部电压V9由以下表达式(12)提供。
V9=V25-VTN-d·VF
=(R2·V1+R1·V2)/(R1+R2) …(12)
基准电压V25设定为接地电压电平时,以-VTN-d·VF提供内部电压V9的电压电平。
在电压电平判定电路112中,串联d个二极管元件15时,即使这些二极管元件的正向压降和MOS晶体管12的阈值电压偏移,也能正确补偿阈值电压的变动,把内部电压V9维持在所需的电压电平。
在电压电平判定电路112中,把二极管元件15作为压降元件利用时,与MOS晶体管相比,能减少占有面积。另外,MOS晶体管12由TFT构成时,能以与TFT相同的浓度(多晶硅区域为P型区域,源/漏区域为N型区域)容易地生成。
须指出的是,当基准电压V25设定为接地电压电平,内部电压V9设定为电压-VTN-d·VF时,可以按照内部电压V9的电压电平,适当设定该二极管元件15的数d。另外,可以按照电压V1和V2的可利用电压电平,适当设定二极管15的数。
须指出的是,组合图5和图7所示的电压电平判定电路112,在检测用的MOS晶体管12的源极节点和充电泵电路100的输出节点9之间,串联(n-1)个N沟道MOS晶体管和d个二极管元件15时,对第一电源节点21提供电压V1+n·VTN+d·VF,对第二电源节点22提供V2+n·VTN+d·VF。
[变更例]
图8是表示本发明实施例4的变更例的内部电压发生电路结构的图。在图8所示的内部电压发生电路中,在电压电平判定电路112中,在节点11和充电泵电路100的输出节点9之间设置压降元件群16。该压降元件群16导通时,在在节点11和9之间产生电压Vdrp的压降。基准电压发生电路110中,对电源节点21提供电压V1+VTN+Vdrp,对电源节点22提供电压V2+VTN+Vdrp。该压降元件群16由连接而二极管的MOS晶体管和/或二极管元件的串联体构成。
图8所是的内部电压发生电路的其他结构与图1~图7所示的内部电压发生电路结构相同,对于对应的部分付与相同的参照符号,省略详细的说明。
在图8所示的内部电压发生电路的结构中,基准电压V25由以下表达式(13)提供。
V25
=VTN+Vdrp+(R1·V2+R2·V1)/(R1+R2) …(13)
如果节点11的电压变为V25-VTN,MOS晶体管12就导通,通过充电泵控制电路101使充电泵电路100的充电泵动作停止。因此,内部电压V9由以下表达式(14)表示。
V9=V25-VTN-Vdrp …(14)
基准电压V25包含压降元件群16的压降Vdrp作为电压成分。因此,能把内部电压V9的电压电平设定为由电压V1和V2和电阻值R1和R2的值决定的电压电平。因此,通过压降元件群16,粗设定内部电压V9的电压电平,使用电阻值R1和R2,细致调整内部电压V9的电压电平,能生成所需的电压电平的内部电压。
须指出的是,压降元件群16中包含的压降元件在导通时以二极管模式工作,产生阈值电压或PN结固定电压(正向压降)的压降。但是,在阈值电压或正向压降的电压差产生时,该压降元件群16中包含的压降元件导通,形成电流流过的路线,压降可以是与阈值电压或正向下降电压不同的电压电平。即压降元件群16中包含的压降元件可以以电阻模式工作。
如上所述,根据本发明实施例4,作为用于检测内部电压的电压电平的压降元件,使用MOS晶体管以外的元件时,通过在基准电压中包含压降元件的压降成分,能稳定地生成所需的电压电平的内部电压。
[实施例5]
图9是表示本发明实施例5的内部电压发生电路的结构的图。在图9所示的内部电压发生电路中,表示在图5所示的内部电压发生电路中,以二极管连接或电阻连接方式连接的N沟道MOS晶体管10a-10n的数为0个,另外基准电压发生电路110的电源节点21的电压为VTN即V1=0V时的电源电路114和116的结构。充电泵电路100和充电泵控制电路101的结构和动作与刚才的实施例1~4所示的结构相同,对于对应的部分付与相同的参照符号,省略详细的说明。
电源电路114包含:连接在主电源节点2和节点33之间的高电阻的电阻元件31、连接在节点33和接地节点之间的分别连接为二极管的N沟道MOS晶体管30和29、连接在主电源节点2和电源节点21之间并且栅极连接在节点33上的N沟道MOS晶体管28。
MOS晶体管29和30的导通电阻与电阻元件31的电阻值相比,十分小。因此,MOS晶体管30和29以二极管模式工作,产生个阈值电压VTN的压降。在该条件下,节点33的电压变为2·VTN。
MOS晶体管28因为其栅极点为比漏极VDD还低,所以以源极跟随器模式工作,对第一电源节点21提供电压2·VTN-VTN=VTN的电压。在此,在内部电压发生电路中使用的N沟道MOS晶体管的阈值电压都为VTN。
电源电路116包含连接在负电位供给节点26和电源节点22之间的N沟道MOS晶体管27。该N沟道MOS晶体管27的栅极连接在第二电源节点22上,以二极管模式工作,产生阈值电压VTN的压降。因此,对第二电源节点22提供电压V2+VTN。在此,对电源节点26提供负电压V2。该负电压V2可以从外部提供,也可以在内部使用其它负电压发生电路,在内部生成。
图9所示的内部电压发生电路中,基准电压V25由以下表达式(15)提供。
V25=2·VTN+(R1·V2)/(R1+R2) …(15)
因此,通过把电阻值R1和R2的值设定为适当的值,能把基准电压V25的电压电平设定为所需的电压电平。另外,基准电压V25中包含的电压成分VTN由电压电平判定电路112中的MOS晶体管12的阈值电压VTN抵消,能把内部电压V9设定为电压R1·V2/(R1+R2)的电压电平。
如上所述,根据本发明实施例5,利用以二极管模式工作的MOS晶体管的阈值电压的压降,生成对于基准电压发生电路的电源电压,能把包含内部电压电平检测用的MOS晶体管的阈值电压成分的电压作为对于基准电压发生电路的电源电压供给。
[实施例6]
图10是表示本发明实施例6的内部电压发生电路的结构的图。在图10所示的内部电压发生电路中,除了电源电路116的结构,与图9所示的内部电压发生电路的结构相同,对于图10所示的电源电路114、基准电压发生电路110、电压电平判定电路112、充电泵控制电路101和充电泵电路100等与图9所示的电路结构对应的部分,付与相同的参照符号,省略详细说明。
在图10中,电源电路116包含:根据提供给节点34的重复信号A,对节点38提供电荷的电容元件36;根据提供给节点35的重复信号ZA,对节点41供给电荷的电容元件39;连接在节点38和接地节点之间,并且其栅极连接在节点41上的P沟道MOS晶体管37;连接在节点41和接地节点之间,并且其栅极连接在节点38上的P沟道MOS晶体管40;连接在基准电压发生电路110的第二电源节点22和节点38之间,并且其栅极连接在第二电源节点22上的N沟道MOS晶体管27。
分别对节点34和35提供的重复信号A和ZA是振幅为|V2|的彼此互补的信号。
图11是表示图10所示的内部电压发生电路的电源电路动作的定时图。参照图11说明图10所示的电源电路116的动作。
如果重复信号A上升为H电平,则通过电容元件36的充电泵动作,节点38的电压电平上升。此时,提供给节点35的ZA下降为L电平,所以通过电容元件从节点41抽出电荷39,节点41的电压电平下降。因此,节点38的电压电平如果是接地电压以上,则MOS晶体管40为断开状态,MOS晶体管37变为导通状态,由于该MOS晶体管37,把节点38预充电为接地电压电平(节点41的电压为负电压)。即使把节点38预充电为接地电压电平,节点41也是负电压电平,MOS晶体管40的栅极和源极为相同的接地电压电平,维持断开状态。
此时,第二电源节点22的电压电平比MOS晶体管的阈值电压VTN还低时,MOS晶体管27变为反偏置状态,维持不导通状态。
如果重复信号ΦA下降为L电平,另外重复信号ZΦA上升为H电平,则通过电容元件36的充电泵动作,从节点38抽出电荷,节点38的电压电平下降到负电压V2的电平。而节点41通过电容元件39的充电泵动作,其电压电平上升。MOS晶体管40由于节点38的负电压,变为导通状态,把节点41预充电为接地电压电平。MOS晶体管37变为断开状态,节点38维持负电压V2的电压电平。当MOS晶体管27的阈值电压VTN比第二电源节点的电压还低时,MOS晶体管27导通,把正电荷从第二电源节点22传递给节点38,使第二电源节点22的电压电平下降。
以下,重复该动作,节点38在通常状态时,在接地电压和负电压V2之间变化。MOS晶体管27当节点37的电压电平为负电压V2时,对第二电源节点22传递电压V2+VTN。
在重复信号ΦA的每半个周期中,MOS晶体管27对电源节点22提供负电荷的动作与对充电泵电路100的输出节点9供给电荷的动作相同。因此,能向基准电压发生电路110的第二电源节点22供给电压V2+VTN的电压。据此,在利用内部电压V9的半导体器件内,生成负电压V2,能生成所需的电压电平的内部电压V9。
须指出的是,重复信号ΦA和ZΦA的振幅是|V2|。此时,把外部电源电压VDD降压,生成电压|V2|,把该降压电压|V2|作为工作电源电压提供给接受重复信号Φ的缓冲电路。据此,能从振幅VDD的重复信号生成振幅是|V2|的重复信号ΦA和ZΦA。但是此时,作为条件,要求振幅|V2|是电源电压VDD以下。
另外,利用内部电压V9的半导体器件为与时钟信号同步工作的电路装置时,作为重复信号,可以使用来自外部的时钟信号。另外,代替它,在内部可以使用振荡电路生成重复信号。
须指出的是,图10所示的电源电路116中包含的生成负电压的充电泵电路的结构只是一例,也可以使用其它结构的负电压发生电路。
另外,在电压电平判定电路112中,基准电压和内部电压V9的差设定为阈值电压VTN。但是,该基准电压V25和内部电压V9的差为Vdrp+VTN时,在电源电路114中,在MOS晶体管29和接地节点之间连接产生电压Vdrp的压降的压降电路,另外,在电源电路116中,通过与MOS晶体管27串联产生电压Vdrp的压降的压降电路,能把与电压电平判定电路112压降对应的电压作为对于基准电压发生电路110的电源电压生成。
如上所述,根据本发明实施例6,在电路装置内部生成负电压V2,能生成所需电压电平的电压V2。
[实施例7]
图12是表示本发明实施例7的内部电压发生电路结构的图。在图12所示的内部电压发生电路的结构中,在电压电平判定电路112中,在MOS晶体管12和充电泵电路100的输出节点9之间以二极管连接或电阻连接方式连接P沟道MOS晶体管10c。
在电源电路114中,通过该MOS晶体管10c的连接,在MOS晶体管29和接地节点之间还设置连接为二极管的P沟道MOS晶体管45。另外,在电源电路116中,在MOS晶体管27和电源节点22之间设置连接为二极管的P沟道MOS晶体管43。图12所示的内部电压发生电路的其他结构与图10所示的内部电压发生电路的结构相同,对于对应的部分付与相同的参照符号,省略详细的说明。
如果栅源间电压变为VTP,则MOS晶体管10c导通,MOS晶体管45和43导通时,产生|VTP|的压降。因此,在该电源电路114中,节点33的电压变为2·VTN+|VTP|,第一电源节点21的电压由于MOS晶体管28的源极跟随器动作,变为VTN+|VTP|。
另外,在电源电路116中,由于MOS晶体管43和27,产生电压VTN+|VTP|的压降,所以第二电源节点22的电压变为V2+VTN+|VTP|。来自基准电压发生电路110的基准电压V25包含VTN+|VTP|作为电压成分。
如图12所示,在电压电平判定电路112中,使用栅极和漏极相互连接的P沟道MOS晶体管10c时,在电源电路116和114中,通过追加同样连接为二极管的P沟道MOS晶体管45和43,能生成能抑制MOS晶体管10c的阈值电压VTP的变动的基准电压V25。因此,能把内部电压V9设定为所需的电压电平。
[变更例]
图13是表示本发明实施例7的变更例的图。图13所示的内部电压发生电路与图10所示的内部电压发生电路在以下方面,其结构不同。即在电压电平判定电路112中,在在MOS晶体管12的源极节点和充电泵电路100的输出节点9之间设置导通时产生电压Vdrp的压降的压降元件群46。在电源电路114中,同样在节点32和接地节点之间连接产生电压Vdrp的压降的压降元件群47。在电源电路116中,在电源节点22和节点38之间连接导通时产生电压Vdrp的压降的压降元件群49。这些压降元件群46、47和49分别包含连接为二极管的MOS晶体管和/或二极管元件的串联。这些压降元件群46、47和49除了在内部的元件的排列顺序,具有相同的电路结构。
图13所示的内部电压发生电路的其他结构与图10所示的内部电压发生电路的结构相同,对于对应的部分付与相同的符号,省略详细的说明。
在图13所示的电源电路114中,在节点33生成电压2·VTN+Vdrp,因此,在电源节点21产生电压VTN+Vdrp。落句p25-10电源节点22,电压V2+Vdrp因此,在电压电平判定电路112中,连接压降元件群46,导通时,产生电压Vdrp的压降时,通过利用与压降元件群46同一结构的压降元件群47和49,抑制该压降元件群46中包含的压降元件的阈值电压或正向下降电压的变动的影响,能把内部电压V9设定为所需的电压电平。
须指出的是,在该压降元件群46、47和49中,MOS晶体管和压降元件群的排列顺序是任意的。
须指出的是,在上述结构中,如果MOS晶体管12的源极节点和充电泵电路100的输出节点9之间的电压如果变为Vdrp,则电压电平判定电路112的压降元件群46导通,以电阻模式工作。在电压电平判定电路112中,压降元件群46和MOS晶体管12都变为导通状态时,节点14的电压电平可以通过AND电路3判定为L电平。
如上所述,根据本发明实施例7,为了产生与电压电平判定电路112的压降相同的压降,在电源电路中配置同样结构的压降电路,能与电压电平判定电路112的产生压降的电路结构无关,正确抵消阈值电压等的影响,生成所需的电压电平的内部电压。
[实施例8]
图14是表示本发明实施例8的内部电压发生电路的结构的图。图14所示的内部电压发生电路包含:根据提供给节点54的重复信号进行充电泵动作,在节点59生成比电源电压VDD还高的升压电压V59的充电泵电路200;生成基准电压V75的基准电压发生电路210;按照基准电压V75和升压电压V59的差,判定升压电压V59的电压电平是否为给定电压电平以上的电压电平判定电路212;根据电压电平判定电路212的判定结果,有选择地通过节点54把提供给时钟输入节点1的重复信号提供给充电泵电路200的充电泵控制电路201。
充电泵电路200包含:连接在节点54和节点58之间的电容元件55;连接在主电源节点2和节点58之间,并且栅极连接在节点58上的P沟道MOS晶体管56;连接在节点58和输出节点59之间,并且栅极连接在输出节点59上的P沟道MOS晶体管57。
在充电泵电路200中,当对节点54提供重复信号时,通过电容元件55的充电泵动作,使节点58的电压电平变化。节点58通过连接为二极管的P沟道MOS晶体管56,与电源节点结合。因此,该MOS晶体管56把节点58的下限电压箝位在电压VDD-|VTP|的电压电平上。因此,通过节点54提供的重复信号的振幅为电源电压VDD时,节点58在电压2·VDD-|VTP|和电压VDD-|VTP|之间变化。MOS晶体管57作为二极管工作,在节点58和输出节点59之间产生电压|VTP|的压降。因此,该充电泵电路200最多具有产生由以下表达式(16)所示的电压V59的能力。
V59=2·VDD-2|VTP| …(16)
基准电压发生电路210包含串联在电源节点71和72之间的电阻元件73和74。对电源节点71提供电压V3-2·|VTP|,对电源节点72提供电压V4-2·|VTP|。电阻元件73及74分别具有电阻值R3和R4。从电阻元件74和74之间的连接节点75生成基准电压V75。
该基准电压发生电路210把电源节点71和72的电压以电阻分割,生成基准电压V75。因此,基准电压V75由以下表达式(17)表示。
V75=-2·|VTP|+(R4·V3+R3·R4)/(R3+R4) …(17)
因此,在基准电压发生电路210中,通过适当设定电阻元件73和74的电阻值R3和R4和电压V1和V2的电压电平,能生成不由阈值电压VTP规定的所需电压电平的基准电压V75。
电压电平判定电路212包含:连接在充电泵电路200的输出节点和节点61之间,并且栅极连接在节点61上的P沟道MOS晶体管60;连接在节点61和节点64之间,并且栅极接受基准电压V75的P沟道MOS晶体管62;连接在节点64和接地节点之间的高电阻的电阻元件63。MOS晶体管60和62分别具有阈值电压VTP。
MOS晶体管60和62的导通电阻与电阻元件63相比,设定为充分小的值。MOS晶体管60以二极管模式工作,导通时,产生电压|VTP|的压降。
代替它,把MOS晶体管60和62的导通电阻设定为比较高,MOS晶体管60以电阻模式工作。当以电阻模式工作时,如果栅源间电压变为阈值电压VTP以下,MOS晶体管60和62就导通。
当节点61的电压比基准电压V75高|VTP|时,MOS晶体管62导通。因此,如果升压电压V59比基准电压V75高2·|VTP|时,则MOS晶体管60和62导通,对电阻元件63供给电流,节点64的电压V64的电平变为H电平。MOS晶体管60和62的至少一方为不导通状态时,对电阻元件63不供给电流,所以该节点64通过电阻元件63维持在接地电压电平。
充电泵控制电路201包含接受提供给时钟输入节点1的重复信号和来自电压电平判定电路212的节点64上的电压V64的OR电路53。该OR电路53的输出信号通过节点54提供给充电泵电路200的电容元件55。节点64的电压V64作为升压电压电平判定结果指示信号使用。
升压电压V59为比电压V75+2·|VTP|还高的电压电平时,该电压电平判定电路212的输出信号(节点64的电压V64)变为H电平,把OR电路53的输出信号固定在H电平。因此,充电泵电路200的充电泵动作停止。在充电泵电路200中,当节点58的电压和输出节点59的升压电压V59的电压差为|VTP|时,MOS晶体管57变为不导通状态,对输出节点59的正电荷供给动作停止。
而当升压电压V59为电压V75+2·|VTP|以下时,电压电平判定电路212的输出信号(电压V64)是L电平,该OR电路53通过节点54把重复信号提供给充电泵电路200的电容元件55。
因此,图14所示的内部电压发生电路生成电压V75+2·|VTP|的电压电平作为升压电压V59。基准电压V75包含-2·|VTP|作为其电压成分。因此,升压电压V59独立于阈值电压VTP,设定为由电阻元件73和74具有的电阻值R3和R4和电压V3和V4决定的电压电平。即该升压电压V59的电压电平由以下表达式(18)表示。
V59=(R4·V3+R3·V4)/(R3+R4) …(18)
因此,如图14所示,在生成比电源电压VDD还高的升压电压V59时,在电压电平检测中使用MOS晶体管60和62,也可以不受阈值电压变动的影响,把该升压电压V59维持在一定电压电平。另外,通过把电阻元件73和74的电阻值R3和R4设定为适当的值,能把升压电压V59设定为所需的电压电平。当把基准电压V75设定为电源电压VDD的电平时,能把升压电压V59正确设定为电压2·|VTP|+VDD的电压电平。
须指出的是,在充电泵控制电路201中,当使充电泵电路200的充电泵动作停止时,可以把输出信号固定在L电平。此时,代替OR电路53,使用NOR电路。在该结构时,当升压电压V59比给定电压电平高时,把节点58设定为电压VDD-|VTP|,能防止从MOS晶体管57向输出节点59供给正电荷,能可靠地使升压电压V59的升压动作停止。
须指出的是,检测用的MOS晶体管60和62当内部电压发生电路在包含低温多晶硅TFT电路的图象显示电路中使用时,同样由TFT构成。
[实施例9]
图15是表示本发明实施例9的内部电压发生电路的结构的图。图15所示的内部电压发生电路在以下方面与图14所示的内部电压发生电路的结构不同。即在电压电平判定电路212中,在MOS晶体管62的源极节点61和充电泵电路200的输出节点59之间串联以二极管连接或电阻连接方式连接的P沟道MOS晶体管60a-60p。MOS晶体管60a-60p合计设置(p-1)个,分别具有阈值电压VTP。
在基准电压发生电路210中,对电源节点71提供电压V3-p·|VTP|,对电源节点72提供电压V4-p·|VTP|。图15所示的内部电压发生电路的其他结构与图14所示的内部电压发生电路的结构相同,对于对应的部分付与相同的参照符号,省略详细的结构。
在图15所示的内部电压发生电路中,升压电压V59如果变为比基准电压V75还高p·|VTP|的电压电平,则MOS晶体管60a-60p和62都导通,节点64的信号变为H电平,通过充电泵控制电路201使充电泵电路200的充电泵动作停止。基准电压V75具有由以下表达式(19)表示的电压电平。
V75=-p·|VTP|+(R3·V4+R4·V3)/(R3+R4) …(19)
因此,作为升压电压V59的电压电平,与图14所示的内部电压发生电路同样,能设定为由以下表达式(20)表示的电压电平。
V59=(V3·V4+R4·V3)/(R3+R4) …(20)
因此,利用这样的MOS晶体管的阈值电压VTP判定电压电平时,能不受阈值电压VTP的变动的影响,另外,能不依存于阈值电压VTP的电压电平,把升压电压V59的电压电平设定为所需的电压电平。当基准电压V75设定为电源电压VDD时,能把升压电压V59设定为VDD+p·|VTP|的电压电平。此时,MOS晶体管62和60a-60p的阈值电压的电动成分已经由基准电压V75补偿,能正确生成所需的电压电平的升压电压。
即使电阻元件73和74的电阻值R3和R4的电阻比和电压V3和V4存在限制,利用该MOS晶体管60a-60p,把升压电压的电平设定在接近所需电压电平的电压电平后,使用电阻元件73和74进行微调,能把升压电压V59正确设定为所需的电压电平。
须指出的是,串联的MOS晶体管60a-60p的数(p-1)如果p是1以上的数,就可以了,能按照升压电压V59的电压电平决定为适当的数。
如上所述,在串联多个MOS晶体管,把升压电压降压,进行升压电压的电平检测的结构中,通过用电阻分割生成与这些降压用的MOS晶体管具有同样的压降成分的基准电压,能不受阈值电压的影响,正确生成所需电压电平的升压电压。
[实施例10]
图16是表示本发明实施例10的内部电压发生电路的结构的图。图16所示的内部电压发生电路在以下方面与图14所示的内部电压发生电路的结构不同。即在电压电平判定电路212中,在以二极管连接方式或电阻连接方式连接的P沟道MOS晶体管60和充电泵电路200的输出节点59之间再连接以二极管连接方式或电阻连接方式连接的N沟道MOS晶体管65。
在基准电压发生电路210中,对电源节点71提供电压V3-VTN-2·|VTP|。同样,对电源节点72提供电压V4-VTN-2·|VTP|。图16所示的内部电压发生电路的其他结构与图14所示的内部电压发生电路的结构相同,对于对应的部分付与相同的参照符号,省略详细的说明。
在图16所示的内部电压发生电路的结构中,升压电压V59和基准电压V75的电压差如果变为VTN+2·|VTP|,则MOS晶体管65、60和62都导通,节点64的电压电平变为H电平。把充电泵电路201的输出信号固定在H电平上,停止充电泵电路200的充电泵动作。
作为基准电压V75,从用电阻元件73和74的电阻值R3和R4对电压V3和V4进行电阻分割而取得的电压电平,生成电压VTN+2·|VTP|的低电压电平的电压。该VTN+2·|VTP|等于对于电压电平判定电路212中的升压电压V59的压降。因此,能把升压电压V59设定为由电阻值R3和R4把电压V3和V4进行电阻分割而取得的电压电平,能不受阈值电压的影响,把升压电压V59设定为所需的电压电平。
特别是阈值电压VTN和VTP分别能设定它们的电压电平,即使在电压V3和V4和电阻值R3和R4中,由于外部要因产生限制时,能稳定生成所需电压电平的升压电压。
须指出的是,基准电压V75设定为电源电压VDD时,升压电压V59维持在VDD+2·|VTP|+VTN的电压电平。
须指出的是,设置n个以二极管连接方式或电阻连接方式连接的N沟道MOS晶体管,另外设置(p-1)个以二极管连接方式或电阻连接方式连接的P沟道MOS晶体管时,电源节点71和72的电压分别由以下表达式(21)和(22)提供。
V71=V3-n·VTN-p·|VTP| …(21)
V72=V4-n·VTN-p·|VTP| …(22)
按照充电泵电路200的输出节点59和检测用的MOS晶体管62之间的压降量,能把基准电压V75的电压电平设定为最佳的电压电平。
须指出的是,当把基准电压V75设定为电源电压VDD的电平时,作为升压电压V59,取得VDD+n·VTN+p·|VTP|的电压电平的电压。
如上所述,根据本发明实施例10,为了升压电压的压降,把P和N沟道MOS晶体管串联,能通过各自的阈值电压调整电压下降量,能把升压电压的电压电平正确设定为所需的电压电平。另外,在该结构中,作为基准电压,包含与升压电压的下降量对应的电压成分,能正确抵消阈值电压,生成所需电压电平的升压电压。
[实施例11]
图17是表示本发明实施例11的内部电压发生电路结构的图。在图17所示的内部电压发生电路中,在充电泵电路200的输出节点59和电压电平判定电路212的MOS晶体管的源极节点之间,从输出节点59观察,正向串联d个二极管元件66。这些二极管元件66分别具有正向压降VF。
对基准电压发生电路210的电源节点71提供电压V3-|VTP|-d·VF,对电源节点72提供电压V4-|VTP|-d·VF。图17所示的内部电压发生电路的其他结构与图16所示的内部电压发生电路的结构相同,对于对应的部分付与相同的参照符号,省略详细的说明。
在图17所示的内部电压发生电路中,基准电压V75由以下表达式(23)表示。
V75=-|VTP|-d·VF
+(R3·V4+R4·V3)/(R3+R4) …(23)
在d个二极管元件中,如果产生电压d·VF的压降,则d个二极管66导通。如果栅源间产生|VTP|以上的电压差,则MOS晶体管62导通。因此,升压电压V59由以下表达式(24)表示。
V59=V75+|VTP|+d·VF
=(V3·R4+V4·R3)/(R3+R4) …(24)
因此,能把该升压电压V59设定为依存于电压V3和V4、电阻元件73和74的电阻值R3和R4的电压电平。因此,即使该内部电压发生电路由TFT构成,阈值电压的偏移大时,也能正确并稳定地生成所需电压电平的升压电压V59。
[变更例]
图18是表示本发明实施例11的变更例的内部电压发生电路结构的图。在图18所示的内部电压发生电路的结构中,在电压电平判定电路212中,在充电泵电路200的输出节点59和P沟道MOS晶体管62的源极节点61之间,连接在两端产生电压Vdrp的压降时导通的压降元件群67。压降元件群67由栅极和漏极相互连接的MOS晶体管和/或二极管元件构成。
在基准电压发生电路210中,对电源节点71提供电压V3-Vdrp,对电源节点72提供电压V4-Vdrp。图18所示的内部电压发生电路的其他结构与图17所示的内部电压发生电路的结构相同,对于对应的部分付与同一参照符号,省略详细的说明。
在图18所示的内部电压发生电路的结构中,基准电压V75由以下表达式(25)提供。
V75
=-Vdrp+(R3·V4+R4·V3)/(R3+R4) …(25)
在压降元件群67中,适当组合串联二极管元件、以二极管连接方式或电阻连接方式连接的P沟道MOS晶体管、以二极管连接方式或电阻连接方式连接的N沟道MOS晶体管。因此,升压电压V59是比基准电压V75,比电压Vdrp+|VTP|还高的电压电平,因此,此时,升压电压V59的电压电平由以下表达式(26)提供。
V59=(R3·V4+R4·V3)/(R3+R4) …(26)
基准电压V75如果是电源电压VDD的电压电平,则升压电压V59设定为VDD+|VTP|+Vdrp的电压电平。因此,在图18所示的结构中,能把升压电压V59的电压电平设定为所需的电压电平,另外,该电压电平判定电路212的MOS晶体管例如由TFT构成,其阈值电压的偏移大时,也能正确地把升压电压V59的电压电平设定为所需的电压电平。
例如在压降元件群67由d个二极管元件、n个以二极管连接的N沟道MOS晶体管、(p-1)个以二极管连接的N沟道MOS晶体管构成时,该压降元件群67的下降电压Vdrp由以下表达式(27)提供。
Vdrp=d·VF+(p-1)·|VTP|+n·VTN …(27)
通过把反映该下降电压Vdrp的电压成分的电压分别提供给电源节点71和72,能抑制MOS晶体管的阈值电压的变动的影响,能把升压电压V59的电压电平正确地设定为所需的电压电平。
另外,通过电阻值R3和R4能把升压电压V59地设定为所需的电压电平。
[实施例12]
图19是表示本发明实施例12的内部电压发生电路的结构的图。在图19所示的内部电压发生电路中,在电压电平判定电路212中,在充电泵电路200的输出节点和电压电平判定结果输出节点64之间连接在栅极接受基准电压V75的P沟道MOS晶体管62。因此,升压电压V59设定为V75+|VTP|的电压电平。
充电泵控制电路201和充电泵电路200的结构与刚才的实施例8~11所示的电路结构相同,对于对应的部分付与相同的参照符号,省略详细的说明。
在基准电压发生电路210中,对电源节点71提供来自电源电路214的电压V3-|VTP|,对对电源节点72提供来自电源电路216的电压VDD-|VTP|。该基准电压发生电路210从对节点71和72提供的电压,通过基于电阻元件73及74的电阻分割,生成基准电压V75。
电源电路214包含连接在升压节点76和电源节点71之间,并且栅极连接在电源节点71上的P沟道MOS晶体管77。该MOS晶体管77以二极管模式工作,把提供给升压节点76的电压降压阈值电压的绝对值|VTP|,传递给电源节点71。
电源电路216包含:串联在主电源节点2和节点83之间,并且分别连接为二极管的P沟道MOS晶体管79a和79b;连接在节点83和接地节点之间的高电阻的电阻元件81;连接在电源节点72和接地节点之间,并且栅极连接在节点83上的P沟道MOS晶体管78。MOS晶体管78,79a,79b分别具有阈值电压VTP。
电阻元件81具有比MOS晶体管79和80的导通电阻还大很多的电阻值,MOS晶体管79a和79b以二极管模式工作,分别产生|VTP|的压降。因此,在节点83生成电压VDD-2·|VTP|的电压。
如果电源节点72的电压比节点83的电压还高|VTP|,则MOS晶体管78导通。因此,电源节点72通过MOS晶体管78箝位在电压VDD-|VTP|。
在图19所示的结构中,基准电压V75由以下表达式(28)提供。
V75
=-|VTP|+(V3·R4+R3·VDD)/(R3+R4) …(28)
如果栅源间电压变为VTP以下,则MOS晶体管62导通,所以升压电压V59由以下表达式(29)提供。
V59=V75+|VTP|
=(V3·R4+VDD·R3)/(R3+R4) …(29)
例如使用其它升压电路把电压V3的电压电平设定为所需的电压电平,并且把电阻元件73和74的电阻值设定为适当的值。据此,能不受MOS晶体管62的阈值电压变动的影响,正确设定该升压电压V59的电平。
在内部的电源电路216中,通过生成电压VDD-|VTP|,能使电源电路216的MOS晶体管的阈值电压变动与电压电平检测用的MOS晶体管的阈值电压变动相同,能正确抵消电压电平检测用的MOS晶体管的阈值电压的影响。
须指出的是,在图19所示的电源电路214和216中,通过调整串联的连接为二极管的MOS晶体管数和晶体管的极性,能调整与电压电平检测用的MOS晶体管的压降相应的压降,能把与电压电平检测用的MOS晶体管的结构相应的电压作为对于基准电压发生电路212的电源电压生成。
[实施例13]
图20是表示本发明实施例13的内部电压发生电路的结构的图。图20所示的内部电压发生电路与图19所示的内部电压发生电路在电源电路214的结构上不同。
电源电路214包含:连接在主电源节点2和节点88之间,并且栅极连接在节点91上的N沟道MOS晶体管87;连接在主电源节点2和节点91之间,并且栅极连接在节点88上的N沟道MOS晶体管90;把提供给时钟节点84的重复信号B传递给节点88的电容元件86;把提供给时钟节点85的辅助重复信号ZB传递给节点91的电容元件89;在节点88和基准电压发生电路210的电源节点71之间,从节点88观察,正向连接的连接为二极管的P沟道MOS晶体管77。
重复信号B和ZB是互补的信号,振幅为VB。振幅VB是比阈值电压VTN还高的电压电平。电压V3由VDD+VB提供。
图20所示的内部电压发生电路的其他结构与图19所示的内部电压发生电路的结构相同,对于对应的部分付与相同的参照符号,省略详细说明。
图21是表示图20所示的是电源电路214的动作的信号波形图。下面参照图21对图20所示的电源电路214的动作进行说明。
重复信号B和ZB是振幅VB。如果重复信号ΦB变为H电平,则节点88由于电容元件86的充电泵动作,其电压电平上升。此时,节点91由于重复信号ZB下降到L电平,由于电容元件89,其电压电平下降。节点88是高电平,MOS晶体管90导通,节点91箝位在电源电压VDD。
在此,重复信号B和ZB的振幅VB是比阈值电压VTN还高的电压电平。因此,如果重复信号B上升,则节点88从该预充电电压VDD再上升电压VB,节点88的电压电平变为电压VB+VDD。MOS晶体管87在栅极接受电源电压VDD,另外,其源极成为电源节点,MOS晶体管87在该状态下维持不导通状态。电压VB是比阈值电压VTN还高的电压,能通过MOS晶体管90把节点91可靠地预充电为电源电压VDD。
如果节点88的电压电平变为VDD+VB,则电源节点71的电压为VDD+VB-|VTP|以下时,MOS晶体管77导通,对电源节点71供给正电荷,使电压电平上升。
在通常状态下,节点88在电源电压VDD和电压VB+VDD之间变化,节点91也在电源电压VDD和电压VDD+VB之间变化。如果使该电压VB+VDD为电压V3,则对基准电压发生电路210的电源节点71供给电压V3-|VTP|的电压。
电压VB可以是使MOS晶体管87和90导通,能使内部节点88和91预充电为电源电压的电压电平。因此,通过把电源电压VDD降压,生成该电压VB,作为生成重复信号B和ZB的电路的电源电压利用,能生成振幅VB的重复信号B和ZB。
通过利用图20所示的内部电压发生电路,在半导体器件内部能生成电压V3-|VTP|。此时,在电源电路214的电路结构中,通过重复信号B和ZB的振幅和电源电压VDD的电压电平,限制电压V3的电压电平。但是,通过把电阻元件73和74的电阻值R3和R4设定为适当的比,能把该基准电压V75设定为所需的电压电平,能把升压电压V59的电压电平设定为所需的电压电平。
[变更例]
图22是概略表示本发明实施例13的变更例的结构的图。图22所示的内部电压发生电路与图19所示的内部电压发生电路在以下方面结构不同。
即在电压电平判定电路212中,作为压降元件,在充电泵电路200的输出节点59和MOS晶体管62之间连接栅极和漏极连接在MOS晶体管62的源极上的P沟道MOS晶体管60。因此,电压电平判定电路212判定升压电压V59是否为电压V75+2·|VTP|的电压电平。
电源电路214包含:连接在主电源节点2和节点88之间,并且栅极连接在节点88上的P沟道MOS晶体管93;根据提供给时钟输入节点84的重复信号C,对节点88提供电荷的电容元件86;连接在节点88和基准电压发生电路210的电源节点71之间,并且栅极连接在电源节点71上的P沟道MOS晶体管77。重复信号ΦC是振幅VDD。
电源电路216包含:串联在主电源节点2和内部节点83之间的分别连接为二极管的P沟道MOS晶体管79a-79c;连接在节点83和接地节点之间,并且高电阻的电阻元件81。
图22所示的内部电压发生电路的其他结构与图19所示的内部电压发生电路的结构相同,对于对应的部分付与相同的参照符号,省略详细的说明。
在图22所示的内部电压发生电路的结构中,对于电源电路214提供振幅VDD的重复信号ΦC。该电源电路214的结构与充电泵电路200的结构相同。通过MOS晶体管93,节点88的下限电压箝位在电压VDD-|VTP|。因此,该节点88的电压在VDD-|VTP|和2·VDD-|VTP|之间变化。MOS晶体管77作为二极管工作,所以电源节点71的电压电平成为2·VDD-2·|VTP|的电压电平。
在电源电路216中,MOS晶体管79a-79c各自的导通电阻比电阻元件81的电阻值小很多,所以作为二极管工作,分别产生|VTP|的压降。MOS晶体管78以源极跟随器模式工作,所以对电源节点72传递电压VDD-2·|VTP|的电压。
因此,从基准电压发生电路210生成由以下表达式(29A)表示的基准电压V75。
V75=(2·R4+R3)·VDD/(R3+R4)-2·VTP …(29A)
在电压电平判定电路212中,通过MOS晶体管60和62,关于检测电压电平,生成电压2·|VTP|,所以内部电压V59的电压电平以下表达式(30)表示。
V59=VDD(2·R4+R3)/(R3+R4) …(30)
因此,通过使用振幅VDD的重复信号ΦC,把电阻元件73和74的电阻值R3和R4设定为适当的值,能把内部电压V59设定为所需的电压电平。
例如,当电阻元件73和74的电阻值R3和R4相等时,能把该内部电压V59设定为3·VDD/2的电压电平。此时,在DRAM中,在字线驱动时,一般使用存储器阵列电源电压的1.5倍电压作为升压电压,所以在升压字线驱动方式的DRAM中,为了生成驱动选择字线的字线驱动信号,能使用升压电压V59。
如上所述,根据本发明实施例13,在内部考虑电压检测的压降,生成对于基准电压发生电路的电源电压,能稳定地生成所需电压电平的基准电压,能稳定地生成升压电压。
[实施例14]
图23是表示本发明实施例14的内部电压发生电路的结构的图。图23所示的内部电压发生电路与图20所示的内部电压发生电路在以下方面,其结构不同。
即在电压电平判定电路212中,在P沟道MOS晶体管62和充电泵电路200的输出节点59之间连接有连接为二极管的N沟道MOS晶体管96。该N沟道MOS晶体管96的导通电阻比电阻元件63的电阻值小很多,在导通时以二极管模式工作,对于升压电压V59产生电压VTN的压降,传递给MOS晶体管62的源极。
在电源电路214中,在P沟道MOS晶体管77和基准电压发生电路210的电源节点71之间连接有连接为二极管的N沟道MOS晶体管94。该N沟道MOS晶体管94在导通时以二极管模式工作,从MOS晶体管77对电源节点71产生VTN的压降。
在电源电路216中,在主电源节点2和P沟道MOS晶体管79a之间连接有连接为二极管的N沟道MOS晶体管95。该N沟道MOS晶体管95的栅极和漏极连接在主电源节点2上,以二极管模式工作,产生电压VTN的压降。
图23所示的内部电压发生电路的其他结构与图20所示的内部电压发生电路的结构相同,对于对应的部分付与同一参照符号,省略详细的说明。
在图23所示的电源电路214中,重复信号B和ZB是振幅VB的信号,节点88在电源电压VDD和电压VB+VDD之间变化。因此,在基准电压发生电路210中,对于电源节点71供给电压VB+VDD-VTN-|VTP|=V3-VTN-|VTP|的电压。
而在电源电路216中,产生MOS晶体管95引起的压降VTN和MOS晶体管79a和79b引起的压降2·|VTP|。因此,在MOS晶体管78的源极节点即基准电压发生电路210的电源节点72上产生VDD-VTN-|VTP|的电压。在该结构中,基准电压V75由以下表达式(31)提供。
V75=-VTN-|VTP|
+(R3·VDD+R4·V3)/(R3+R4) …(31)
在电压电平判定电路212中,通过MOS晶体管62和96,产生压降VTN+|VTP|。因此,以上表达式(31)的右边第一项和第二项抵消,通过电压V3、VDD和电阻值R3和R4,把升压电压V59的电压电平设定为所需的电压电平。
须指出的是,在图23所示的内部电压发生电路的结构中,电源电路216的MOS晶体管95、79a和79b的连接顺序是任意的。同样在电源电路214中,MOS晶体管77和94的位置可以交换。
须指出的是,重复信号B和ZB的振幅VB为电压VTN以上。在初始状态下,即使节点88和91为比电源电压VDD还低的电压电平,通过MOS晶体管87和90的预充电动作,节点88和91的电压上升,如果预充电为VDD-VTN,则节点88和91的电压电平充电为VB+VDD-VTN,此后节点88和91的预充电电压电平变为电源电压VDD。此后,节点88和91在电源电压VDD和电压VDD+VB之间变化。因此,在该状态下,MOS晶体管77和94都为导通状态,对基准电压发生电路210的电源节点71供给所需的电压电平的电压。
须指出的是,作为该电源电路214和216的结构,如果是能抵消电压电平判定电路212的压降用的MOS晶体管的阈值电压的影响波及到内部电压V59的电压电平的结构,就能利用刚才的实施例7~12的内部电路的结构。
如上所述,即使是在电压电平的检测中使用P和N沟道MOS晶体管的结构,在电源电路中,利用与这些电压电平检测晶体管相同的结构,利用控制振幅的重复信号,生成对于基准电压发生电路的电源电压,能正确生成所需电压电平的升压电压。
[实施例15]
图24是表示本发明实施例15的内部电压发生电路的结构的图。图24所示的内部电压发生电路与图6所示的内部电压发生电路对应,但是在以下方面与图6所示的内部电压发生电路的结构不同。即对于充电泵电路100,总从时钟输入节点1通过节点4对电容元件5提供重复信号。因此,充电泵电路100总执行充电泵动作。
在电压电平判定电路112中,电压电平检测用的N沟道MOS晶体管12的漏极节点14与主电源节点2结合。MOS晶体管12的源极节点11a连接在连接为二极管的P沟道MOS晶体管10c上。在MOS晶体管10c充电泵电路100的输出节点之间连接有连接为二极管的MOS晶体管10b。MOS晶体管10b和10c的导通时,在节点11a和输出节点9之间产生VTN+|VTP|的压降。
图24所示的内部电压发生电路的其他结构与图6所示的内部电压发生电路的结构相同,对于对应的部分付与相同的参照符号,省略详细的说明。
充电泵电路100生成的内部电压V9和基准电压发生电路110生成的基准电压V25的电压差如果变为2·VTN+|VTP|,则MOS晶体管12、10c和10b导通。在该状态下,电流从主电源节点2提供给充电泵电路100的输出节点9,内部电压V9的电压电平上升。如果内部电压V9的电压电平比V25-2·VTN-|VTP|还高,则MOS晶体管12、10c和10b的至少一个变为断开状态,遮断从主电源节点2向充电泵电路100的输出节点9供给电流的路线。
因此,在图24所示的内部电压发生电路的结构中,能把充电泵电路100的输出电压V9的电压的下限电压电平箝位,能抑制内部电压V9的电压变动。
因此,充电泵电路100总工作,在不太要求低耗电性的用途中,能供给稳定的电压电平的内部电压V9。
在该结构中,电压电平检测用的MOS晶体管12、10c和10b的阈值电压由于制造参数的偏移而偏移时,也能抵消该阈值电压的偏移的影响,把内部电压V9设定为所需的电压电平。
[变更例]
图25是表示本发明实施例15的变更例的结构的图。图25所示的内部电压发生电路的结构与图13所示的内部电压发生电路对。总从时钟输入节点1,通过节点4对充电泵电路100供给重复信号。在电压电平判定电路112中,与图24所示的结构同样,检测用的MOS晶体管12的漏极节点14与主电源节点4结合。在该MOS晶体管12的源极节点11a和充电泵电路100的输出节点9之间设置导通时产生电压Vdrp的压降的压降元件群46。在该压降元件群46中,串联的压降元件由以二极管模式工作的MOS晶体管或二极管构成。作为该压降元件群46的内部结构,可以使用刚才的实施例1~6的任意结构。
在基准电压发生电路110中,从电源电路114对于电源节点21提供电压V1+VTN+Vdrp,从电源电路116对于电源节点22提供电压V2+VTN+Vdrp。图25所示的内部电压发生电路的其他结构与图24所示的内部电压发生电路的结构相同,对于对应的部分付与同一参照符号,省略详细的说明。
在图25所示的内部电压发生电路的结构中,充电泵电路100的输出电压V9如果比电压V25-VTN-Vdrp还低,则在MOS晶体管12和压降元件群46中,形成电流流过的路线。电流从主电源节点2向充电泵电路100的输出节点9供给,内部电压V9的电压电平上升。
而内部电压V9的电压电平为V25-VTN-Vdrp以上时,在MOS晶体管12和压降元件群46中,电流流过的路线被遮断,通过充电泵电路100,该内部电压V9的电压电平下降。
电源电路114和116为了分别抵消压降元件群46中包含的压降元件的阈值电压和/或正向下降电压的影响,具有设置与压降元件群46和MOS晶体管12同样的连接的电路部分(参照图13)。因此,在图25所示的结构中,即使压降元件群46的阈值电压和/或正向下降电压和MOS晶体管12的阈值电压变动,也能把内部电压V9的电压电平维持在给定的电压电平,能抑制内部电压V9的电压电平的变动。
[实施例16]
图26是表示本发明实施例16的内部电压发生电路的结构的图。图26所示的内部电压发生电路的结构与图16所示的内部电压发生电路的结构对应。充电泵电路200通过时钟输入节点1总接受信号,执行充电泵动作,生成内部电压V59。该充电泵电路200的结构与图16所示的充电泵电路200的结构相同,对于对应的部分付与相同的参照符号,省略详细的说明。
在图26所示的内部电压发生电路中,电压电平检测用的P沟道MOS晶体管62的漏极节点64与接地节点结合。在充电泵电路200的输出节点59和MOS晶体管62的源极节点61之间串联有连接为二极管的MOS晶体管65和60。MOS晶体管65和60分别是N沟道MOS晶体管和P沟道MOS晶体管,导通时产生电压VTN和|VTP|的压降。
基准电压发生电路210具有与图16所示的结构相同的结构,通过电阻元件73和74对分别提供给电源节点71和72的电压V3-VTN-2·|VTP|和V4-VTN-2·|VTP|进行电阻分割,生成基准电压V75。
在图26所示的内部电压发生电路中,内部电压V59如果比电压V75+2·|VTP|+VTN还高,则MOS晶体管65、60和62导通,电流从充电泵电路200的输出节点59流向接地节点,内部电压(升压电压)V59的电压电平下降。升压电压V59和基准电压V75的电压差比2·|VTP|-VTN还小时,MOS晶体管65、60和62的至少一个是不导通状态。在该状态下,充电泵电路200根据重复信号进行充电泵动作,生成升压电压V59。
因此,在该结构中,能把升压电压V59的上限箝位在(V3·R4+V4·R3)/(R3+R4)的电压电平,能抑制升压电压V59的电压变动。因此,充电泵电路200总工作,在不要求低耗电性的用途中,能把升压电压V59稳定维持在给定的电压电平。
另外,MOS晶体管65、60和62的阈值电压的影响在对电源节点71和72分别供给电压的电源电路中抵消,生成对于基准电压发生电路210的电源电压,能不受阈值电压的变动的影响,把升压电压V59维持在所需的电压电平。
[变更例]
图27是表示本发明实施例16的变更例的图。图27所示的内部电压发生电路与图18所示的内部电压发生电路的结构对应。该图27所示的内部电压发生电路与图18所示的内部电压发生电路的结构在以下方面不同。即从时钟输入节点1总对充电泵电路200供给重复信号,进行充电泵动作,生成内部电压V59。
在电压电平判定电路212中,检测用的MOS晶体管62的漏极节点直接与接地节点64结合。该MOS晶体管62的源极通过压降元件群67与充电泵电路200的输出节点59结合。该压降元件群67与图18所示的结构同样,由二极管元件、或连接为二极管的MOS晶体管构成,导通时,产生电压Vdrp的下降。
图27所示的内部电压发生电路的其他结构与图18所示的内部电压发生电路的结构相同,对于对应的部分付与同一参照符号,省略详细的说明。
在图27所示的内部电压发生电路的结构中,充电泵电路200总进行充电泵动作,生成升压电压V59。该升压电压V59如果比来自基准电压发生电路210的基准电压V75还高|VTP|+Vdrp,则压降元件群67的压降元件都导通,另外MOS晶体管62也导通,电流从充电泵电路200的输出节点流向接地节点,升压电压V59的电压电平下降。而升压电压V59和基准电压V75的差比|VTP|+Vdrp还小时,该压降元件群67和MOS晶体管62中,至少一个压降元件为不导通状态,遮断从充电泵电路200到接地节点的电路路线。
因此,在图27所示的结构中,能抑制升压电压V59的电压电平的上升,能稳定生成所需的电压电平的升压电压。另外,与图18所示的内部电压发生电路的结构同样,在基准电压V75中包含压降元件群67和检测用的MOS晶体管62的阈值电压和正向压降的电压成分,即使这些电压成分变动,也抵消其影响,能正确地把升压电压V59设定为所需的电压电平。
此次描述的实施例在各方面是例示,并不限制本发明。本发明的范围不是以上的说明,由权利要求书表示,意图包含与权利要求书均等的意思和范围内的全部变更。
产业上的可利用性
在上述的结构中,充电泵电路由一个充电泵电容元件和两个连接为二极管的MOS晶体管构成。但是,如果是利用电容元件的充电泵动作产生内部电压的电路,就能应用本发明。
另外,并不局限于内部电压发生电路,对于检测该内部电压的电压电平的电压检测电路,能应用本发明的电压电平判定电路和电源电路的结构。即利用半导体元件的压降特性,能对检测基准电压和目标电压的差的电路提供本发明。
本发明能对DRAM中的字线驱动电压发生电路、存储器阵列的衬底偏压发生电路和负电压发生电路应用。另外,在闪存等非易失性半导体存储器件中,能对产生写入/删除电压的电路应用本发明。
另外,在TFT有源矩阵电路中,能对产生驱动TFT象素驱动晶体管的栅驱动电压的电路应用本发明。
另外,本发明一般可以适用于作为构成要素而包含MOS晶体管且在内部生成与电源电压的电压电平不同的电压的半导体器件的内部电压发生电路和电压检测电路。