用于控制声场再现单元的方法和器件
本发明涉及对一个声场的重再现单元进行控制的方法和设备。
声音是一种随时间和空间演化的波状声学现象。现有技术主要作用于声音的时间方面,对空间方面的处理是非常不完善的。
特别地,现有的高质量再现系统实际上需要对再现单元进行预定的空间配置。
例如,所谓多通道系统将不同的预定信号发送到一些分布固定并已知的扬声器。
同样,所谓“高保真立体声(ambisonic)”系统,考虑到达接听者的声音的起源方向,需要配置必须遵守某些定位规则的一个再现单元。
在这些系统中,声音环境相应于接听者位置来说,被看作是约一个点的声源的一个角分布。信号相当于对这个分布以一个方向性函数的基,称为球谐函数的分解。
目前这些系统的发展状况中,以扬声器球面分布和基本上规则的角分布使高质量的再现才是可能的。
这样,当使用现有技术完成空间分布是任意的再现单元,将会大大损害再现的质量,尤其由于角扭曲的原因。
近来技术上的发展使得考虑在时间和三维空间对声场的建模成为可能,而不是考虑声音环境地角分布。
尤其,博士论文“Representation de champs acoustiques,application de scenes sonores compexes dans un contextemultimedia”[声场表示应用于多媒体环境中复声场传播和再现]巴黎VI大学,Jerome Daniel,2000年7月11日,定义了描述声场的波状特性的函数,以及允许在空间和时间的函数基上对其分解,这完全描述了三维声场。
然而,在该文献中,通过所谓“高保真度立体声”系统激发了理论结果,仅仅对于5个规则的球面分布才能获得高质量的再现。借助于再现单元任意空间配置,没有可能确保高质量的再现。
因此很明显,现有技术中没有一种系统使得借助于再现单元任意空间配置而实现高质量的再现成为可能。
本发明的目的是通过提供补救这个问题的一个方法和设备,用于确定信号以控制再现单元,从而用于恢复任意空间配置的声场。
本发明的一个课题是控制一个再现单元来恢复声场的方法,使得获得再现的声场,该声场具有特殊特性基本上独立于所述再现单元的内在特性,所述再现单元包括多个再现元素,其特征在于至少包括:
-建立有限个若干系数,表示所述待重现声场在时间和三维空间的分布的步骤;
-确定表示所述再现单元的重建滤波器步骤,包括考虑至少所述再现单元空间特性的子步骤;
-对所述再现单元的所述元素确定至少一个控制信号步骤,所述至少一个信号通过将所述再现滤波器应用到所述系数来得到;以及
-传递所述至少一个控制信号的步骤,目的是应用到所述再现元素,以生成由所述再现单元再现的声场。
根据其它特性:
-所述建立有限个若干系数,表示所述待重现声场在时间和三维空间的分布步骤包括:
-对声音环境提供包括时间和空间信息的一个输入信号的步骤;以及
-通过在空间-时间函数基上分解所述信息,对所述输入信号进行整形的步骤,该整形步骤以所述函数的线性组合形式,相应于所述声音环境,使发送所述待再现声场的一个表示成为可能;
-所述建立有限个若干系数,表示所述待再现声场在时间和三维空间分布的步骤包括:
-以空间-时间函数的线性组合形式,提供包括一个表示所述待再现声场的有限个若干系数的一个输入信号的步骤;
-所述空间-时间函数是所谓的傅立叶-贝塞尔函数和/或这些函数的线性组合;
-所述考虑至少所述再现单元空间特性的子步骤,对每个元素至少借助于参数来实现,这些参数对每个元素表示关于中央放置在接听区域的位置的三个坐标,和/或表示它的空间-时间响应。
-所述考虑至少所述再现单元空间特性的子步骤的实现此外还借助于:
-以加权系数形式描述一个空间窗口的参数,该窗口规定了对声场重建约束的空间分布;以及
-描述操作次序的参数,限制在所述确定重建滤波器的步骤中将要考虑的系数数目;
-所述考虑至少所述再现单元空间特性的子步骤的实现此外还借助于:
-包括一序列加上重建的空间-时间函数的参数;以及
-描述操作次序的参数,限制在所述确定再现滤波器的步骤中将要考虑的系数数目;
-所述考虑至少所述再现单元空间特性的步骤的实现此外还至少借助于选自如下参数之一:
-表示每个或几个元素关于放置在接听区域的中央的位置的三个坐标中至少一个坐标的参数;
-表示每个或几个元素的空间-时间响应的参数;
-描述操作次序的参数,限制在所述确定再现滤波器的步骤中将要考虑的系数数目;
-包括一序列加上重建的空间-时间函数的参数;
-表示所述再现元素模板的参数;
-一个表示希望的局部容量的参数,该局部容量适合所述再现单元配置的空间不规则性;
-一个定义所述再现元素的辐射模型的参数;
-表示所述再现元素频率响应的参数;
-一个表示一个空间窗口的参数;
-表示以加权系数形式的空间窗口的参数;以及
-一个表示空间窗口为球时它的半径的参数;
-该方法包括一个校正步骤,使得传递在所述确定再现滤波器步骤中使用的所有或者部分参数成为可能;
-对于至少一个重现元素,所述校正步骤包括:
-在接听区域获取表示所述至少一个元素辐射的信号的子步骤;以及
-确定所述至少一个元素的空间和/或声学参数的子步骤;
-所述校正步骤包括:
-发射一个特殊信号到所述再现单元的至少一个元素的子步骤,所述获取子步骤相应于获取发射的声波由所述至少一个元素响应;以及
-将所述获取的信号变换成表示发射的声波若干有限系数的子步骤,以允许实现确定空间和/或声学参数的所述子步骤;
-所述获取子步骤相应于接收若干系数的子步骤,该系数表示由所述至少一个元素以空间-时间函数的线性组合性形式生成的声场,在所述确定至少一个元素的空间和/或声学参数的子步骤中,直接使用这些参数;
-所述校正子步骤进一步包括在所述再现单元中至少一个元素,确定其在空间三维中至少一维的位置的一个子步骤;
-所述校正子步骤进一步包括确定所述再现单元中至少一个元素的空间-时间响应的一个子步骤,
-所述校正子步骤进一步包括确定所述再现单元中至少一个元素的频率响应的一个子步骤;
-该方法包括模拟实现所述确定再现滤波器步骤所需的所有或部分参数的一个步骤;
-所述模拟步骤包括:
-从所述确定重建滤波器的步骤使用的参数中确定丢失的参数的一个子步骤;
-多个计算子步骤使得确定丢失的参数值或多个参数值成为可能,该参数是如前面定义的作为接收参数、频率和预定的默认参数的函数;
-所述模拟步骤包括确定再现单元元素的一个序列的子步骤,该列元素作为频率的函数是活跃的,对所述序列元素实现所述计算子步骤;
-所述模拟步骤包括计算一个参数的子步骤,该参数表示操作次序,在所述确定再现滤波器步骤中,至少借助于再现单元所有或部分元素的空间位置,限制待考虑的参数数目;
-所述模拟步骤包括确定以加权系数为形式表示的空间窗口参数的步骤,借助于表示在球面参考系中的空间窗口的一个参数,和/或借助于表示所述空间窗口为球时它的半径的一个参数;
-所述模拟步骤包括确定加上重建的空间-时间函数的一个序列的子步骤,借助于再现单元的所有或部分元素的位置;
-该方法包括一个输入步骤,使得确定在所述确定重建滤波器步骤中使用的所有或部分参数成为可能;
-所述确定重建滤波器步骤包括:
-对有限个若干工作频率,实现多个计算的子步骤,使得能够传递一个用于权重声场的矩阵,一个表示再现单元辐射的矩阵,以及一个表示加上重建的空间-时间函数的矩阵;以及
-计算一个解码矩阵的子步骤,对有限个若干工作频率执行,借助于权重声场的矩阵,表示再现单元辐射的矩阵,表示加上重建的空间-时间函数的矩阵,以及借助于表示适合再现单元空间不规则性的希望的局部容量的参数和表示重建滤波器的参数;
-所述使得传递表示再现单元辐射的矩阵成为可能的计算子步骤,借助于表示每个元素的参数来实现:
-借助于它中心放置于接听区域的位置的三个坐标;和/或
-借助于它的空间-时间响应;以及
-所述计算子步骤使得传递表示再现单元辐射的矩阵成为可能,此外还借助于表示每个元素频率响应的参数来实现。
本发明的一个课题还是一个计算机程序,包括当所述程序在计算机上执行时,用于执行该方法步骤的程序代码指令。
本发明的一个课题还是一种类型的可移动介质,至少包括一个处理器和一个非易失存储器,其特征在于所述存储器包括一个程序,它包括当所述处理器执行程序时,用于执行该方法步骤的指令。
本发明的一个目标还是一个用于控制再现单元以恢复一个声场的设备,包括多个再现元素,其特征在于,它至少包括:
-确定表示所述再现单元的重建滤波器的方法,适合至少考虑所述再现单元的空间特性成为可能;以及
-确定用于所述再现单元元素的至少一个控制信号的方法,所述至少一个信号通过对重建滤波器应用有限个若干系数中获得,该系数表示所述待再现声场在时间和三维空间中的分布;
根据本发明的其它特征:
-该设备联系了对包括一个待再现的声音环境时间和空间信息的输入信号进行整形的方法,该方法适合于在空间-时间函数的基上分解所述信息,以便传递包括所述有限个若干系数的一个信号,该系数相应于所述声音环境,以所述空间-时间函数的线性组合的形式,表示待再现声场在时间和三维空间的分布;
-所述空间-时间函数是所谓的傅立叶-贝塞尔函数和/或这些函数的线性组合;
-所述确定重建滤波器的方法从如下参数接收至少一个参数作为输入:
-表示每个或一些元素中心放置在接收区域的位置的三个坐标中至少一个的参数;
-表示每个或一些元素的空间-时间响应的参数;
-描述操作次序的参数,该参数限制在所述确定再现滤波器的方法中将要考虑的系数数目;
-表示所述再现元素模板的参数;
-一个表示希望的局部容量的参数,该局部容量适合所述再现单元配置的空间不规则性;
-一个定义用于所述再现元素的辐射模型的参数;
-表示所述再现元素频率响应的参数;
-一个表示一个空间窗口的参数;
-表示以加权系数形式的空间窗口的参数;
-表示空间窗口为球时它的半径的参数;以及
-包括一序列加上重建的空间-时间函数的参数;
-每个由所述确定重建滤波器方法接收的参数由选自如下信号的一个信号传递:
-一个包括表示再现单元空间特性信息的定义信号;
-一个包括联系再现单元元素,表示声学特性信息的辅助信号;以及
-一个包括涉及一个优化策略信息的优化信号,
-以便借助于在这些信号中包含的信号来传递一个信号,该信号表示所述再现单元的重建滤波器;
-该设备联系了确定所有或部分参数的方法,这些参数由所述确定重建滤波器的方法接收,所述方法包括如下至少一个元素:
-模拟方法;
-校正方法;
-参数输入方法;
-所述用于确定重建滤波器的方法适合于确定一套滤波器,该滤波器表示再现单元元素的空间位置;以及
-所述确定重建滤波器的方法适合于确定一套滤波器,该滤波器表示由接听区域引起的空间效应。
仅以实例的方式并参考附图,阅读如下描述将更好地理解本发明,其中:
-图1表示了球面参考系;
-图2是根据本发明的再现系统图;
-图3是本发明方法的示意图;
-图4是详述校正方法图;
-图5是详述校正步骤图;
-图6是模拟步骤图;
-图7确定重建滤波器方法图;
-图8确定重建滤波器步骤图;
-图9对输入信号整形步骤的实施例方式;以及
-图10确定控制信号步骤的实施例方式。
如图1所表示的,以这种方式规定的并参考本文的坐标系统是一个传统球面参考系。
该参考系是一个以原点为O的正交参考系,包括三个轴(OX)、(OY)和(OZ)。
在这个参考系中,通过球坐标(r,θ,Φ)描述一个表示为x的位置,其中r代表关于原点O的距离,θ是垂直平面的方向,Φ是水平平面的方向。
在这样的参考系中,如果在每个瞬时t声压表示为p(r,θ,Φ,t)则一个声场是已知的,它的时间傅立叶变换表示为P(r,θ,Φ,f),其中f表示频率,在每一点都有定义。
图2是根据本发明的再现系统的一个表示。
该系统包括一个解码器1,控制一个包括多个元素31-3N的再现单元2,例如扬声器、声罩或任何其它声源,以任意方式排列在接听区域4。,参考系的原点O指的是任意放置在接听区域4中的再现单元的中心5。
这套空间、声学和电动力学特性一起考虑为再现的内在特性。
该系统还包括对一个输入信号SI整形的工具6和生成参数的工具7,工具7包括模拟8,校正9和参数输入10。
解码器1包括确定控制信号的工具11和确定重建滤波器的工具12。
解码器1接收一个信号SIFB作为输入,它包括表示三维待再现的声场信息,一个定义信号SL,它包括表示再现单元2空间特性的信息,一个辅助信号RP,它包括表示联系元素31-3N的声学特性的信息,以及一个优化信号OS,它包括涉及一个优化策略的信息。
解码器发射一个特殊的控制信号SC1-SCN,指向再现单元2的每一个元素31-3N。
图3图示表示了根据本发明参考图2的描述,系统中实现该方法的主要步骤。
该方法包括一个输入优化参数的步骤20,一个使得测量再现单元2某些特性成为可能的步骤30,以及一个模拟步骤40。
在由接口方法10完成的参数输入步骤20中,系统的某些操作参数可以由操作者手工定义,或者由适当的设备传递。
在校正步骤30中,参考图4和图5,更加详细地描述了校正方法9与再现单元2的31-3N每个元素依次一个接一个连接起来,使得可以测量与这些元素联系的参数。
由工具8完成的模拟步骤40,使得模拟操作系统所需的参数信号成为可能,这些信号既不能在步骤20输入也不能在步骤30测量。
然后生成参数的工具7传递定义信号SL、辅助信号RF和优化信号OS作为输出。
这样,步骤20、30和40使得确定完成步骤50所需的这套参数成为可能。
接着上面的步骤,该方法包括一个由解码器1的工具12实现的确定重建滤波器的步骤50,并且使得传递一个表示重建滤波器的信号FD成为可能。
确定重建滤波器的步骤50使得考虑至少再现单元2的空间特性成为可能,该再现单元2在输入步骤20、校正步骤30或模拟步骤40中定义。步骤50还使得考虑联系再现单元2的元素31-3N的声学特性,以及考虑涉及一个优化策略的信息成为可能。
在完成步骤50获得的重建滤波器随之存储在解码器1中,以至于步骤20、30、40和50仅在修改再现单元2或者修改优化策略时进行重复。
在工作过程中,信号SI包括将待再现声音环境的时间和空间信息,提供给整形工具6,例如通过直接获取或者读入一个记录或者借助于计算机软件合成的方法。这个信号SI在整形步骤60进行整形。完成此步骤后,工具6传递到解码器1一个信号SIFB,该信号包括有限个若干系数,它在空间-时间函数的基上表示一个相应于待再现声音环境的待再现声场的时间和三维空间分布。
作为一个变化,信号SIFB通过外部方式提供,例如一个包括合成方法的微型计算机。
本发明基于使用一系列空间-时间函数,使得描述任何声场特性成为可能。
在描述的本实施例中,这些函数是所谓的第一类球面傅立叶-贝塞尔函数,基本上看作是傅立叶-贝塞尔函数。
在无声源和无障碍物的区域,傅立叶-贝塞尔函数是波方程的解,且构成了位于该区域之外由声源制造的所有声场范围的一个基。
因此任何三维声场可以根据反傅立叶-贝塞尔变换表达式表示为傅立叶-贝塞尔函数的线性组合,表示为:
P ( r , θ , φ , f ) = 4 π Σ l = 0 ∞ Σ m = - 1 l P l , m ( f ) j l j l ( kr ) y l m ( θ , φ ) ]]>
在该方程中,Pl,m(f)项根据定义是场p(r,θ,φ,t)的傅立叶-贝塞尔系数, k = 2 πf c , ]]>c是声音在空气中的速度(340cm-1),j1(kr)是第一类1阶球面贝塞尔函数,定义为 j l ( x ) = π 2 x J l + 1 / 2 ( x ) , ]]>其中Jv(x)是是第一类v阶球面贝塞尔函数,y1m(θ,φ)是1阶和m项实球谐函数,m范围从-1到1,定义为:
y l m ( θ , φ ) = 1 π P l | m | ( cos θ ) cos ( mφ ) m > 0 1 2 π P l 0 ( cos θ ) m = 0 1 π P l | m | ( cos θ ) sin ( mφ ) m < 0 ]]>
在该方程中,Plm(x)是连带勒让德函数,定义为:
P l m ( x ) = 2 l + 1 2 ( l - m ) ! ( l + m ) ! ( 1 - x 2 ) m / 2 d m dx m P l ( x ) ]]>
P1(x)是勒让德多项式,定义为:
P l ( x ) = 1 2 l l ! d l dx l ( x 2 - 1 ) l ]]>
傅立叶-贝塞尔系数还可以通过系数pl,m(t)在时域表达,相应于系数pl,m(f)的时间反傅立叶变换。
作为变化,本发明的方法使用函数基可以表达为傅立叶-贝塞尔函数的线性组合,可能无限个傅立叶-贝塞尔函数的线性组合。
在由工具6完成的整形步骤60中,输入信号SI分解成傅立叶-贝塞尔系数pl,m(t),以这种方式建立系数以形成信号SIFB。
在输入步骤20中,对该整形步骤60实施分解傅立叶-贝塞尔系数,直到前面定义的一个限制次序L。
完成步骤60,通过整形工具6传递的信号SIFB引入方法11中,用于确定控制信号。这些方法11还接收表示重建滤波器的信号FD,该重建滤波器由考虑尤其是再现单元2的空间配置而定义的。
在完成步骤60传递的信号SIFB的系数通过在步骤70中方法11使用,该步骤借助于将步骤50确定的重建滤波器应用到这些参数上,从而确定用于再现单元2的元素的控制信号sc1-scN。
然后将信号sc1-scN进行传递,使得应用于再现声场的再现单元2的元素31-3N,其特性基本上独立于再现单元2的内在再现特性。
依靠本发明的方法,控制信号sc1-scN适合于允许声场的最佳再现,它最佳利用了再现单元2的空间和/和声学特性尤其是空间效应,以及集成挑选的优化策略。
这样,由于再现单元2的内在再现特性和再现声场的内在再现特性之间的准独立性,可能使得后者基本上和相应于声音环境的声场相一致,该声音环境由接收到作为输入的时间和空间信息来表示。
现在将更加详细地描述本发明方法的主要步骤。
在参数输入的步骤20中,操作者或一个合适的存储器系统能够规定所有的或部分计算参数,尤其是:
-Xn,表示元素3n关于接听区域中心5的位置;Xn在球面参考系中用rn,θn和Φn表达;
-Gn(f),表示再现单元的元素3n的模板,规定了操作该元素的频带;
-Nl,m,n(f),表示元素3n的空间-时间响应,相应于通过元素3n在接听区域4制造的声场,当后者接收一个激冲信号作为输入时;
-W(r,f),描述了对每个考虑的频率f,表示声场的重建约束在空间的分布的一个空间窗口,这些约束使得规定声场的重建工作的空间分布成为可能;
-W1(f),以傅立叶-贝塞尔系数的权重形式,以及对考虑的每个频率f,直接描述了表示声场的重建约束在空间分布的一个空间窗口;
-R(f),对每个考虑的频率f,表示空间窗口为球面时它的半径;
-Hn(f),对每个考虑的频率f,表示元素3N的频率响应;
-μ(f),对每个考虑的频率f,表示适合于再现单元配置的空间不规则性的希望的局部容量;
-{(lk,mk)}(f),对每个考虑的频率f,构成一序列加上重建的空间-时间函数;
-L(f),对每个考虑的频率f,对确定重建滤波器的工具12的操作加上限制次序;
-RM(f),对每个考虑的频率f,对再现单元2的元素31-3N定义辐射模型;
定义信号SL输送参数Xn、辅助信号RP、参数Hn(f)和Nl,m,n(f)以及优化信号OS,参数Gn(f)、μ(f)、{(lk,mk)}(f)、L(f)、W(r,f)、W1(f)、R(f)和RM(f)。
实现步骤20的接口工具10是传统类型的方法,例如微型计算机或其它任何适当的方法。
现在将更详细地描述校正步骤30和实现它的工具9:
图4中表示的是工具9的细节。它们包括一个分解模块91,一个用于确定激冲响应的模块92,以及一个用于确定校正参数的模块93。
校正工具9适合连接到一个声音获取设备100上,例如一个麦克风或者其它任何设施的设备,一个接一个依次连接到再现单元2的元素31-3N,使得信息从该元素中流出。
图5中表示的是校正步骤30的实施方式的细节,它由校正工具9完成,使得测量再现单元2的特性成为可能。
在一个子步骤32中,校正方法发射一个特殊信号un(t),例如伪随机序列MLS(最大长度序列)指向一个元素3n。在子步骤34中,获取设备100接收由元素3n响应信号un(t)的接收而发出的声波,并将表示收到的波信号cl,m(t)发送到分解模块91。
在子步骤36中,分解模块91将获取设备100拾起的信号分解成有限个若干傅立叶-贝塞尔系数ql,m(t)。
例如,设备100传递在再现单元的中心5压力信息p(t)和速度信息v(t)。在这种情况下,表示声场的系数q0,0(t)-q1,1(t)从信号c0,0(t)-c1,1(t)根据如下关系推导出:
q 0,0 ( t ) = 1 4 π c 0,0 ( t ) ]]>而c0,0(t)=p(t)
q 1 , - 1 ( t ) = ρc 3 4 π c 1 , - 1 ( t ) ]]>而c1,-1(t)=vY(t)
q 1,0 ( t ) = - ρc 3 4 π c 1,0 ( t ) ]]>而c1,0(t)=vZ(t)
q 1,1 ( t ) = - ρc 3 4 π c 1,1 ( t ) ]]>而c1,1(t)=vX(t)
在这些方程中,vX(t)、vY(t)和vZ(t)表示在考虑的正交参考系中的速度矢量v(t),ρ表示空气密度。
当这些系数通过模块91定义时,它们送给响应确定模块92。
在子步骤38中,响应确定模块92确定连接傅立叶-贝塞尔系数ql,m(t)和发射的信号un(t)的激冲响应hpl,m(t)。
由响应确定模块92传递的激冲响应送给参数确定模块93。
在子步骤39中,模块93推导出关于再现单元元素的信息。
在描述的实施例中,参数确定模块93确定元素3n和中心5之间的距离rn,借助于它的频率响应hp0,0(t),以及借助于声音从元素3n传播到获取设备100的测量的时间,依靠于关于响应hp0,0(t)的延迟估计过程。
在描述的实施例中,获取设备100能够明确地对空间中的源的方位进行编码。这样,对每个瞬时t三个响应hp1,-1(t)、hp1,0(t)和hp1,1(t)之间包括坐标θn和Φn的三角关系是很明显的。
模块93在一个任意选定的瞬时t,例如在hp0,0(t)达到最大值的瞬间,根据由响应hp1,-1(t)、hp1,0(t)和hp1,1(t)得到的值确定hp1,-1、hp1,0和hp1,1的值。
随之,模块93借助于hp1,-1、hp1,0和hp1,1通过下面的三角关系估计坐标θn和Φn:
-对hp1,0>0: θ n = arctan ( hp 1 , - 1 2 + hp 1,1 2 | hp 1,0 | ) ]]>
-对hp1,0<0: θ n = π - arctan ( hp 1 , - 1 2 + hp 1,1 2 | hp 1,0 | ) ]]>
-对hp1,1>0: φ n = - arctan ( hp 1 , - 1 hp 1,1 ) ]]>
-对hp1,1<0: φ n = π - arctan ( hp 1 , - 1 hp 1,1 ) ]]>
这些关系允许如下特殊情况:
-对hp1,0=0和hp1,1≠0: θ n = π 2 ]]>
-对hp1,1=0和hp1,-1=0和hp1,0=0:θn和Φn未确定
-对hp1,1=0和hp1,-1≠0和hp1,0=0: θ n = π 2 ]]>
-对hp1,1=0和hp1,-1≠0和hp1,0≠0: φ n = - signe ( hp 1 , - 1 ) π 2 ]]>
方便地,坐标θn和Φn在几个瞬时进行估计。坐标θn和Φn的最后确定通过各种估计之间的平均技术得到。
作为变化,借助于从可用的hpl,m(t)中的其它响应估计坐标θn和Φn,或者在借助于响应hpl,m(f)在频域估计。
如此定义,参数rn、θn和Φn由定义信号SL发送到解码器1中。
在描述的实施例中,模块93还传递每个元素3n的转移函数Hn(f),借助于从响应确定模块92中产生的响应hpl,m(t)。
构建响应hp’0,0(t)中存在一个解,相应于选择部分响应hp0,0(t),它包括去除由接听区域4引入反射的非零信号部分。频率响应Hn(f)由先前有窗的响应hp’0,0(t)的傅立叶变换导出。该窗口可以选自传统平滑窗口,例如矩形、Hamming、Hanning和Blackman窗口。
将这样定义的参数Hn(f)通过辅助信号RP传送给解码器1。
在描述的实施例中,模块93还传递再现单元2的每个元素3n的空间-时间响应Nl,m,n(f),由应用激冲响应hpl,m(t)的一个增益调节和一个时间校准导出,借助于以如下方式测量元素3n的距离:
ηl,m,n(t)=rnhpl,m(t+rn/c)
空间-时间响应ηl,m,n(t)包括表征元素3n的大量信息,尤其是它的位置和频率响应。它还表示元素3n的方向性,它的速度,以及它的由元素3n在接听区域4的辐射导致的空间效应。
模块93对响应ηl,m,n(t)施加一个时间窗口来调节持续的时间,这样可以考虑空间效应。在频域表示的空间-时间响应Nl,m,n(f)由响应ηl,m,n(t)的傅立叶变换得到。然后空间-时间响应Nl,m,n(f)加频率窗口使得调节其频带,以考虑空间效应。然后模块93传递这样整形的参数Nl,m,n(f),由辅助信号RP提供给解码器1。
对再现单元2的所有元素31-3N重复子步骤32-39。
作为变化,校正工具9适合接收属于元素3n的其它类型信息。例如,以有限个若干傅立叶-贝塞尔系数形式引入该信息,该系数表示由接听区域4的元素3n制造的声场。
尤其可以通过声学模拟,实现接听区域4的一个几何模拟来传递这些系数,使得能够确定由反射引起象源位置,该反射由于元素3n的位置和由于接听区域4的几何形状。
该声学模拟方法接收由模块92发出并且传递的信号un(t)作为输入,借助于信号c1,m(t),以及傅立叶-贝塞尔系数,由元素3n发出的声场叠加以及当元素3n接收信号un(t)时由象源发出的声场而确定。在这种情况下,分解模块91仅仅完成信号cl,m(t)传输到模块92。
作为变化,校正工具9包括获取属于元素31-3N其它信息的方法,例如基于激光的位置测量工具、信号处理工具完成束形成技术或者任何其它合适方法。
工具9执行校准步骤30,工具9包括例如电子卡或计算机程序或任何其它合适的工具。
现在将描述参数模拟步骤40和完成它的工具8的细节。对每个操作频率f完成该步骤。
描述的实施例需要知道3n每个元素由rn、θn和Φn描述的完全位置,和/或它由参数Nl,m,n(f)描述的空间-时间响应。
在第一实施例中,参考图6的描述,模拟这些参数,它们既不是由操作者或外部方式输入的,也不是测量的。
开始步骤40,首先确定从收到的信号RP、SL和OS中丢失的参数的子步骤41。
在子步骤42中,表示再现单元2的元素的响应的参数Hn(f)取默认值1。
在子步骤42中,表示再现单元2的元素的模板的参数Gn(f),由对参数Hn(f)在测量了后者的情况下取阈值来确定,由用户定义,或者由外部方式提供,否则Gn(f)取默认值1。
然后步骤40包括一个确定在考虑的频率f处活跃元素的子步骤44。
在该子步骤中,确定在频率f处活跃的一序列再现单元元素{n*}(f),这些元素是那些在该频率处模板Gn(f)非零的元素。该序列{n*}(f)包括Nf个元素,被优化信号OS传送到解码器1。它用于选择参数,这些参数相应于该套参数中在每个频率f处都活跃的元素。参数指标n*相应于在频率f处第n个活跃元素。
在子步骤45中,表示模块操作次序,用于确定在当前频率f处的滤波器的参数L(f),以如下方式确定:
-模拟工具8通过三角关系计算由再现单元的一对元素形成的最小角amin,例如:
a n 1 * , n 2 * = a cos ( sin θ n 1 * sin θ n 2 * cos ( φ θ n 1 * - φ θ n 2 * ) + cos θ n 1 * cos θ n 2 * ) ]]>
a min = min ( a n 1 * , n 2 * ) ]]>
在该套对(n1*,n2*)中,n1*≠n2*。
-模拟方法9确定最大次序L(f),它是遵从关系的最大整数:
L(f)<π/amin
在子步骤46中,定义构成再现单元元素的辐射模型的参数RM(f),将球面辐射模型设为默认,自动确定该参数。
在子步骤47中,描述空间窗口的参数Wl(f),该窗口表示声场以加权傅立叶-贝塞尔系数形式重建约束在空间的分布,以如下方式确定:
-如果提供或输入表示球面参考系中空间窗口的参数W(r,f),Wl(f)从它的值中导出,通过应用表达式:
W 1 ( f ) = 16 π 2 ∫ 0 ∞ W ( r , f ) j 1 2 ( kr ) r 2 dr ]]>
-以及当空间窗口是半径为R(f)的球时,表示一个半径的参数R(f)如果通过外部方式或输入来提供,Wl(f)从它的值中导出,通过表达式:
W l ( f ) = 8 π 2 R 3 ( f ) [ j l 2 ( kR ( f ) + j l + 1 2 ( kR ( f ) ) - 2 l + 1 kR ( f ) j l ( kR ( f ) ) j l + 1 ( kR ( f ) ) ] ]]>
否则,Wl(f)从L(f)中导出,通过表达式:
W l ( f ) = 8 π 2 R 3 [ j l 2 ( kR + j l + 1 2 ( kR ) - 2 l + 1 kR j l ( kR ) j l + 1 ( kR ) ] ]]>而 R = L ( f ) c 2 πf ]]>
-作为变化,如果没有规定空间窗口,模拟方法8分配给参数Wl(f)一个默认值,例如一个大小为2L(f)+1的Hamming窗口,以l来评价。
以从0-L(f)范围的l值来确定参数Wl(f)。
在子步骤48中,参数{(lk,mk)}(f)从参数L(f)和xn*中导出,以如下方式:
首先,工具9计算系数
G l , m , n * = y l m ( θ n * , φ n * ) ]]>
其中(θn*,φn*)是再现元素3n*的方向。
其次,方法9计算系数
G l , m = Σ n = 1 N f G l , m , n * 2 ]]>
第三,借助于辅助参数ε,工具8计算该序列参数{(lk,mk)}(f),称作C,且它最初是空的。对次序从0开始的l的每个值,方法8完成如下子步骤:
-搜索Gl=max(Gl,m);
-确定系数(l,m)的序列Cl,使得Gl,m(以dB)位于Gl-ε(以dB)和Gl(以dB)之间。
如果C中项的数目总数以及Cl中项的数目和比在频率f下活跃的再现元素数目和大或者相等,列C就是完整的,否则,将Cl加到C上,对Gl的搜索对l+1重新开始。
在元素31*-3N*在水平面以及序列{(lk,mk)}(f)既没有输入又没有提供的情况下,模拟方法8完成一个简化的处理:
系数序列{(lk,mk)}(f)取这样形式:
{(0,0),(1,-1),(1,1),(2,-2),(2,2)...(Ll,-Ll),(Ll,Ll)}
其中Ll的选择使得该列中元素的数目小于在频率f出活跃的元素3n*的数目Nf。由Ll取的值可以是(Nf-1)/2的整数部分,但是优选对Ll取一个更小的值。
在子步骤49中,表示在当前频率f下希望的合适于局部容量的参数μ(f),在0-l之间变化,能够自动确定,例如取默认值0.7。
这样,在步骤40中,模拟工具9使得能够补充信号SL、RP和OS,在这样方式下能够传递给确定重建滤波器的工具12的完成所需的这套参数。
作为参数输入和测量的函数,并没有执行一些描述的模拟子步骤。
对所有考虑的频率,重复包括这套41-49的子步骤的模拟步骤40。作为变化,在进入下一个子步骤前,对所有频率执行每一个子步骤。
在另一个实施例中,所有包括的参数提供给解码器1,然后步骤40仅仅包括接收和校验信号SL、RP和OS的子步骤41,以及确定在考虑的频率f下活跃元素的子步骤44。
执行步骤40的模拟工具8是专门用于该应用或任何其它合适的工具,例如计算机程序和电子卡。
现在将更加详细地描述确定重建滤波器的步骤50以及执行它的工具12。
图7表示的是确定重建滤波器的工具12,包括一个借助于信号SL、RP和OS的参数确定转移矩阵的模块82,以及确定一个解码矩阵D*的工具84。
工具12还包括一个用于存储重建滤波器响应的模块86,以及参数化重建滤波器的模块88。
在图8表示的是确定重建滤波器的步骤50的细节。
对每一个工作频率重复步骤50,它包括多个确定表示前面定义参数的矩阵的子步骤。
确定重建滤波器的步骤50包括一个确定矩阵W的子步骤51,用于借助于信号L(f)和Wl(f)权重声场。
W是一个大小为(L(f)+1)2的对角矩阵,包含权重系数Wl(f),并且发现其中每个系数Wl(f)在对角上是2l+1倍连接一致的。因此矩阵W具有如下形式:
同样,步骤50包括一个确定表示再现单元的辐射的矩阵的子步骤52,借助于参数Nl,m,n*(f)、RM(f)、Hn*(f)、xn*、和L(f)。
M是一个尺寸为(L(f)+1)2乘Nf的的矩阵,包括元素Ml,m,*,下标l,m标明行l2+l+m,n*标明列n。因此矩阵具有如下形式:
M 0 , 0,1 * M 0,0,2 * · · · · · · M 0,0 , N f * M 1 , - 1,1 * M 1 , - 1 , 2 * · · · · · · M 1 , - 1 , N f * M 1,0 , 1 * M 1,0 , 2 * · · · · · · M 1,0 , N f * M 1,1 , 1 * M 1,1 , 2 * · · · · · · M 1,1 , N f * · · · · · · · · · · · · · · · M L , - L , 1 * M L , - L , 2 * · · · · · · M L , - L , N f * · · · · · · · · · · · · · · · M L , 0 , 1 * M L , 0 , 2 * · · · · · · M L , 0 , N f * · · · · · · · · · · · · · · · M L , L , 1 * M L , L , 2 * · · · · · · M L , L , N f * ]]>
元素Ml,m,n*作为辐射模型RM(f)的函数得到:
-如果RM(f)定义了一个平面波辐射模型
M l , m , n * = y l m ( θ n * , φ n * ) H n * ( f ) ]]>
-如果RM(f)定义了一个球面波辐射模型
M l , m , n * = y l m ( θ n * , φ n * ) H n * ( f ) ξ l ( r n * , f ) ]]>
-如果RM(f)定义了一个模型,使用对空间-时间响应完成的测量并借助于使用平面波模型补偿丢失的测量,那么对于提供的下标l,m,n*和当前频率f,Ml,m,n*=Nl,m,n*(f)。Ml,m,n*的剩余部分根据下面关系确定:
M l , m , n * = y l m ( θ n * , φ n * ) H n * ( f ) ]]>
- 如果RM(f)定义了一个模型,使用对空间-时间响应完成的测量并借助于使用球面波模型补偿遗漏的测量,那么对于提供的下标l,m,n*和当前频率f, M l , m , n * = N l , m , n * ( f ) . ]]>Ml,m,n*的剩余部分根据下面关系确定:
M l , m , n * = y l m ( θ n * , φ n * ) H n * ( f ) ξ l ( r n * , f ) ]]>
在这些表达式中,ξl(rn*,f)通过关系式定义:
ξ l ( r n * , f ) = Σ k = 0 l ( l + k ) ! 2 k k ! ( l - k ) ! ( j 2 πr n * f c ) - k ]]>
这样定义的矩阵M表示再现单元的辐射。尤其,M表示再现单元的空间配置。
当该方法使用系数Nl,m,n(f)时,矩阵M表示元素31-3N在空间-时间的响应,因此尤其表示了由接听区域4引起的空间效应。
步骤50还包括确定表示要求进行理想重建的傅立叶-贝塞尔函数的矩阵F的一个子步骤,。这个矩阵借助于参数L(f)以及参数{(lk,mk))(f)以如下方式确定。
借助于序列{(lk,mk)}(f),称K为一序列{(lk,mk)}(f)元素(lk,mk)的号数,构建的矩阵F大小为K乘(L(f)+1)2。矩阵F的每一行k在列lk2+lk+m中包含一个1,其它处为0。例如,对一个所谓”5.1”型再现单元的配置,它的一序列{(lk,mk)}(f)可以取为{(0,0),(1,-1),(1,1)},矩阵F可以写为:
F = 1 0 0 0 0 0 0 · · · 0 0 1 0 0 0 0 0 · · · 0 0 0 0 1 0 0 0 · · · 0 ]]>
当参数μ(f)为0时,解码器1仅再现由参数{(lk,mk)}(f)列举的傅立叶-贝塞尔函数而忽略其它。当μ(f)设为1时,解码器理想地再现由{(lk,mk)}(f)标明的傅立叶-贝塞尔函数,但是此外还再现部分的许多其它傅立叶-贝塞尔函数,这些函数是在能够获得的函数中的次序L(f)中,所以全局上再现声场更接近于作为输入描述的再现声场。这种部分重建允许解码器1容纳在它们角分布中非常规则的再现配置。
由模块82执行的子步骤51-53可以顺次或同时执行。
其后确定重建滤波器的步骤50包括一个考虑前面确定的这套参数的子步骤54,由模块84执行,使得能够传递一个表示重建滤波器的解码矩阵D*。
借助于矩阵M、F、W以及借助于参数μ(f),根据如下表达式传递这个矩阵D*:
D * = μAM T W + AM T F T ( FMAM T F T ) - 1 F ( I ( L + 1 ) 2 - μMAM T W ) ]]>
而A=((1-μ)IN+μMTWM)-1
其中MT指M的共轭转置矩阵。
元素D*n,l,m以如下方式组织:
D * 1,0,0 D * 1,1 , - 1 D * 1,1 , 0 D * 1,1,1 · · · D * 1 , L , - L · · · D * 1 , L , 0 · · · D * 1 , LL D * 2,0,0 D * 2,1,0 D * 2,1,0 D * 2,1,1 · · · D * 2 , L , - L · · · D * 2 , L , 0 · · · D * 2 , LL · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · D * N f , 0,0 D * N f , 1,0 D * N f , 1,0 D * N f , 1,1 · · · D * N f , L , - L · · · D * N f , L , 0 · · · D * N f , L , L ]]>
因此矩阵D*表示再现单元的配置,表示联系元素31-3N的的声学特性,以及表示优化策略。
在该方法使用系数Nl,m,n(f)的情况下,矩阵D*尤其表示了由接听区域4引起的空间效应。
接着,在子步骤55中,用于存储在当前频率f处的重建滤波器响应的模块86,对频率f补充表示重建滤波器的频率响应的矩阵D(f),通过接收该矩阵作为输入。矩阵D*的元素存储在矩阵D(f)中,通过倒置前面参考图6描述的方法,来确定列{n*}(f)。更精确地,矩阵D*的每个元素D*n,l,m存储在矩阵D(f)的元素Dn*,l,m中。在完成该子步骤时没有确定的D(f)的元素固定为0。
这样使用列{n*}(f)使得考虑再现元素31-3N的异类模板成为可能。
矩阵D(f)的元素Dn,l,m以如下方式组织:
D 1,0,0 ( f ) D 1,1 , - 1 ( f ) D 1,1,0 ( f ) D 1,1,1 ( f ) · · · D 1 , L , - L ( f ) · · · D 1 , L , 0 ( f ) · · · D 1 , L , L ( f ) D 2,0,0 ( f ) D 2,1 , - 1 ( f ) D 2,1,0 ( f ) D 2,1,1 ( f ) · · · D 2 , L , - L ( f ) · · · D 2 , L , 0 ( f ) · · · D 2 , L , L ( f ) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · D N , 0,0 ( f ) D N , 1 , - 1 ( f ) D N , 1,0 ( f ) D N , 1,1 ( f ) · · · · · · D N , L , - L ( f ) · · · · · · D N , L , 0 ( f ) · · · · · · D N , L , L ( f ) ]]>
对所有考虑的频率重复这套子步骤51-55,结果存储在存储模块86中。在完成该步骤,表示这套重建滤波器频率响应的矩阵D(f)送给模块88用于参数化重建滤波器。
在子步骤58中,重建滤波器参数化模块88通过接收D(f)作为输入,提供表示重建滤波器的信号FD。矩阵D(f)的每个元素Dn,l,m(f)都是一个在信号FD中通过取各种形式的参数描述的重建滤波器。
例如,联系每个滤波器Dn,l,m(f)的信号FD的参数可以取如下形式:
-一个频率响应,它的参数直接就是对某些频率f的Dn,l,m(f)的值:
-一个有限激冲响应,它的参数dn,l,m(t)由对Dn,l,m(f)反时间傅立叶变换计算得到。对每个激冲响应dn,l,m(t)抽样,然后截断至尤其是每个响应的长度;或
-一个无限激冲响应递归滤波器的系数,借助于Dn,l,m(f)计算得到。
这样,在完成步骤50,用于确定重建滤波器的工具12传递一个信号FD到确定控制信号的工具11。
在该实施例中,这个信号FD表示如下参数:
-再现单元元素的空间配置;
-联系再现单元元素的声学特性,尤其是相应于其它情况,表示由接听区域4引起的空间效应的频率响应和空间-时间响应。
-优化策略,尤其是加上重建的空间-时间函数,声场重建约束的空间分布,以及适合再现单元2配置的空间不规则性的希望的局部容量。
确定重建滤波器的工具12可以以专门用于这种功能的软件形式实施,或者集成进电子卡中或任何其它工具。
现在将更详细地描述对输入信号整形的步骤60。
当实现系统时,它接收包括待再现声音环境的时间和空间信息输入信号SI。这种信息可以由许多种类,尤其:
-根据一个例如普通配音格式“B格式”的角分布对一个声音环境编码;
-对声音环境的一个描述,通过构成声音环境的虚拟源位置信息以及由这些源发出的信号;
-以多通道模式编码的一个声音环境,即通过发给功率扬声器的信号,它的角分布固定并且已知,以及尤其包括所谓”7.1”、”5.1”的四声道、立体声和单声道技术。
-一个声音环境,由它的声场以傅立叶-贝塞尔系数形式给出。
如参考图3开始,在步骤60中,整形方法6接收输入信号SI,并且分解成傅立叶-贝塞尔系数,它表示相应于由信号SI描述的声音环境的声场。将这些傅立叶-贝塞尔系数通过信号SIFB传递给解码器1。
作为输入信号SI种类的函数,整形步骤60不同。
参考图9,现在将描述在声音环境编码成信号SI的情况下,分解成傅立叶-贝塞尔系数,信号SI通过虚拟源构成它的位置信息和由这些源发出的信号的形式来描述。
一个矩阵E使得分配一个辐射模型,例如一个球面波模型给每个虚拟源s成为可能。E是一个大小为(L+1)2乘S的矩阵,其中S是在场景中存在的源数目,L是实施分解的次序。一个源s的位置由它的球坐标rs、θs和Φs标定。矩阵E的元素El,m,s可以以如下方式写出:
E l , m , s ( f ) = 1 r s e - 2 πj r s f / c y l m ( θ s , φ s ) ξ l ( r s , f ) ]]>
还需要引入的是矢量Y,包含对由源发出的信号ys(t)的时间傅立叶变换Ys(f)。Y可以写为:
Y=[Y1(f)Y2(f)...Ys(f)]t
傅立叶-贝塞尔系数Pl,m(f)放在大小为(L+1)2的矢量P中,其中次序l的2l+1项以次序l的升序一个接一个放置。系数Pl,m(f)是矢量P的指标l2+l+m的元素,可以写为:
P=EY
如参考图9的表示,获得傅立叶-贝塞尔系数Pl,m(f)构成信号SIFB,相应于通过滤波器El,m,s(f)对每个信号Ys(f)进行滤波,然后对结果求和。系数Pl,m(f)因此以如下方式表达:
P l m ( f ) = Σ s = 1 S Y s ( f ) E l , m , s ( f ) ]]>
根据传统滤波过程,将滤波器展开El,m,s(f)可能受到影响,例如:
-在频域滤波;
-借助于一个有限激冲响应滤波器滤波;
-借助于一个无限激冲响应滤波器滤波。它是一个最直接过程,在于从表达式El,m,s(f)中推导出递归滤波器,例如借助于双线性变换。
在信号SI相应于根据多通道格式表示的一个声音环境的情况下,整形方法6完成在下文的操作。
一个矩阵S使得分配给每个通道c一个辐射源,例如一个平面波源成为可能,源的发源方向(θc,Φc)相应于联系考虑的多通道格式中通道c的再现元素的方向。S是一个大小为(L+1)2乘C的矩阵,其中C是通道数。矩阵S的元素Sl,m,c可以写为:
S l , m , c = y l m ( θ c , φ c ) ]]>
还定义了包含相应于给个通道的信号yc(t)的矢量Y。Y可以写为:
Y=[y1(t)y2(t)...yc(t)]t
如前面在矢量P中组合在一起的傅立叶-贝塞尔系数Pl,m(f)通过如下关系得到:
P=SY
每个构成信号SIFB的傅立叶-贝塞尔系数Pl,m(f)通过信号yc(t)的线性组合得到:
p l m ( t ) = Σ c = 1 C y c ( t ) S l , m , c ]]>
在信号SI相应于一个根据B格式的声音环境的角描述的情况下,这种格式的四个信号W(t)、X(t)、Y(t)和Z(t)通过应用简单的增益进行分解:
p 0,0 ( t ) = 1 4 π W ( t ) ]]>
p 1,1 ( t ) = 3 8 π X ( t ) ]]>
p 1 , - 1 ( t ) = - 3 8 π Y ( t ) ]]>
p 1,0 ( t ) = 3 8 π Z ( t ) ]]>
最后,在信号FI相应于描述以傅立叶-贝塞尔系数为形式的声场的情况下,步骤60简单地包括信号传输。
这样,在完成步骤60时,工具6传递指向用于确定控制信号的工具11的一个信号SIFB,该信号相应于待再现声场分解成有限个若干傅立叶-贝塞尔系数。
工具6可以以专用计算机软件的形式实施,或者以专用的计算卡或任何其它合适方法的形式实施。
现在将更加详细地描述确定控制信号的步骤70。
确定控制信号的工具11,接收相应于表示待再现声场的傅立叶-贝塞尔系数的信号SIFB,以及表示由工具12产生的重建滤波器的信号FD作为输入。如前面陈述的,信号FD集成表征再现单元2的参数。
借助于这个信息,在步骤70中,工具11确定传递指向给元素31-3N的信号sc1(t)-scN(t)。这些信号通过对信号SIFB应用重建滤波器、频率响应Dn,l,m(f)得到,以及在信号FD中传输。
重建滤波器以如下方式应用:
V n ( f ) = Σ L l = 0 Σ m = - 1 l P l , m ( f ) D n , l , m ( f ) ]]>
Pl,m(f)是构成信号SIFB的傅立叶-贝塞尔系数,Vn(f)定义为:
V n ( f ) = SC n ( f ) r n e - 2 πj r n f / c ]]>
其中SCn(f)是SCn(t)的时间傅立叶变换。
根据信号FD参数的形式,每个由Dn,l,m(f)滤波的Pl,m(f)可以根据传统滤波过程完成,例如:
-信号FD直接提供了频率响应Dn,l,m(f),在频域完成滤波,例如借助于普通的块卷积技术;
-信号FD提供有限激冲响应dn,l,m(t),在时域通过卷积完成滤波;以及
-信号FD提供无限激冲响应递归滤波器,在时域通过递推关系完成滤波;
在图10表示的是有限激冲响应滤波器的情况。
对每个响应dn,l,m(t)专有的样品数目定义为Tn,l,m,这导致了如下卷积表达式:
v n [ t ] = Σ l = 0 L Σ m = - l l Σ τ = 0 T n , l , m - 1 d n , l , m [ τ ] p l , m [ t - τ ] ]]>
步骤70随着调节增益和应用的延迟而中止,使得能够时间上校准再现单元2的元素31-3N关于最远外的元素的波前。指向供给元素31-3N的信号sc1(t)-scN(t)从信号v1(t)-vN(t)通过如下表达式推导出:
sc n ( t ) = r n v n ( t - max ( r n ) - r n c ) ]]>
31-3N每个元素因此接收一个特殊的控制信号sc1-scN,并发射一个对优化待再现声场有贡献的声场。同时对整套元素31-3N的控制允许优化重建待再现声场。
进一步,描述的系统还可以以简单方式操作。
例如,在第一简化的实施例中,在步骤50中,确定滤波器的模块12仅仅接收如下参数:
-表示再现单元2元素3n位置的x;
-直接以傅立叶-贝塞尔系数权重形式,描述表示声场重建约束在空间的分布的W1;以及
-L,加上工具12的操作的限制次序,用于确定重建滤波器。
在这个简化的方式中,这些参数独立于频率,再现单元的元素31-3N都是活跃的并假设对所有频率都是理想的。步骤50的子步骤因此仅完成一次。在子步骤52中,借助于一个平面波辐射模型构建矩阵M。矩阵M的元素Ml,m,n简化成:
M l , m , n = y l m ( θ n , φ n ) ]]>
在这个简化的方式中,μ=1,列{(lk,mk)}(f)不含有项。在子步骤54中,模块84然后根据简化的表达式直接确定矩阵D:
D=(MTWM)-1MTW
不再需要存储重建滤波器的响应并且不完成子步骤55。同样,在矩阵D中描述的滤波器含有简单的增益,不再完成子步骤58,模块84直接提供信号FD。
在步骤70中,驱动信号的确定在时域完成,并且相应于系数pl,m(t)的简单线性组合,通过一个根据表达式的时间校准:
sc n ( t ) = r n v n ( t - max ( r n ) - r n c ) ]]>
而 v n ( t ) = Σ l = 0 L Σ m = - l l p l , m ( t ) D n , l , m ]]>
然后模块11提供指向再现单元的驱动信号sc1(t)-scN(t)。
在另一个简化的实施例中,在步骤50中,确定滤波器的模块12接收如下信号作为输入:
-表示再现单元2元素3n位置的xn;
-{(lk,mk)},构成加上重建的空间-时间函数序列;以及
-L,加上工具12的操作的限制次序,用于确定重建滤波器。
在这个简化方式中,这些参数独立于频率,再现单元的元素31-3N都是活跃的并假设对所有频率都是理想的。步骤50的子步骤因此仅完成一次。在子步骤52中,借助于一个平面波辐射模型构建矩阵M。矩阵M的元素Ml,m,n简化成:
M l , m , n = y l m ( θ n , φ n ) ]]>
确定矩阵F的子步骤53保持不变。在这个简化方式中μ=0以及在子步骤54中,模块84然后根据简化的表达式直接确定矩阵D:
D=MTFT(FMMTFT)-1F
不再需要存储重建滤波器的响应并且不完成子步骤55。同样,在矩阵D中描述的滤波器含有简单的增益,不再完成子步骤58,模块84直接提供信号FD。
在步骤70中,驱动信号的确定在时域完成,并且相应于系数pl,m(t)的简单线性组合,通过一个根据表达式的时间校准:
sc n ( t ) = r n v n ( t - max ( r n ) - r n c ) ]]>
而 v n ( t ) = Σ l = 0 L Σ m = - l l p l , m ( t ) D n , l , m ]]>
然后模块11提供指向再现单元的驱动信号sc1(t)-scN(t)。
很明显根据本发明,控制信号sc1(t)-scN(t)适合于最好利用再现单元2的空间特性,联系元素31-3N的声学特性以及优化策略,在这种方式下使得能够重建高质量的声场。
因此很明显,实现的方法使得尤其是获得一个三维声场的最佳再现成为可能,而不管再现单元2的空间配置。
本发明并不限于上面描述的实施例。
尤其,本发明的方法可以通过数字计算机实现,例如一个或更多计算机处理器或者数字信号处理器(DSP)。
还可以借助一个通用平台例如个人计算机来实现。
还可能设计一个电子卡可以插入另一个元素,适合于存储和执行本发明的方法。例如,这样的电子卡集成进计算机中。
在其它的实施例中,执行重建滤波器步骤所需的所有或部分参数从预记录的内存中提取出来,或者通过专用该功能的另一个设备传递。