压电体的制造方法、压电体、超声波探头、超声波诊断装置和非破坏检查装置.pdf

上传人:00062****4422 文档编号:682029 上传时间:2018-03-04 格式:PDF 页数:51 大小:2.30MB
返回 下载 相关 举报
摘要
申请专利号:

CN02827457.1

申请日:

2002.11.21

公开号:

CN1615670A

公开日:

2005.05.11

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回|||实质审查的生效|||公开

IPC分类号:

H04R31/00; H04R17/00; H01L41/22; H01L41/08

主分类号:

H04R31/00; H04R17/00; H01L41/22; H01L41/08

申请人:

松下电器产业株式会社;

发明人:

佐藤利春; 雨官清英; 杉山吉幸

地址:

日本大阪府

优先权:

2001.11.22 JP 357398/2001

专利代理机构:

北京市柳沈律师事务所

代理人:

李贵亮;杨梧

PDF下载: PDF下载
内容摘要

本发明提供一种压电体的制造方法和压电体、超声波探头、超声波诊断装置以及非破坏检查装置,压电体的制造方法是把具有厚度分布的同一形状的压电体高精度制作一个以上,使用该压电体实现可靠性高的超声波诊断等。其包括:压电前体材料成形工序,其把由压电陶瓷粉末构成的压电材料与粘合剂混合并溶在溶剂中,再把它用刮刀法等成形为从数十微米到数百微米级厚度的片状;压电前体材料层合工序(a)、(b),其把这样得到的片状压电前体材料(6)进行层合;加压工序(c)、(d),其把这样得到的压电前体材料层合体(7)进行模具压制;煅烧工序(e),其把这样加压了的压电前体材料层合体(7a)进行煅烧来得到希望的形状。

权利要求书

1、  一种压电体的制造方法,其特征在于,具有:第一工序,其由含有压电材料的一张以上的压电前体材料形成为规定的压电前体材料体;第二工序,其把所述压电前体材料体进行模具压制成形。

2、
  如权利要求1所述的压电体的制造方法,其特征在于,在所述第一工序中把一张以上的片状压电前体材料层合成对应于所述压电体厚度分布的厚度。

3、
  如权利要求2所述的压电体的制造方法,其特征在于,在所述第一工序中把对应于所述压电体厚度分布的张数的片状压电前体材料进行层合。

4、
  如权利要求2所述的压电体的制造方法,其特征在于,在所述第一工序中把对应于所述压电体厚度分布形状的片状压电前体材料层合一张以上。

5、
  如权利要求4所述的压电体的制造方法,其特征在于,在所述第一工序中把对应于所述压电体厚度分布宽度的片状压电前体材料层合一张以上。

6、
  如权利要求2所述的压电体的制造方法,其特征在于,在所述第一工序中把具有通孔的片状压电前体材料层合一张以上。

7、
  如权利要求6所述的压电体的制造方法,其特征在于,在所述第一工序中把具有对应于所述压电体厚度分布大小通孔的片状压电前体材料层合一张以上。

8、
  如权利要求1所述的压电体的制造方法,其特征在于,在所述第二工序中对应于压电体(1)的形状,在所述压电前体材料体的层合方向,和在对所述压电前体材料体层合方向的垂直方向模具压制所述压电前体材料体。

9、
  一种压电体的制造方法,其特征在于,具有:制造工序,其制造表面是非平面状而背面是平面状的第一压电体,和表面、背面都是平面状,而在表面、背面上分别设有电极的平板状第二压电体;粘合工序,把所述第一压电体的背面与所述第二压电体的表面进行粘合。

10、
  一种压电体,其特征在于,把由含有压电材料的压电前体材料构成的压电前体材料体进行模具压制成形。

11、
  如权利要求10所述的压电体,其特征在于,所述压电前体材料体由根据所述压电体的厚度分布而层合的片状压电前体材料所构成。

12、
  如权利要求10所述的压电体,其特征在于,所述压电前体材料体由根据所述压电体的厚度分布层合的、具有通孔的片状压电前体材料的片状压电前体材料构成。

13、
  如权利要求10所述的压电体,其特征在于,所述压电前体材料体由包括根据所述压电体厚度分布的、具有大小通孔的片状压电前体材料的片状压电前体材料所构成。

14、
  如权利要求10所述的压电体,其特征在于,在层合了所述多张片状压电前体材料的压电前体材料体上形成多个电极层,以保持电极间一定的距离。

15、
  一种超声波探头,其特征在于,设置了权利要求10所述的压电体。

16、
  一种超声波诊断装置,其特征在于,设置了权利要求15所述的超声波探头。

17、
  一种非破坏检查装置,其特征在于,设置了权利要求15所述的超声波探头。

说明书

压电体的制造方法、压电体、超声波探头、 超声波诊断装置和非破坏检查装置
技术领域
本发明涉及在诊断、治疗、非破坏检查等处使用的压电体的制造方法、压电体、超声波探头、超声波诊断装置和非破坏检查装置。
背景技术
如图24所示,现有的这种超声波探头包括:压电体1,其在短轴方向中央部薄,并随着向端部靠近厚度顺次变厚;音响匹配层2,其为了高效发送或接收超声波而与压电体1的厚度变化相配合地形成中央部薄,端部厚;音响透镜3,其设置成用于对短轴方向以一点固定焦点收敛超声波;背面负载材料4,在压电体1的背面起音响衰减作用,由压电体1的振动激励的超声波频率的频谱随压电体1厚度的变化而变化,厚度越薄则越向高频移动(特开昭58-29455号公报)。
在此,如前所述厚度顺次变化的压电体1,其中央部薄的部分是用高频振动,越向端部去则越是用低频振动。而且高频振动的中央部其有效口径小,随着端部的频率降低则有效口径逐渐变大。因此使用图24所示超声波探头的超声波诊断装置等的非破坏检查装置,能把高频成分取出并在近距离形成细的超声波束,相反地能把低频成分取出并在远距离形成细的超声波束,所以其使取出的频率成分阶段性变化,从近距离到远距离地形成细的超声波束,使方位分辨能力提高。
如图25所示,这种压电体的制造方法是用圆板状的砂轮5进行磨削加工(特开平7-107595号公报)。在此,砂轮5具有与压电体1相同的宽度,其形状是通过磨削加工能把压电体1加工成具有希望厚度分布的形状。在实际加工时,砂轮5一边以与平板形状的压电体1底面平行的x轴平行的轴作为旋转轴旋转,一边在图中y轴方向上移动来进行加工。
还有如图26所示,这种压电体的制造方法是把以旋转轴为中心旋转的砂轮5的边缘倾斜接触在压电体1的表面上,沿图中的x轴方向从压电体1的一端开始加工,在砂轮5移动到另一端的这期间,控制在图中z轴方向上的砂轮5的位置以加工出具有压电体1所希望厚度分布的形状(特开平7-107595号公报)。在此,一边把所述加工沿图中的y轴方向反复移动,一边对压电体1的整个y轴方向长度实施加工。
但这种现有的超声波探头例如在利用于超声波诊断装置时,其使用频率是数MHz左右,当产生的该使用频率是压电体厚度的共振频率时,则例如使用磨削加工PZT等压电陶瓷的压电体时,由于其厚度是数百μm级,所以有在压电体厚度薄的部分破损可能性非常大的问题。
而且现有的超声波探头其构成压电振子的压电体厚度不均匀,所以有存在于压电体厚度方向上下面上的电极间的距离也不均匀的问题。在该电极间加电压实施压电体极化处理时,随着电极间距离的不均匀,其电场强度也不均匀,产生极化状态有偏差。而且在极化时,特别是在中央部薄的部分有比端部大的电场,所以应变量大,根据情况有可能引起压电体的破裂。在实际使用之际驱动超声波探头时也由压电体的厚度分布而产生电场强度分布,所以同样地有可能由应变量的分布而引起压电体破裂等的破损。
而且现有压电体的制造方法是进行磨削加工,所以有厚度薄的部分加工困难的问题。越是使用频率是数十MHz等的高频,其加工困难程度越增加。不仅是压电体的厚度变化,而且在宽度不均匀时,侧面的形状需要变化,但若对所述数百μm厚度的侧面部分实施加工,则砂轮等加工工具也需要是数百μm以下的微细工具,加工困难度也非常高。再加上是微细加工,所以确保加工精度也困难,把同一形状高精度且稳定地制作多个也是困难的。
发明内容
本发明是为解决这些问题而开发的,其目的在于提供一种把具有厚度分布的同一形状地压电体高精度制作多个,使用该压电体实现可靠性高的超声波诊断等用的压电体的制造方法、压电体、超声波探头和超声波诊断装置。
本发明压电体的制造方法具有:第一工序,把含有压电材料的一张以上的压电前体材料形成规定的压电前体材料体;第二工序,把所述压电前体材料体进行模具压制成形。用该方法不用进行微细磨削加工等困难的机械加工就能容易形成具有厚度分布的压电体。而且由于是模具压制成形,所以能把同一形状稳定精度地制作多个。
本发明压电体的制造方法是在所述第一工序中把一张以上的片状压电前体材料层合成对应于所述压电体厚度分布的厚度。用该方法能灵活应对压电体希望的厚度。
本发明压电体的制造方法是在所述第一工序中把对应于所述压电体厚度分布的张数和形状的片状压电前体材料进行层合。用该方法能灵活应对压电体希望的厚度和形状。
本发明压电体的制造方法是在所述第一工序中把对应于所述压电体厚度分布的宽度尺寸的片状压电前体材料层合一张以上。用该方法能灵活应对希望压电体的厚度和形状。在此理想的是,把具有通孔的片状压电前体材料,更理想的是,把具有对应于所述压电体厚度分布大小通孔的片状压电前体材料层合一张以上。
本发明压电体的制造方法具有:制造工序,制造表面是非平面状而背面是平面状的第一压电体,和表面、背面都是平面状而在表面、背面上分别设置有电极的平板状第二压电体;粘合工序,把所述第一压电体的背面与所述第二压电体的表面进行粘合。用该方法能把电极间的电场强度固定,能抑制极化时的偏差而实现均匀的极化,并且消除极化时和使用时压电体应变量的分布而把压电体破裂等的破损防患于未然。
本发明的压电体具有把由含有压电材料的压电前体材料构成的压电前体材料体进行模具压制成形的结构。用该结构不用进行磨削加工等困难的机械加工就能形成具有厚度分布的压电体。而且由于是模具压制成形,所以能够同一形状高精度且稳定地制作多个。
本发明压电体的所述压电前体材料体具有由根据所述压电体的厚度分布而层合的多张片状压电前体材料构成的结构。用该结构通过层合成压电体所希望的厚度,能灵活应对压电体的厚度分布。
本发明压电体的所述压电前体材料体由根据所述压电体的厚度分布层合一张以上的片状压电前体材料构成,其具有在该多张片状压电前体材料中包括有通孔的片状压电前体材料的结构。用该结构能灵活应对压电体希望的厚度和形状。
本发明压电体的所述压电前体材料体具有由根据所述压电体的厚度分布而层合的、包括有通孔的片状压电前体材料的、包括一张以上片状压电前体材料的结构。用该结构能灵活应对压电体希望的厚度和形状。在此,最好设置具有对应于所述压电体厚度分布大小通孔的片状压电前体材料。
本发明的压电体具有在层合了所述多张片状压电前体材料的压电前体材料体上,形成多个电极层的结构,以保持电极间一定的距离。用该结构能把电极间的电场强度固定,在极化时能均匀极化,并且消除极化时和使用时应变量的分布,而把压电体破裂等的破损防患于未然。本发明的压电体具有把由根据压电体的厚度分布层合的片状压电前体材料构成的压电前体材料体进行模具压制成形的结构。用该结构不用进行磨削加工等困难的机械加工就能形成具有厚度分布的压电体。而且由于是模具压制成形,所以能把同一形状高精度且稳定地制作多个。通过层合成压电体所希望的厚度,能灵活应对压电体的厚度分布。
本发明的超声波探头具有设置了用下面制造方法制造的压电体的结构,该制造方法具有:制造工序,制造表面是非平面状而背面是平面状的第一压电体和表面、背面都是平面状而在表面、背面上分别设置有电极的平板状第二压电体;粘合工序,把所述第一压电体的背面与所述第二压电体的表面进行粘合。用该结构由于是使用不进行困难的机械加工而是通过压制模具的形状复制制作的压电体,所以能抑制在压电体上产生难于确认的微细裂纹等,确保稳定的超声波探头特性,同时,复制压制模具形状的压电体适合于把同一形状稳定地制造多个,所以通过使用它来抑制超声波探头特性的个体差异。尽管厚度不固定但电极间距离固定的压电体通过实现均匀的极化状态能实现稳定的超声波收发特性。由于也没有驱动时应变量的分布,所以防止产生压电体微细裂纹等,维持稳定的超声波探头特性。
本发明的超声波诊断装置具有具备设置了用下面制造方法制造的压电体的超声波探头的结构,该制造方法具有:制造工序,制造表面是非平面状而背面是平面状的第一压电体和表面、背面都是平面状而在表面、背面上分别设置有电极的平板状第二压电体;粘合工序,把所述第一压电体的背面与所述第二压电体的表面进行粘合。用该结构通过使用特性稳定且没有个体差异的超声波探头,能进行可靠性高的超声波诊断。
本发明的非破坏检查装置具有具备设置了用下面制造方法制造的压电体的超声波探头的结构,该制造方法具有:制造工序,制造表面是非平面状而背面是平面状的第一压电体和表面、背面都是平面状而在表面、背面上分别设置有电极的平板状第二压电体;粘合工序,把所述第一压电体的背面与所述第二压电体的表面进行粘合。用该结构通过使用特性稳定且没有个体差异的超声波探头,能进行可靠性高的非破坏检查。
附图说明
本发明压电体的制造方法、压电体、超声波探头、超声波诊断装置和非破坏检查装置的特点和优点从与下面附图一起的叙述中就能明确。
图1是表示本发明第一实施例压电体制造工序的图;
图2是表示本发明第一实施例另外的加压工序(使用前后左右约束壁的情况)的图;
图3是表示本发明第二实施例压电体制造工序的图;
图4是表示本发明第二实施例另外的压电前体材料层合工序(把同一形状的压电前体材料层合在厚度部分上时)的图;
图5是表示本发明第三实施例压电体制造工序的图;
图6是表示能适用本发明其他实施例压电体制造工序(省略切边工序时)的压电体形状的图;
图7是表示能适用本发明其他实施例压电体制造工序(省略切边工序时)的压电体形状的图;
图8是表示本发明第三实施例另外的压电前体材料层合工序(把具有同一形状通孔的压电前体材料进行层合时)的图;
图9是表示本发明第四实施例压电体制造工序的图;
图10是表示本发明第四实施例另外的加压工序(从上下和左右进行加压时)的图;
图11是表示本发明第四实施例另外的压电前体材料层合工序(预先设置宽度方向的厚度分布时)的图;
图12是表示本发明第五实施例压电体的概略图;
图13是表示本发明第五实施例压电体制造方法(粘合)的图;
图14是表示本发明第六实施例压电体制造工序的图;
图15是表示本发明第七实施例压电体制造工序的图;
图16是表示本发明第七实施例另外的压电前体材料层合工序(把同一形状的压电前体材料层合在厚度部分上时)的图;
图17是表示本发明第八实施例压电体制造工序的图;
图18是表示本发明第八实施例另外的压电前体材料层合工序(把具有同一形状通孔的压电前体材料进行层合时)的图;
图19是表示本发明第八实施例压电体(具有两层内部电极时)的概略图;
图20是表示本发明第九实施例超声波探头的概略图;
图21是表示本发明第十实施例超声波探头的概略图;
图22是表示本发明第十一实施例超声波诊断装置的概念图;
图23是表示本发明第十二实施例非破坏检查装置的概念图;
图24是现有超声波探头的概略图;
图25是表示在现有超声波探头中使用的压电体的制造方法的图;
图26是表示在现有超声波探头中使用的压电体的其他制造方法的图。
具体实施方式
下面用附图说明本发明的实施例。
[第一实施例]
如图1所示,本发明第一实施例压电体1的制造方法具有:压电前体材料成形工序和压电前体材料层合工序(第一工序),其由含有压电材料的一张以上的压电前体材料6形成为规定的压电前体材料层合体7(压电前体材料体);加压工序(第二工序),其把压电前体材料层合体7进行模具压制成形。
本实施例的压电体1一个面是平面,另一个面是具有凹面的弯曲形状,其具有随着从中央向端部靠近厚度变厚的形状,这样来构成在超声波诊断装置(图22所示)和非破坏检查装置(图23所示)中使用的超声波探头(图20所示)。
在压电体1的制造工序中包括:压电前体材料成形工序(未图示),其由压电陶瓷粉末等压电材料成形为片状压电前体材料6;压电前体材料层合工序(图1(a)、(b)所示),其把这样得到的片状压电前体材料6进行层合;加压工序(图1(c)、(d)所示),其把这样得到的压电前体材料层合体7进行模具压制;煅烧工序(图1(e)所示),其把加压了的压电前体材料层合体7a进行煅烧来得到希望的形状。
在图1中,压电前体材料6在具有柔软性的同时在施加加压力等的力时能吸收其力而变形。在所述加压工序中使用的压制模具8由例如铁等金属材料构成,其具有考虑了煅烧时收缩等的形状,其对由压电前体材料6层合而成的压电前体材料层合体7施加压力进行压制,其用于在为了使制作的压电前体材料层合体8成为希望的不均匀厚度而复制其形状,以最终煅烧得到的压电体1具有希望的不均匀厚度。
在所述压电前体材料成形工序中把例如由PZT等压电陶瓷粉末构成的压电材料与粘合剂(必要的话包括可塑剂等)混合并溶在溶剂中,再把它用刮刀法等成形为从数十微米到数百微米级厚度的片状,而得到压电前体材料6。
在所述压电前体材料层合工序中,首先如图1(a)所示,为了在煅烧前完成的最终阶段达到希望厚度地在预先考虑压电前体材料6的片状厚度和层合张数的基础上层合片状压电前体材料6,形成图1(b)所示的压电前体材料层合体7。层合时根据需要施加压力和热。
如图1(c)所示,在所述加压工序中通过形状复制能对压电前体材料层合体7形成希望的厚度分布,通过使用例如由铁等金属构成的压制模具8,在压电前体材料层合体7的厚度方向上施加压力按压,制作如图1(d)所示那种厚度不均匀的压电前体材料层合体7a。
在所述煅烧工序中通过煅烧该压电前体材料层合体7a,能不进行磨削加工等机械加工地制造具有希望不均匀厚度的压电体1。而且由于是复制压制模具8的形状,所以能多个制作形状稳定的压电体1。
如上所述,本发明第一实施例压电体1的制造方法由于具有把含有压电材料的压电前体材料6形成规定的压电前体材料层合体7的压电前体材料成形工序与压电前体材料层合工序,和把压电前体材料层合体7模具压制成形的加压工序,所以能不进行磨削加工等困难的机械加工而形成具有厚度分布的压电体。即由于是层合厚度薄的片状压电前体材料6来制作压电前体材料层合体7,所以通过改变压电前体材料6的层合数就能灵活应对各种压电体1的厚度。而且由于是模具压制成形,所以能把同一形状高精度稳定地制作多个。
本发明第一实施例的压电体1由于具有把由含有压电材料的压电前体材料6构成的压电前体材料层合体7a进行模具压制成形的结构,所以能实现具有厚度分布且尺寸精度高且容易制作的压电体。
本实施例对层合片状压电前体材料6来制作压电前体材料层合体7的情况进行了说明,但本发明除此之外,用一张压电前体材料6,即使使用以一层形成希望厚度的压电前体材料6也能得到同样的效果。而且没有层合压电前体材料6来形成压电前体材料层合体7的麻烦事。
本实施例对作为压电体1的最终形状是一个面具有凹面的弯曲形状并随着从中央向端部靠近厚度变厚的情况进行了说明,但本发明除此之外,通过把压制模具8的形状适当变更,即使是凸面或凹凸面等的任意形状也能得到同样的效果。
本实施例对形成四边形板状压电体1的情况进行了说明,但本发明除此之外,通过把压电前体材料6的形状和压制模具2的形状适当变更,即使是圆板形状等任意形状也能得到同样的效果。
本实施例对如图1(c)所示在压电前体材料层合体7的前后左右甚麽都没有的状态下进行加压的情况进行了说明,但本发明除此之外,如图2所示,通过在前后左右设置例如与压制模具8同样地由铁等金属材料构成的约束壁9,也能得到同样的效果。还能防止在加压时压电前体材料层合体7向前后左右的极端扩展。
[第二实施例]
图3表示本发明第二实施例压电体的制造方法。其与第一实施例的不同点在于:在压电前体材料成形工序和压电前体材料层合工序(第一工序)中是把一张以上的压电前体材料6(片状压电前体材料)层合成对应于压电体1厚度分布的厚度。最好是层合的压电前体材料6的形状和张数是对应于压电体1的厚度分布。根据该方法,通过把压电前体材料6适当层合成希望的厚度,也能得到灵活应对压电体1希望厚度分布的效果。
本实施例的压电体1一个面是平面,另一个面是具有弯曲形状的凹面,其具有随着从中央向端部靠近厚度变厚的形状,这样来构成在超声波诊断装置(图22所示)和非破坏检查装置(图23所示)中使用的超声波探头(图20所示)。
在压电体1的制造工序中以第一实施例为准其包括:压电前体材料成形工序(未图示),其由压电陶瓷粉末等压电材料成形为片状压电前体材料6;压电前体材料层合工序(图3(a)、(b)所示),其把这样得到的片状压电前体材料6进行层合;加压工序(图3(c)、(d)所示),其把这样得到的压电前体材料层合体7进行模具压制;煅烧工序(图3(e)所示),其把这样加压了的压电前体材料层合体7a进行煅烧来得到希望的形状,等等工序。
在图3中,压电前体材料6如前所述由压电材料和粘合剂等构成,在具有柔软性的同时在施加加压力等的力时能吸收其力而变形。压制模具8由例如铁等金属材料构成,其具有考虑了煅烧时收缩等的形状,其对压电前体材料层合体7施加压力进行压制,其用于在为了使制作的压电前体材料层合体7a成为希望的不均匀厚度而复制其形状,以最终煅烧得到的压电体1具有希望的不均匀厚度。
在所述压电前体材料成形工序中把例如由PZT等压电陶瓷粉末构成的压电材料与粘合剂(必要的话包括可塑剂等)混合并溶在溶剂中,再把它用刮刀法等成形为从数十微米到数百微米级厚度的片状,而且根据需要为了宽度尺寸的不同而进行加工调整,而得到压电前体材料6。
在所述压电前体材料层合工序中,首先如图3(a)所示,为了在煅烧前完成的最终阶段达到希望厚度而在预先考虑压电前体材料6的片状厚度变化和层合张数的基础上层合片状压电前体材料6。把对应于压电体1厚度分布形状的压电前体材料6层合一张以上。例如也可以把对应于压电体1厚度分布的宽的片状压电前体材料层合一张以上。或也可以把对应于压电体1厚度分布张数的压电前体材料6进行层合。在此为了制造出压电体1的两端部比中央部厚的形状,越靠近上层越把宽度加工调整为窄的压电前体材料6分别层合在两端部,形成如图3(b)所示的压电前体材料层合体7。以第一实施例为准,层合时根据需要施加压力和热。
在所述加压工序中以第一实施例为准,使用例如由铁等金属构成的压制模具8如图3(c)所示,在压电前体材料层合体7的厚度方向上施加压力,制作如图3(d)所示那种厚度不均匀的压电前体材料层合体7a。在此,由于在所述压电前体材料层合工序中使图3(b)所示的压电前体材料层合体7的形状接近具有最终厚度分布的压电体1的形状,所以能抑制压制模具8加压时的加压力,能降低由加压引起的不必要且不良的变形和压电前体材料层合体7a内部的残留应力,同时对仅由压电前体材料6变形就不能维持的厚度分布大的情况(厚度薄的部分与厚的部分的差大的情况)有利。
在所述煅烧工序中以第一实施例为准,通过煅烧压电前体材料层合体7a,能不进行磨削加工等机械加工地制造具有希望不均匀厚度的压电体1。而且由于是复制压制模具8的形状,所以能制作多个形状稳定的压电体1。即使使用以一层成为希望厚度的压电前体材料6也能得到同样的效果。而且没有层合压电前体材料6来形成压电前体材料层合体7的麻烦事。
如上所述,本发明第二实施例的压电体1由于设置了由对应于压电体1厚度分布形状的一张以上的压电前体材料6(片状压电前体材料),在此是在对应于压电体1厚度分布的宽度上由对应于压电体1厚度分布张数的压电前体材料6(片状压电前体材料)构成的压电前体材料层合体7a(前本体材料),所以能高精度地实现希望的厚度分布。即根据压电体1的厚度分布来层合薄的片状压电前体材料6而制作压电前体材料层合体7,所以通过改变压电前体材料6的层合数就能灵活应对各种压电体1的厚度。
本实施例对作为压电体1的最终形状是一个面具有凹面的弯曲形状并随着从中央向端部靠近厚度变厚的情况进行了说明,但本发明除此之外,一个面即使是凸的形状和具有凹凸形状的面也能通过有选择地在厚度厚的部分增加压电前体材料6的层合数来变更厚度分布,不限制压电体1形状地能得到同样的效果。
本实施例对形成四边形板状压电体1的情况进行了说明,但本发明除此之外,对通过把压电前体材料6的形状和压制模具2的形状适当变更成希望形状的圆板形状等任意形状也能得到同样的效果。
本实施例对把加工调整成越向上层去宽度越窄的压电前体材料6进行层合,以更接近最终形状来形成压电前体材料层合体7的情况进行了说明,但本发明除此之外,通过如图4所示在所述最终形状两端厚度厚的部分处层合同一宽度或同一形状的压电前体材料6来形成压电前体材料层合体7能得到同样的效果。而且其能省略把压电前体材料6加工调整成不同宽度的麻烦事,只要在厚度厚的部分有选择地增加层合数,则各压电前体材料6的形状和形状变化就没有限制。
[第三实施例]
图5表示本发明第三实施例压电体的制造方法。其与第一实施例地不同点在于:在根据压电体1的厚度分布而把一张以上具有通孔的压电前体材料6进行层合。根据该方法也能得到灵活应对希望的压电体1厚度和形状的效果。
本实施例的压电体1一个面是平面,另一个面是具有弯曲形状的凹面,其具有随着从中央向端部靠近厚度变厚的形状,这样来构成在超声波诊断装置(图22所示)和非破坏检查装置(图23所示)中使用的超声波探头(图20所示)。
在压电体1的制造工序中以第一实施例为准其包括:压电前体材料成形工序(未图示),其由压电陶瓷粉末等压电材料成形为片状压电前体材料6;冲压工序(未图示),其把这样得到的片状压电前体材料6根据需要进行冲压来设置矩形窗状的通孔;压电前体材料层合工序(图5(a)、(b)所示),其把这样得到的窗框状压电前体材料6和片状压电前体材料6进行层合;切边工序(图5(c)所示),其把这样得到的压电前体材料层合体7A的前后边部切去;加压工序(图5(d)、(e)所示),其把这样得到的压电前体材料层合体7进行模具压制;煅烧工序(图5(f)所示),其把这样加压了的压电前体材料层合体7a进行煅烧来得到希望的形状,等等工序。
图5中压电前体材料6如前所述由压电材料和粘合剂等构成,在具有柔软性的同时在施加加压力等的力时能吸收其力而变形。压制模具8由例如铁等金属材料构成,其具有考虑了煅烧时收缩等的形状,其对压电前体材料层合体7施加压力进行压制,其用于在为了使制作的压电前体材料层合体7a成为希望的不均匀厚度而复制其形状,以最终煅烧得到的压电体1具有希望的不均匀厚度。
在所述压电前体材料成形工序中,把例如由PZT等压电陶瓷粉末构成的压电材料与粘合剂(必要的话包括可塑剂等)混合并溶在溶剂中,再把它用刮刀法等成形为从数十微米到数百微米级厚度的片状,这样来得到压电前体材料6。
所述冲压工序根据需要对片状压电前体材料6实施冲压等的加工,设置调整成不同尺寸的通孔(矩形)。
在所述压电前体材料层合工序中,首先如图5(a)所示,为了在煅烧前完成的最终阶段达到希望厚度地在预先考虑压电前体材料6的片状厚度变化和层合张数的基础上层合片状和窗框状的压电前体材料6。在此为了制造出压电体1的两端部比中央部厚的形状,对应于压电体1的厚度分布把具有通孔的片状压电前体材料层合一张以上。最好是通孔具有与压电体1的厚度分布相对应的大小。在此是把越向上层去窗框的宽度越窄,即把通孔调整加工成大了的压电前体材料6同时层合在同一厚度位置的两端,形成如图5(b)所示的压电前体材料层合体7A。以第一实施例为准,层合时根据需要施加压力和热。
在此,通过把压电前体材料6的外边制成同一形状(同一尺寸),在冲通孔时把位置精度定正确,把压电前体材料6对齐重叠,就能抑制两端厚度厚的压电前体材料6部分的位置错移地进行层合。或即使压电前体材料6的形状不是同一形状,也可以通过在各压电前体材料6相邻的两个边中至少形成一处直角,把通孔对该直角进行定位,把所有层合的压电前体材料6的直角部分对齐重叠,就能抑制位置错移地进行层合。通过使压电前体材料6的通孔在宽度方向上变化大小并根据厚度变化而顺次变化压电前体材料6的宽度地进行层合(在此是通过从通孔宽度方向大小的从小的向大的变化地进行层合),就能形成随着从中央部向端部靠近顺次变厚形状的压电前体材料层合体7A。
所述切边工序是在进入到所述加压工序前,把由层合设置了通孔的压电前体材料6而产生的不需要部分切去。在由于压电前体材料层合体7A的厚度薄的部分极端的薄,若把所述不需要部分切去的话则不能维持需要的形状而整个压电前体材料层合体7A弯曲时,也可以不切去所述不需要部分而把它作为增强部分进行利用。这时只要在所述加压工序完成后或所述煅烧构成完成后把所述不需要部分切去便可。
在所述加压工序中以第一实施例为准,使用例如由铁等金属构成的压制模具8如图5(d)所示,在压电前体材料层合体7的厚度方向上施加压力,制作如图5(e)所示那种厚度不均匀的压电前体材料层合体7a。在此,由于在所述切边工序中使图5(c)所示的压电前体材料层合体7的形状接近了具有最终厚度分布的压电体1的形状,所以能抑制压制模具8加压时的加压力,能降低由加压引起的不必要且不良的变形和压电前体材料层合体7a内部的残留应力,同时对仅由压电前体材料6变形就不能维持的厚度分布大的情况(厚度薄的部分与厚的部分的差大的情况)有利。
在所述煅烧工序中以第一实施例为准,通过煅烧压电前体材料层合体7a,能不进行磨削加工等机械加工地制造具有希望不均匀厚度的压电体1。而且由于是复制压制模具8的形状,所以能制作多个形状稳定的压电体1。
如上所述,本发明第三实施例的压电体1由于是由根据压电体1的厚度分布而层合的一张以上的压电前体材料6(压电前体材料层合体7a:片状压电前体材料)所构成,且包括在该压电前体材料6上有通孔的,所以能高精度地实现压电体希望的厚度和形状。
本发明第三实施例压电体1的制造方法由于是把具有对应于压电体1厚度分布大小通孔的压电前体材料6层合一张以上而成,所以能灵活应对压电体希望的厚度和形状。
本实施例对作为压电体1的最终形状是一个面具有凹面的弯曲形状并随着从中央向端部靠近厚度变厚的情况进行了说明,但本发明除此之外,对一个面是凸的形状和具有凹凸形状的面也能通过有选择地在厚度厚的部分增加压电前体材料6的层合数,控制设置在压电前体材料6上的通孔的位置和大小以及数量来变更厚度分布,不限制压电体1形状地能得到同样的效果。
本实施例对作为压电体1的最终形状是一个面具有凹面的弯曲形状并为了随着从中央向两端(两个方向)去厚度变厚而把不需要的边缘部分除去的情况进行了说明,但本发明除此之外,作为压电体1的最终形状如图6(a)、(b)或图7(a)、(b)所示,当适用随着从中央向端部靠近厚度变厚的形状时,不产生不需要的边缘部分,也不需要除去边缘部分的切边工序。
本实施例对越向上层靠近层合通孔宽度方向越大的压电前体材料6而形成与最终形状更接近形状的压电前体材料层合体7A的情况进行了说明,但本发明除此之外,只要是能实现压电体1最终形状的,也可以是如图8所示省略把通孔加压调整成不同宽度的麻烦而把形成有同一形状通孔的压电前体材料6(图8(a)所示)进行层合,而形成压电前体材料层合体7A(图8(b)所示),通过在厚度厚的部分有选择地增加层合数,控制设置在压电前体材料6上的通孔的位置和大小、数量来变更厚度分布,不限制压电体1形状地能得到同样的效果。
[第四实施例]
图9表示本发明第四实施例压电体的制造方法。其与第一实施例的不同点在于:在对压电前体材料层合体7进行模具压制的方向不仅是压电前体材料6的层合方向,而且包括对压电前体材料6层合方向的垂直方向。根据该方法,也能得到不用对不均匀宽度的压电体进行微细机械加工等的困难机械加工就能形成的效果。
本实施例的压电体1具有在厚度方向上中央部的宽度窄而随着向上下去宽度变宽的形状,这样来构成在超声波诊断装置(图22所示)和非破坏检查装置(图23所示)中使用的超声波探头(图20所示)。
在压电体1的制造工序中以第一实施例为准其包括:压电前体材料成形工序(未图示),其由压电陶瓷粉末等压电材料成形为片状压电前体材料6;压电前体材料层合工序(图9(a)、(b)所示),其把这样得到的片状压电前体材料6进行层合;加压工序(图9(c)所示),其把这样得到的压电前体材料层合体7从上下左右方向进行模具压制;煅烧工序(图9(d)、(e)所示),其把这样加压了的压电前体材料层合体7a进行煅烧来得到希望的形状,等等工序。
图9中压电前体材料6如前所述由压电材料和粘合剂等构成,在具有柔软性的同时在施加加压力等的力时能吸收其力而变形。压制模具8由例如铁等金属材料构成,其具有考虑了煅烧时收缩等的形状,其对压电前体材料层合体7施加压力进行压制,其用于在为了使制作的压电前体材料层合体7a成为希望的不均匀厚度而复制其形状,以最终煅烧得到的压电体1具有希望的不均匀厚度。
在所述压电前体材料成形工序中把例如由PZT等压电陶瓷粉末构成的压电材料与粘合剂(必要的话包括可塑剂等)混合并溶在溶剂中,再把它用刮刀法等成形为从数十微米到数百微米级厚度的片状,这样来得到压电前体材料6。
在所述压电前体材料层合工序中以第一实施例为准,为了在煅烧前完成的最终阶段达到希望厚度而在预先考虑压电前体材料6的片状厚度和层合张数的基础上层合如图9(a)所示的片状压电前体材料6,形成如图9(b)所示的压电前体材料层合体7。层合时根据需要施加压力和热。
如图9(c)所示,在所述加压工序中使用具有加压所需要的强度且容易加工的例如由铝和黄铜等金属材料构成的压制模具8对压电前体材料层合体7进行压制。在此除了与压电前体材料层合体7接触的面是平面的上下压制模具8之外,还有从左右也加压的与压电前体材料层合体7接触的面是中央部具有凸形状的压制模具8,这样就形成如图9(d)所示的在侧面的中央部宽度窄而随着向上下去宽度变宽的具有不均匀宽度的压电前体材料层合体7a。这样代替对薄的压电体1的侧面部分用加工刀具直接接触加工,而是把容易加工的金属材料作为压制模具8加工成希望的形状,再复制该形状,能防止压电体1的破损,同时能实现适合把形状精度稳定的压电体1制作多个的制造方法。
在所述煅烧工序中通过煅烧该压电前体材料层合体7a,能不进行磨削加工等机械加工而制造具有希望不均匀厚度的压电体1。而且由于是复制压制模具8的形状,所以如前所述,能制作多个形状稳定的压电体1。
本实施例对制作作为压电体1的形状是在厚度方向上中央部宽度窄而随着向上下去宽度变宽的形状的情况进行了说明,但本发明除此之外,从左右使用按压接触的压制模具8而加工成具有希望不均匀宽度的形状也能得到同样的效果。而且即使是宽度方向不均匀等的形状也能制作。
本实施例对压电体1左右宽度不均匀情况的制造工序进行了说明,但本发明除此之外,在前后宽度不均匀或前后左右两者的宽度不均匀时,通过适当选择压制模具8的压制位置,从前后或从前后左右两个方向用压制模具8加压也能得到同样的效果。
本实施例对上下压制模具8仅用平面按压平而在厚度方向上没有厚度分布的情况进行了说明,但本发明除此之外,通过适当变更上下压制模具8的形状,即使对制造在厚度方向上具有厚度分布的压电体1的情况也能得到同样的效果。
本实施例是对使压制模具8接触上下左右,而前后什么均没有接触情况进行了说明,但如图10所示,把例如与压制模具3同样由例如铝和黄铜等金属材料构成的约束壁9设置在前后,也能得到同样的效果。而且通过从前后方向加压能防止在加压时压电前体材料层合体7向前后极端的扩展。
本实施例对向层合同一形状的压电前体材料6制作的压电前体材料层合体7从左右按压压制模具8而成形的情况进行了说明,但如图11(a)所示,预先层合横向宽度(左右方向的长度)不同的压电前体材料6,制作如图11(b)所示接近最终压电体1形状的压电前体材料层合体7之后再加压成形也能得到同样的效果。这样在成形没有一定宽度的压电体1时,通过把相当于宽度窄的部分的压电前体材料6的宽度变窄而进行层合,能对不均匀宽度的压电体的制作提高其宽度方向的尺寸精度,而且能灵活应对宽度方向的尺寸变化。抑制压制模具8的加压力,能够降低加压时不必要且不良的变形和压电前体材料层合体7a内部的残留应力。
[第五实施例]
如图12所示,本发明第五实施例的压电体1在是层合了多张压电前体材料6(片状压电前体材料)的压电前体材料层合体7(压电前体材料体)上保持一定电极间距离地形成了外部电极10和内部电极11(多个电极层)。
图12中,压电体1例如由压电陶瓷形成,其具有对图12的左右方向而中央部的厚度薄并随着从中央部向端部去而厚度变厚的形状。外部电极10由例如烧焊银和喷镀金膜构成,施加在平板状的底面上。内部电极11与底面的外部电极10大致平行地施加在压电体1内部,为了在其侧面容易进行电连接而设置了绕入侧面和底面的绕入电极12。在此是隔开希望间隔地设置,以使绕入电极12与外部电极10不导通。
现有的压电体一般是在该压电体上下露出的面上施加电极,是图12所示形状的压电体时,上面恰好是沿凹面形状施加电极,底面是形成平板状电极。即两个电极间的距离不固定,在压电体1中央部电极间距离窄,随着从中央部向端部去而两个电极间的距离变宽,因此在极化处理时或实际使用时施加在压电体上的电场强度不固定,在图12左右方向的极化状态上产生偏差。与两端厚的部分比,在中央部薄的部分上有强的电场,所以应变大,也有可能抵抗不了该应变而根据情况在压电体薄的部分产生微细的裂纹(显微裂纹)。
与此相反,图12所示的压电体1其外部电极10与内部电极11间的距离是固定的,所以即使在极化处理时或实际使用时也不产生各部位的电场强度分布,所以能实现均匀的极化状态,且能抑制成为压电体1微细裂纹(显微裂纹)产生原因的应变分布。
在此,图13表示本实施例压电体的制造方法。本实施例的压电体1由压电体1a、1b这两个构成,上侧的压电体1a其上面具有凹面形状,下面具有平板形状。下侧的压电体1b其上下面都是平板形状,厚度固定,在其下面施加外部电极10,在其上面施加内部电极11。为了电连接容易,绕入右侧面和下面地设置了绕入电极12,其与内部电极11连接。在此是隔开希望间隔地设置,以使绕入电极12与外部电极10不导通。通过把上侧的压电体1a与下侧的压电体1b用例如环氧树脂系粘接剂和银膏胶等接合能制造本实施例的压电体1。
如上所述,本发明第五实施例的压电体1在是层合了多张压电前体材料6的压电前体材料层合体7上保持一定电极间距离地形成了外部电极10和内部电极11,所以在电极间施加的电场强度保持固定,能实现均匀的极化。
本发明第五实施例压电体1的制造方法由于具有:制造工序,其制造表面是非平面状而背面是平面状的第一压电体1a和表面、背面都是平面状并在表面、背面上分别设置了外部电极10、内部电极11以及绕入电极12(电极)的平板状第二压电体1b;接合工序,其把第一压电体1a的背面与第二压电体1b的表面接合,所以在电极间施加的电场强度保持固定,能实现均匀的极化。而且消除了极化时和使用时压电体1的应变量分布,能把压电体1微细裂纹等的破损防患于未然。
[第六实施例]
图14表示本发明第六实施例压电体的制造方法。其与第五实施例的不同点在于:在混合了压电材料与粘合材料的至少两层以上的压电前体材料6间至少形成一层以上的内部电极11。根据该方法,也能得到能容易且高精度形成具有厚度分布的同一形状压电体的效果。而且能得到在实现均匀极化的同时把压电体破损防患于未然的效果。
本实施例的压电体1以第五实施例为准,其具有在厚度方向上中央部宽度窄,随着向上下去而宽度变宽的形状,其在平板状的底面上设置外部电极10,在压电体1内部设置与外部电极10大致平行的内部电极11,设置从该内部电极11绕入压电体1单侧侧面和底面的绕入电极12。
在压电体1的制造工序中以第一实施例为准其包括:压电前体材料成形工序(未图示),其由压电陶瓷粉末等压电材料成形为片状压电前体材料6;压电前体材料层合工序(图14(a)、(b)所示),其把这样得到的片状压电前体材料6(在多张压电前体材料6的一张上形成有内部电极11)进行层合;加压工序(图14(c)所示),其把这样得到的压电前体材料层合体7从上下方向进行模具压制;煅烧工序(图14(d)、(e)所示),其把这样加压了的压电前体材料层合体7a进行煅烧来得到希望的形状;形成电极工序(图14(f)所示),其在这样得到的压电体1上设置外部电极10和绕入电极12。
图14中压电前体材料6如前所述由压电材料和粘合剂等构成,在具有柔软性的同时在施加加压力等的力时能吸收其力而变形。压制模具8由例如铁等金属材料构成,其具有考虑了煅烧时收缩等的形状,其对压电前体材料层合体7施加压力进行压制,其用于在为了使制作的压电前体材料层合体7a成为希望的不均匀厚度而复制其形状,以最终煅烧得到的压电体1具有希望的不均匀厚度。
在所述压电前体材料成形工序中把例如由PZT等压电陶瓷粉末构成的压电材料与粘合剂(必要的话包括可塑剂等)混合并溶在溶剂中,再把它用刮刀法等成形为从数十微米到数百微米级厚度的片状,这样来得到压电前体材料6。
在所述压电前体材料层合工序中以第一实施例为准,为了在所述煅烧前完成的最终阶段达到希望厚度而在预先考虑压电前体材料6的片状厚度和层合张数的基础上层合片状压电前体材料6,这时把由例如白金膏胶等在煅烧压电前体材料6时能耐高温的电极材料构成的内部电极11设置在压电前体材料6的表面上(图14(a)所示)。设置有内部电极11的压电前体材料6的位置必须考虑使内部电极11在煅烧后的最终形状中位于在厚度方向上希望的位置处。而且位于压电前体材料6表面上的内部电极11的位置和大小必须在考虑最终内部电极11与未图示的信号线电连接并取出电信号之后来决定。图14的图中考虑到从右侧面取出信号线而预先把内部电极11靠右设置在压电前体材料6上,而且为了预防使内部电极11不必要从左侧露出而发生电短路等难于预期的问题,而在左侧的边缘不配置内部电极11。
如图14(c)所示,在所述加压工序中使用具有加压所需要的强度且容易加工的例如由铝和黄铜等金属材料构成的压制模具8对压电前体材料层合体7进行压制。在此通过与压电前体材料层合体7接触的面是平面的上下压制模具8进行加压,这样就形成如图14(d)所示的在侧面的中央部宽度窄而随着向上下去宽度变宽且在底面上设置有大致平行的内部电极11的压电前体材料层合体7a。这样在薄的压电体1的侧面部分把容易加工的金属材料作为压制模具8加工成希望的形状,而复制该形状,能防止压电体1的破损,同时能实现适合把形状精度稳定的压电体1制作多个的制造方法。
在所述煅烧工序中通过煅烧所述压电前体材料层合体7a,能不进行磨削加工等机械加工而制造具有希望不均匀厚度的压电体1。而且由于是复制压制模具8的形状,所以如前所述,能制作多个形状稳定的压电体1。
如图14(f)所示,所述形成电极工序在煅烧后的压电体1的平板状底面上设置由例如烧焊银和喷镀金膜构成的外部电极10。为了与内部电极11容易进行电连接,而在压电体1A的右侧面设置与内部电极11连接且从该连接位置通过所述右侧面直绕入到底面的绕入电极12。该绕入电极12用例如烧焊银和喷镀金膜等电极材料形成在压电体1上。
本实施例对作为压电体1A的最终形状是一个面具有凹面的弯曲形状并随着从中央向端部靠近厚度变厚的情况进行了说明,但本发明除此之外,对一个面是凸的形状和具有凹凸形状的面也能通过把压制模具8的形状适当变更成希望的形状,而不限制压电体1A形状地能得到同样的效果。
本实施例对形成四边形板状压电体1的情况进行了说明,但本发明除此之外,即使是园板形状等任意形状,通过把压电前体材料6的形状和压制模具8的形状适当变更成希望的形状也能得到同样的效果。
本实施例在所述加压工序中是从压电前体材料层合体7的上下方向进行加压的,但本发明除此之外,通过设置例如由铁等金属材料构成的约束壁9(如图2所示),还能防止在加压时压电前体材料层合体7向前后左右的极端扩展。
[第七实施例]
图15表示本发明第七实施例压电体的制造方法。其与第六实施例的不同点在于:在混合了压电材料与粘合材料并对压电体1A厚度厚的部分有选择地层合多层的至少两层以上的压电前体材料6之间至少形成一层以上的内部电极11。根据该方法,也能得到通过变更压电前体材料6的层合数来灵活应对具有厚度分布的压电体厚度的效果。而且能得到在实现均匀极化的同时把压电体破损防患于未然的效果。
本实施例的压电体1以第五实施例为准,其具有在厚度方向上中央部宽度窄,随着向上下去而宽度变宽的形状,其在平板状的底面上设置外部电极10,在压电体1内部设置与外部电极10大致平行的内部电极11,设置从该内部电极11绕入压电体1单侧侧面和底面的绕入电极12。
在压电体1的制造工序中以第一实施例为准其包括:压电前体材料成形工序(未图示),其由压电陶瓷粉末等压电材料成形为片状压电前体材料6;压电前体材料层合工序(图15(a)、(b)所示),其把这样得到的片状压电前体材料6(在多张压电前体材料6的一张上形成有内部电极11)进行层合;加压工序(图15(c)所示),其把这样得到的压电前体材料层合体7从上下方向进行模具压制;煅烧工序(图15(d)、(e)所示),其把这样加压了的压电前体材料层合体7a进行煅烧来得到希望的形状;形成电极工序(图15(f)所示),其在这样得到的压电体1上设置外部电极10和绕入电极12。
图15中压电前体材料6如前所述由压电材料和粘合剂等构成,在具有柔软性的同时在施加加压力等的力时能吸收其力而变形。压制模具8由例如铁等金属材料构成,其具有考虑了煅烧时收缩等的形状,其对压电前体材料层合体7施加压力进行压制,其用于在为了使制作的压电前体材料层合体7a成为希望的不均匀厚度而复制其形状,以最终煅烧得到的压电体1、1A具有希望的不均匀厚度。
在所述压电前体材料成形工序中,把例如由PZT等压电陶瓷粉末构成的压电材料与粘合剂(必要的话包括可塑剂等)混合并溶在溶剂中,再把它用刮刀法等成形为从数十微米到数百微米级厚度的片状,并根据需要把宽度尺寸加工调整成不同,这样来得到压电前体材料6。
在所述压电前体材料层合工序中以第一实施例为准,为了在所述煅烧前完成的最终阶段达到希望厚度地在预先考虑压电前体材料6的片状厚度和层合张数的基础上,层合加工调整成了越向上层去宽度越窄了的片状压电前体材料6,这时把由例如白金膏胶等在煅烧压电前体材料6时能耐高温的电极材料构成的内部电极11设置在压电前体材料6的表面上(图15(a)所示)。设置有内部电极11的压电前体材料6的位置必须考虑使内部电极11在煅烧后的最终形状中位于在厚度方向上希望的位置处。而且位于压电前体材料6表面上的内部电极11的位置和大小必须要考虑最终内部电极11与未图示的信号线电连接并取出电信号来决定。图15的图中考虑到从右侧面取出信号线而预先把内部电极11靠右设置在压电前体材料6上,而且为了预防发生电短路等难于预期的问题,使内部电极11不必要从左侧露出而在左侧的边缘不配置内部电极11。
如图15(c)所示,在所述加压工序中使用具有加压所需要的强度且容易加工的例如由铝和黄铜等金属材料构成的压制模具8对压电前体材料层合体7进行压制。在此通过与压电前体材料层合体7接触的面是平面的上下压制模具8进行加压,这样就形成如图15(d)所示的在侧面的中央部宽度窄而随着向上下去宽度变宽且在底面上设置有大致平行的内部电极11的压电前体材料层合体7a。这样在薄的压电前体材料层合体7a的侧面部分把容易加工的金属材料作为压制模具8加工成希望的形状,再复制该形状,能防止压电体1的破损,同时能实现适合把形状精度稳定的压电体1制作多个的制造方法。
在所述煅烧工序中通过煅烧所述压电前体材料层合体7a,能不进行磨削加工等机械加工而制造具有希望不均匀厚度的压电体1。而且由于是复制压制模具8的形状,所以如前所述,能制作多个形状稳定的压电体1。
如图15(f)所示,所述形成电极工序在煅烧后的压电体1的平板状底面上设置由例如烧焊银和喷镀金膜构成的外部电极10。为了与内部电极11容易进行电连接,而在压电体1的右侧面设置与内部电极11连接且从该连接位置通过所述右侧面直绕入到底面的绕入电极12。该绕入电极12用例如烧焊银和喷镀金膜等电极材料形成在压电体1上。
如上所述,本实施例是层合厚度薄的片状压电前体材料6来制作压电前体材料层合体7的,所以通过改变压电前体材料6的层合数就能灵活应对各种压电体1A的厚度。
本实施例对作为压电体1A的最终形状是一个面具有凹面的弯曲形状并随着从中央向端部靠近厚度变厚的情况进行了说明,但本发明除此之外,对一个面是凸的形状和具有凹凸形状的面也能通过在厚度厚的部分有选择地增加压电前体材料6的层合数而变更厚度分布来不限制压电体1A形状地能得到同样的效果。
本实施例对形成四边形板状压电体1的情况进行了说明,但本发明除此之外,对通过把压电前体材料6的形状和压制模具8的形状适当变更成希望形状的圆板形状等任意形状也能得到同样的效果。
本实施例对把加工调整成越向上层去宽度越窄的压电前体材料6进行层合,以更接近最终形状来形成压电前体材料层合体7的情况进行了说明,但本发明除此之外,通过如图16(a)、(b)所示,在所述最终形状两端厚度厚的部分处层合同一宽度或同一形状的压电前体材料6来形成压电前体材料层合体7能得到同样的效果。而且其能省略把压电前体材料6加工调整成不同宽度的麻烦事,只要在厚度厚的部分有选择地增加层合数的话则各压电前体材料6的形状和形状变化就没有限制。
[第八实施例]
图17表示本发明第八实施例压电体的制造方法。其与第七实施例的不同点在于:在形成至少一层以上的平板状压电前体材料6和两层以上的通孔大小不同的压电前体材料6,且在由这些压电前体材料6构成的压电前体材料层合间至少形成一层以上的内部电极11。根据该方法,也能得到能灵活应对希望的压电体1、1A厚度和形状的效果。而且能得到在实现均匀极化的同时把压电体破损防患于未然的效果。
本实施例的压电体1以第五实施例为准,其具有在厚度方向上中央部宽度窄,随着向上下去而宽度变宽的形状,其在平板状的底面上设置外部电极10,在压电体1内部设置与外部电极10大致平行的内部电极11,设置从该内部电极11绕入压电体1单侧侧面和底面的绕入电极12。
在压电体1的制造工序中以第一实施例为准其包括:压电前体材料成形工序(未图示),其由压电陶瓷粉末等压电材料成形为片状压电前体材料6;冲压工序(未图示),其把这样得到的片状压电前体材料6根据需要进行冲压来设置矩形窗状的通孔;压电前体材料层合工序(图17(a)、(b)所示),其把这样得到的窗框状压电前体材料6和片状压电前体材料6(在多层压电前体材料6的一部分上形成有内部电极11)进行层合;切边工序(图17(c)所示),其把这样得到的压电前体材料层合体7A的前后边部(不要的部分)切去;加压工序(图17(d)所示),其把这样得到的压电前体材料层合体7从上下方向进行模具压制;煅烧工序(图17(e)、(f)所示),其把这样加压了的压电前体材料层合体7a进行煅烧来得到希望的形状;形成电极工序(图17(g)所示),其在这样得到的压电体1上设置外部电极10和绕入电极12。
图17中压电前体材料6如前所述由压电材料和粘合剂等构成,在具有柔软性的同时在施加加压力等的力时能吸收其力而变形。压制模具8由例如铁等金属材料构成,其具有考虑了煅烧时收缩等的形状,其对压电前体材料层合体7施加压力进行压制,其用于在为了使制作的压电前体材料层合体7a成为希望的不均匀厚度而复制其形状,以最终煅烧得到的压电体1A具有希望的不均匀厚度。
在所述压电前体材料成形工序中把例如由PZT等压电陶瓷粉末构成的压电材料与粘合剂(必要的话包括可塑剂等)混合并溶在溶剂中,再把它用刮刀法等成形为从数十微米到数百微米级厚度的片状,这样来得到压电前体材料6。
所述冲压工序根据需要对片状压电前体材料6实施冲压等的加工,设置调整成不同尺寸的通孔(矩形)。
在所述压电前体材料层合工序中,首先如图17(a)所示,为了在煅烧前完成的最终阶段达到希望厚度而在预先考虑压电前体材料6的片状厚度变化和层合张数的基础上层合片状和窗框状的压电前体材料6。而且如前所述,在多张压电前体材料6的一部分上形成有内部电极11。在此为了制造出压电体1的两端部比中央部厚的形状,越向上层靠近窗框状的通孔的宽度越被调整加工成窄的压电前体材料6,把该压电前体材料6同时层合在同一厚度位置的两端,形成如图17(b)所示的压电前体材料层合体7A。以第一实施例为准,层合时根据需要施加压力和热。
在此,通过把压电前体材料6的外边制成同一形状(同一尺寸),在冲通孔时把位置精度定正确,把压电前体材料6对齐重叠,就能抑制两端厚度厚的压电前体材料6部分的位置错移地进行层合。或即使压电前体材料6的形状不是同一形状,也可以通过在各压电前体材料6相邻的两个边中至少形成一处直角,把通孔对该直角进行定位,把所有层合的压电前体材料6的直角部分对齐重叠,就能抑制位置错移地进行层合。通过使压电前体材料6的通孔在宽度方向上变化大小,并根据厚度变化而顺次变化压电前体材料6的宽度地进行层合(在此是通过从通孔宽度方向大小的从小的向大的变化地进行层合),就能形成随着从中央部向端部去而顺次变厚形状的压电前体材料层合体7A。
所述切边工序是在进入到所述加压工序前把由层合设置了通孔的压电前体材料6而产生的不需要部分切去。由于压电前体材料层合体7A的厚度薄的部分极端的薄,若把所述不需要部分切去的话则不能维持需要的形状,而整个压电前体材料层合体7A弯曲时,也可以不切去所述不需要部分而把它作为增强部分进行利用。这时只要在所述加压工序完成后或所述煅烧构成完成后把所述不需要部分切去便可。
在所述加压工序中以第一实施例为准,使用例如由铁等金属构成的压制模具8如图17(d)所示,在压电前体材料层合体7的厚度方向上施加压力,制作如图17(e)所示那种厚度不均匀的压电前体材料层合体7a。在此,由于在所述切边工序中使图17(c)所示的压电前体材料层合体7的形状接近了具有最终厚度分布的压电体1的形状,所以能抑制压制模具8加压时的加压力,能降低由加压引起的不必要且不良的变形和压电前体材料层合体7a内部的残留应力,同时对仅由压电前体材料6变形就不能维持的厚度分布大的情况(厚度薄的部分与厚的部分的差大的情况)有利。
在所述煅烧工序中以第一实施例为准,通过煅烧压电前体材料层合体7a,能不进行磨削加工等机械加工地制造具有希望不均匀厚度的压电体1。而且由于是复制压制模具8的形状,所以能制作多个形状稳定的压电体1。
所述形成电极工序在煅烧工序完成后的压电体1的平板状底面上设置由例如烧焊银和喷镀金膜构成的外部电极10。为了与内部电极11容易进行电连接,而在压电体1的右侧面设置与内部电极11连接且从该连接位置通过侧面绕入到底面的绕入电极12。通过用例如烧焊银和喷镀金膜等电极材料形成绕入电极12来制作希望形状的压电体1A。
本实施例对作为压电体1A的最终形状是一个面具有凹面的弯曲形状,并随着从中央向端部靠近厚度变厚的情况进行了说明,但本发明除此之外,对一个面是凸的形状和具有凹凸形状的面,也能通过有选择地在厚度厚的部分增加压电前体材料6的层合数,并对应于压电体1A的厚度分布来控制设置在压电前体材料6上的通孔的位置和大小以及数量来变更厚度分布,不限制压电体1A形状地能得到同样的效果。
本实施例对作为压电体1、1A的最终形状是一个面具有凹面的弯曲形状,并为了随着从中央向两端(两个方向)去厚度变厚而把不需要的边缘部分除去的情况进行了说明,但本发明除此之外,作为压电体1、1A的最终形状适用随着从中央部向端部去而厚度变厚的形状(图6、图7所示)时,不产生不需要的边缘部分,也不需要除去边缘部分的工序。
本实施例对越向上层靠近层合通孔宽度方向越大的压电前体材料6而形成与最终形状更接近形状的压电前体材料层合体7A的情况进行了说明,但本发明除此之外,只要是能实现压电体1、1A最终形状的,也可以是如图18所示省略把通孔加压调整成不同宽度的麻烦而把形成有同一形状通孔的压电前体材料6(图18(a)所示)进行层合,形成压电前体材料层合体7A(图18(b)所示),通过在厚度厚的部分有选择地增加层合数,控制设置在压电前体材料6上的通孔的位置和大小、数量来变更厚度分布,不限制压电体1A形状地能得到同样的效果。
所述各实施例(从图12到图18所示)对把内部电极11的一端绕入到侧面和底面连接在绕入电极12上的情况进行了说明,但本发明除此之外,仅在侧面设置绕入电极12或不设置绕入电极12,而暴露在侧面表面的内部电极11直接进行电连接的结构等,只要能与内部的电极电连接便可,能不限制压电体1、1A结构地得到同样的效果。
所述各实施例(从图12到图18所示)对内部电极11是一层的情况进行了说明,但本发明除此之外如图19所示,对把内部电极11在希望厚度位置设置多层的情况也适用,能得到同样的效果。
[第九实施例]
如图20所示,本发明第九实施例的超声波探头设置了所述第一实施例到第四实施例任一项中所示的压电体1C。
图20中音响调整层2是为了高效发送或接收超声波而设置。背面负载材料4在压电体1C背面起音响上的衰减作用。与压电体1C下面的外部电极10电连接的例如由FPC等构成的信号线13通过未图示的电缆与未图示的超声波诊断装置和非破坏检查装置等的装置本体连接。与压电体1C上面的外部电极10电连接的例如由铜箔等构成的地线14也通过未图示的电缆与未图示的超声波诊断装置和非破坏检查装置等的装置本体连接。
如上所述,本发明第九实施例的超声波探头设置了第一实施例到第四实施例任一项中所示的压电体1,所以能抑制超声波探头特性的个体差异。即本实施例的超声波探头由于使用了未进行困难的机械加工而通过复制压制模具形状制作的压电体1C,所以能抑制了压电体发生难于确认的微细裂纹等的可能性,确保稳定的超声波探头特性,同时,复制压制模具形状的压电体适合于把同一形状稳定地制造多个,通过使用它能抑制超声波探头特性的个体差异。
本实施例对音响调整层2是一层的情况进行了说明,但本发明除此之外对音响调整层2是多层的情况也能得到同样的效果。
本实施例对连接压电体1下面的外部电极10b与信号线13,连接上面的外部电极10a与地线14的情况进行了说明,但本发明除此之外对连接顺序相反的情况也能得到同样的效果。
本实施例对没有现有技术中所示的音响透镜3(图24所示)的超声波探头进行了说明,但本发明除此之外对有音响透镜的超声波探头也能得到同样的效果。
[第10实施例]
图21表示本发明第十实施例超声波探头的概略图。其与第九实施例的不同点在于:在设置第五到第八实施例任一项所示的压电体1A。根据该结构,实现了稳定的超声波收发特性,而且还没有驱动时的应变量分布,所以防止了压电体1A微细裂纹等的发生,也能得到能维持稳定特性的效果。下面在与第九实施例相同的结构要素上付与相同的符号而省略其说明。
图21中地线14在压电体1A的下面与连接在压电体1A内部电极11上的绕入电极12电连接。在此,外部电极10和内部电极11大致平行配置,使用极化中没有偏差的压电体1A。
本实施例对音响调整层2是一层的情况进行了说明,但本发明除此之外对音响调整层2是多层的情况也能得到同样的效果。
本实施例对连接压电体1A下面的外部电极10与信号线13,在压电体1A内连接外部电极10上方的内部电极11与地线14的情况进行了说明,但本发明与此相反,即使连接外部电极10与地线14,连接内部电极11与信号线13也能得到同样的效果。
本实施例对超声波探头中没有现有技术中所示的音响透镜3(图24所示)的情况进行了说明,但本发明除此之外对超声波探头中设有音响透镜的也能得到同样的效果。
[第十一实施例]
如图22所示,本发明第十一实施例的超声波诊断装置16设置了第九实施例(图20所示)和第十实施例(图21所示)中任一项的超声波探头15。在此,超声波探头15与超声波诊断装置16的本体是有线连接。
如上所述,由于本发明第十一实施例的超声波诊断装置16设置了第九实施例和第十实施例中任一项的超声波探头15,所以能灵活运用特性稳定且没有个体差异的超声波探头15的优点,进行稳定的可靠性高的超声波诊断。
本实施例对超声波探头15与超声波诊断装置16的本体是有线连接的情况进行了说明,但本发明在有线连接之外,即使采用无线的远距离操作也能得到同样的效果。
[第十二实施例]
如图23所示,本发明第十二实施例的非破坏检查装置17设置了第九实施例(图20所示)和第十实施例(图21所示)中任一项所示的超声波探头15。在此,超声波探头15与非破坏检查装置17的本体是有线连接。
如上所述,由于本发明第十二实施例的非破坏检查装置17设置了第九实施例和第十实施例中任一项所示的超声波探头15,所以能灵活运用特性稳定且没有个体差异的超声波探头15的优点,进行稳定的可靠性高的非破坏检查。
本实施例对超声波探头15与非破坏检查装置17的本体是有线连接的情况进行了说明,但本发明在有线连接之外,即使采用无线的远距离操作也能得到同样的效果。
如以上所说明的,本发明通过把混合了压电材料与粘合材料的压电前体材料进行希望形状的模具压制,能提供具有厚度分布且尺寸精度好的具有优良效果的压电体。而且本发明通过把混合了压电材料与粘合材料的压电前体材料进行希望形状的模具压制,能提供不要磨削加工等复杂的机械加工就能把具有厚度分布的压电体高精度制作多个的具有优良效果的压电体制造方法。

压电体的制造方法、压电体、超声波探头、超声波诊断装置和非破坏检查装置.pdf_第1页
第1页 / 共51页
压电体的制造方法、压电体、超声波探头、超声波诊断装置和非破坏检查装置.pdf_第2页
第2页 / 共51页
压电体的制造方法、压电体、超声波探头、超声波诊断装置和非破坏检查装置.pdf_第3页
第3页 / 共51页
点击查看更多>>
资源描述

《压电体的制造方法、压电体、超声波探头、超声波诊断装置和非破坏检查装置.pdf》由会员分享,可在线阅读,更多相关《压电体的制造方法、压电体、超声波探头、超声波诊断装置和非破坏检查装置.pdf(51页珍藏版)》请在专利查询网上搜索。

本发明提供一种压电体的制造方法和压电体、超声波探头、超声波诊断装置以及非破坏检查装置,压电体的制造方法是把具有厚度分布的同一形状的压电体高精度制作一个以上,使用该压电体实现可靠性高的超声波诊断等。其包括:压电前体材料成形工序,其把由压电陶瓷粉末构成的压电材料与粘合剂混合并溶在溶剂中,再把它用刮刀法等成形为从数十微米到数百微米级厚度的片状;压电前体材料层合工序(a)、(b),其把这样得到的片状压电前。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 电通信技术


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1