石墨烯硬碳复合材料及其制备方法和应用.pdf

上传人:b*** 文档编号:664676 上传时间:2018-03-02 格式:PDF 页数:11 大小:2.97MB
返回 下载 相关 举报
摘要
申请专利号:

CN201310086367.5

申请日:

2013.03.18

公开号:

CN104064365A

公开日:

2014.09.24

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):H01G 11/38申请公布日:20140924|||实质审查的生效IPC(主分类):H01G 11/38申请日:20130318|||公开

IPC分类号:

H01G11/38(2013.01)I; H01G11/84(2013.01)I; H01G11/86(2013.01)I

主分类号:

H01G11/38

申请人:

海洋王照明科技股份有限公司; 深圳市海洋王照明技术有限公司; 深圳市海洋王照明工程有限公司

发明人:

周明杰; 钟辉; 王要兵; 刘大喜

地址:

518100 广东省深圳市南山区南海大道海王大厦A座22层

优先权:

专利代理机构:

广州华进联合专利商标代理有限公司 44224

代理人:

何平

PDF下载: PDF下载
内容摘要

本发明涉及一种石墨烯硬碳复合材料的制备方法,该制备方法工艺简单,便于操作,容易实现大规模工业化生产。通过在氧化石墨烯的悬浮液中加入甲醛和苯酚进行酚醛树脂的聚合反应得到氧化石墨烯与酚醛树脂的复合材料,再将复合材料在保护气体氛围中缓慢加热,一方面氧化石墨烯热还原为石墨烯,另一方面酚醛树脂受热分解形成硬碳材料,得到的石墨烯硬碳复合材料中硬碳材料均匀分散在片层的石墨烯中,可以有效防止石墨烯片层之间相互堆叠,从而可以增大石墨烯的比表面积,通过实验检测,通过上述方法制备得到的石墨烯硬碳复合材料的比表面积可以达到800~1174m2/g之间,较之单纯的石墨烯材料显著提高。

权利要求书

1.  一种石墨烯硬碳复合材料的制备方法,其特征在于,包括如下步骤:
将氧化石墨加入水中,经超声分散后制得氧化石墨烯悬浮液;
调节所述悬浮液的pH至2~5,按照氧化石墨烯与苯酚的质量比为5:0.5~3以及苯酚与甲醛的质量比为1.1~1.3:1的比例,向所述氧化石墨烯悬浮液中加入甲醛和苯酚,加热搅拌使甲醛和苯酚进行聚合反应,制备得到氧化石墨烯与酚醛树脂的复合材料;
将所述氧化石墨烯与酚醛树脂的复合材料置于惰性保护气体氛围中,以5~25℃每分钟的升温速率加热所述复合材料至800~900℃,保持0.5~2小时,冷却后得到所述石墨烯硬碳复合材料。

2.
  如权利要求1所述的石墨烯硬碳复合材料的制备方法,其特征在于,所述氧化石墨通过如下步骤制备得到:
将纯度不低于99.5%的石墨加入至浓硫酸和浓硝酸的混合溶液中,在0℃下搅拌混合均匀,再向混合溶液中加入高锰酸钾,搅拌反应使石墨初步氧化,再将反应体系加热至85℃使石墨完全氧化,最后向反应体系中加入过氧化氢溶液除去过量的高锰酸钾,抽滤,依次用稀盐酸和去离子水对得到的固体物进行洗涤,干燥后得到所述氧化石墨。

3.
  如权利要求2所述的石墨烯硬碳复合材料的制备方法,其特征在于,所述浓硫酸的质量浓度为98%,所述浓硝酸的质量浓度为65%,所述过氧化氢溶液的质量分数为30%,每克所述石墨对应90~95mL浓硫酸、24~25mL浓硝酸、4~6g高锰酸钾及6~10mL过氧化氢。

4.
  一种采用如权利要求1-3中任一项所述的石墨烯硬碳复合材料的制备方法制备的石墨烯硬碳复合材料。

5.
  一种电化学电容器,包括在壳体内叠片设置的电极片、隔膜和电极片以及填充在所述壳体内的电解液,所述电极片包括集流体以及涂覆在所述集流体上的电极浆料,其特征在于,所述电极浆料包括混匀的粘结剂、导电剂以及如权利要求4所述的石墨烯硬碳复合材料。

6.
  如权利要求5所述的电化学电容器,其特征在于,所述电解液为 [BMIM][BF4]、[BMIM][PF6]或[EMIM][Tf2N]。

7.
  如权利要求5所述的电化学电容器,其特征在于,所述集流体为铝箔、铜箔或镍箔。

8.
  如权利要求5所述的电化学电容器,其特征在于,所述粘结剂为聚偏氟乙烯,所述导电剂为乙炔黑、活性炭或炭黑,所述石墨烯硬碳复合材料、所述粘结剂及所述导电剂的质量比为85:5:10。

9.
  一种电化学电容器的制备方法,其特征在于,包括如下步骤:
将权利要求4所述的石墨烯硬碳复合材料、粘结剂与导电剂混合均匀,得到电极浆料;
将所述电极浆料涂覆在集流体上,干燥后切片得到电极片;
将两个所述电极片配合隔膜叠片设置组装成电芯,所述隔膜位于两个所述电极片之间,再用壳体封装所述电芯,注入电解液,得到所述电化学电容器。

10.
  如权利要求9所述的电化学电容器的制备方法,其特征在于,所述氧化石墨通过如下步骤制备得到:
将纯度不低于99.5%的石墨加入至浓硫酸和浓硝酸的混合溶液中,在0℃下搅拌混合均匀,再向混合溶液中加入高锰酸钾,搅拌反应使石墨初步氧化,再将反应体系加热至85℃使石墨完全氧化,最后向反应体系中加入过氧化氢溶液除去过量的高锰酸钾,抽滤,依次用稀盐酸和去离子水对得到的固体物进行洗涤,干燥后得到所述氧化石墨。

说明书

石墨烯硬碳复合材料及其制备方法和应用
技术领域
本发明涉及电极材料领用,尤其是涉及一种石墨烯硬碳复合材料及其制备方法和应用。
背景技术
电化学电容器作为一种新型储能器件,因其具有充放电速率快、功率密度高、循环寿命长等优点,是继锂离子电池后又一极具应用潜力和开发价值的储能器件。然而能量密度较低是制约超级电容器发展和应用的一个关键因素,探索如何提高超级电容器的能量密度是目前该领域研究的重点。根据能量密度的计算公式E=1/2CV2,提高电极材料的比容量,会使超级电容器的能量密度提高。
石墨烯作为一种二维单分子层材料,具有较高的比表面积和较高的电导率,是一种理想的电化学电容器电极材料。虽然石墨烯的理论比表面积达到2630m2/g,但由于在石墨烯材料中,石墨烯片之间相互堆叠,使得比表面积大大下降,目前文献报道的最高比表面积为600m2/g,大大限制了石墨烯在超级电容器电极材料上的应用。
发明内容
基于此,有必要提供一种比容量较大的石墨烯硬碳复合材料及其制备方法。
一种石墨烯硬碳复合材料的制备方法,包括如下步骤:
将氧化石墨加入水中,经超声分散后制得氧化石墨烯悬浮液;
调节所述悬浮液的pH至2~5,按照氧化石墨烯与苯酚的质量比为5:0.5~3以及苯酚与甲醛的质量比为1.1~1.3:1的比例,向所述氧化石墨烯悬浮液中加入甲醛和苯酚,加热搅拌使甲醛和苯酚进行聚合反应,制备得到氧化石墨烯与酚醛树脂的复合材料;
将所述氧化石墨烯与酚醛树脂的复合材料置于惰性保护气氛围中,以5~25℃每分钟的升温速率加热所述复合材料至800~900℃,保持0.5~2小时,冷 却后得到所述石墨烯硬碳复合材料。
在其中一个实施例中,所述氧化石墨通过如下步骤制备得到:
将纯度不低于99.5%的石墨加入至浓硫酸和浓硝酸的混合溶液中,在0℃下搅拌混合均匀,再向混合溶液中加入高锰酸钾,搅拌反应使石墨初步氧化,再将反应体系加热至85℃使石墨完全氧化,最后向反应体系中加入过氧化氢溶液除去过量的高锰酸钾,抽滤,依次用稀盐酸和去离子水对得到的固体物进行洗涤,干燥后得到所述氧化石墨。
在其中一个实施例中,所述浓硫酸的质量浓度为98%,所述浓硝酸的质量浓度为65%,所述过氧化氢溶液的质量分数为30%,每克所述石墨对应90~95mL浓硫酸、24~25mL浓硝酸、4~6g高锰酸钾及6~10mL过氧化氢。
一种采用上述石墨烯硬碳复合材料的制备方法制备的石墨烯硬碳复合材料。
该石墨烯硬碳复合材料的制备方法工艺简单,便于操作,容易实现大规模工业化生产。通过在氧化石墨烯的悬浮液中加入甲醛和苯酚进行酚醛树脂的聚合反应得到氧化石墨烯与酚醛树脂的复合材料,再将复合材料在保护气体氛围中缓慢加热,一方面氧化石墨烯热还原为石墨烯,另一方面酚醛树脂受热分解形成硬碳材料,得到的石墨烯硬碳复合材料中硬碳材料均匀分散在片层的石墨烯中,可以有效防止石墨烯片层之间相互堆叠,从而可以增大石墨烯的比表面积,通过实验检测,通过上述方法制备得到的石墨烯硬碳复合材料的比表面积较之单纯的石墨烯材料显著提高。
此外,还有必提供一种能量密度较高的电化学电容器及其制备方法。
一种电化学电容器,包括在壳体内叠片设置的电极片、隔膜和电极片以及填充在所述壳体内的电解液,所述电极片包括集流体以及涂覆在所述集流体上的电极浆料,所述电极浆料包括混匀的粘结剂、导电剂以及上述石墨烯硬碳复合材料。
在其中一个实施例中,所述电解液为[BMIM][BF4]、[BMIM][PF6]或[EMIM][Tf2N]。
在其中一个实施例中,所述集流体为铝箔、铜箔或镍箔。
在其中一个实施例中,所述粘结剂为聚偏氟乙烯,所述导电剂为乙炔黑、活性炭或炭黑,所述石墨烯硬碳复合材料、所述粘结剂及所述导电剂的质量比为85:5:10。
一种电化学电容器的制备方法,包括如下步骤:
将上述石墨烯硬碳复合材料、粘结剂与导电剂混合均匀,得到电极浆料;
将所述电极浆料涂覆在集流体上,干燥后切片得到电极片;
将两个所述电极片配合隔膜叠片设置组装成电芯,所述隔膜位于两个所述电极片之间,再用壳体封装所述电芯,注入电解液,得到所述电化学电容器。
在其中一个实施例中,所述氧化石墨通过如下步骤制备得到:
将纯度不低于99.5%的石墨加入至浓硫酸和浓硝酸的混合溶液中,在0℃下搅拌混合均匀,再向混合溶液中加入高锰酸钾,搅拌反应使石墨初步氧化,再将反应体系加热至85℃使石墨完全氧化,最后向反应体系中加入过氧化氢溶液除去过量的高锰酸钾,抽滤,依次用稀盐酸和去离子水对得到的固体物进行洗涤,干燥后得到所述氧化石墨。
通过使用上述比表面积显著提高的石墨烯硬碳复合材料作为电极材料,该电化学电容器的能量密度显著提高。而且上述电化学电容器的制备方法工艺简单,便于操作,容易实现大规模工业化生产。
附图说明
图1为一实施方式的石墨烯硬碳复合材料的制备方法流程图;
图2为一实施方式的电化学电容器的制备方法流程图。
具体实施方式
下面结合附图及具体实施例对石墨烯硬碳复合材料及其制备方法以及电化学电容器及其制备方法进行进一步的说明。
如图1所示,一实施方式的石墨烯硬碳复合材料的制备方法,包括如下步骤:
步骤S110:将氧化石墨加入水中,经超声分散后制得氧化石墨烯悬浮液。
在本实施方式中,上述氧化石墨通过如下步骤制备得到:
将纯度不低于99.5%的石墨加入至浓硫酸和浓硝酸的混合溶液中,在0℃下搅拌混合均匀,再向混合溶液中加入高锰酸钾,搅拌反应使石墨初步氧化,再将反应体系加热至85℃使石墨完全氧化,最后向反应体系中加入过氧化氢溶液除去过量的高锰酸钾,抽滤,依次用稀盐酸和去离子水对得到的固体物进行洗涤,干燥后得到氧化石墨。进一步,在本实施方式中,浓硫酸的质量浓度为98%,浓硝酸的质量浓度为65%,过氧化氢溶液的质量分数为30%,每克石墨对应90~95mL浓硫酸、24~25mL浓硝酸、4~6g高锰酸钾及6~10mL过氧化氢。可以理解,在其他实施方式中,浓硫酸、浓硝酸及过氧化氢溶液的浓度不限于上述数据,且各原料之间的用量比也不限于此。
在本实施方式中,氧化石墨烯悬浮液浓度为0.5~2mg/mL。
步骤S120:调节悬浮液的pH至2~5,按照氧化石墨烯与苯酚的质量比为5:0.5~3以及苯酚与甲醛的质量比为1.1~1.3:1的比例,向氧化石墨烯悬浮液中加入甲醛和苯酚,加热搅拌使甲醛和苯酚进行聚合反应,制备得到氧化石墨烯与酚醛树脂的复合材料。
步骤S130:将氧化石墨烯与酚醛树脂的复合材料置于惰性保护气体氛围中,以5~25℃每分钟的升温速率加热复合材料至800~900℃,保持0.5~2小时,冷却后得到石墨烯硬碳复合材料。
其中,惰性保护气体氛围可以为惰性气体或氮气氛围等。
该石墨烯硬碳复合材料的制备方法工艺简单,便于操作,容易实现大规模工业化生产。通过在氧化石墨烯的悬浮液中加入甲醛和苯酚进行酚醛树脂的聚合反应得到氧化石墨烯与酚醛树脂的复合材料,再将复合材料在保护气体氛围中缓慢加热,一方面氧化石墨烯受热还原为石墨烯,另一方面酚醛树脂受热分解形成硬碳材料,得到的石墨烯硬碳复合材料中硬碳材料均匀分散在片层的石墨烯中,可以有效防止石墨烯片层之间相互堆叠,从而可以增大石墨烯的比表面积,通过实验检测,通过上述方法制备得到的石墨烯硬碳复合材料的比表面积较之单纯的石墨烯材料显著提高。
此外,本实施方式还提供了一种能量密度较高的电化学电容器及其制备方法。
一种电化学电容器,包括在壳体内叠片设置的电极片、隔膜和电极片以及填充在壳体内的电解液,电极片包括集流体以及涂覆在集流体上的电极浆料,电极浆料包括混匀的粘结剂、导电剂以及上述石墨烯硬碳复合材料。
在本实施方式中,电解液为[EMIM][Tf2N](I-乙基一3一甲基咪唑三氟甲基磺酰亚胺盐)、[BMIM][BF4](1-丁基-3-甲基咪唑四氟硼酸盐)或[BMIM][PF6](1-丁基-3-甲基咪唑六氟磷酸盐)等离子液体。集流体为铝箔、铜箔或镍箔等。粘结剂为聚偏氟乙烯,导电剂为乙炔黑、活性炭或炭黑等,石墨烯硬碳复合材料、粘结剂及导电剂的质量比为85:5:10。
如图2所示,本实施方式的电化学电容器的制备方法,包括如下步骤:
步骤S210:按照上述方法制备石墨烯硬碳复合材料。
步骤S220:将石墨烯硬碳复合材料、粘结剂与导电剂混合均匀,得到电极浆料。
在本实施方式中,粘结剂为聚偏氟乙烯,导电剂为乙炔黑、活性炭或炭黑,石墨烯硬碳复合材料、粘结剂及导电剂的质量比为85:5:10。
步骤S230:将电极浆料涂覆在集流体上,干燥后切片得到电极片。
在本实施方式中,集流体为铝箔、铜箔或镍箔。
步骤S240:将两个电极片配合隔膜叠片设置组装成电芯,隔膜位于两个电极片之间,再用壳体封装电芯,注入电解液,得到电化学电容器。
在本实施方式中,电解液为[BMIM][BF4]、[BMIM][PF6]或[EMIM][Tf2N]。
通过使用上述比表面积显著提高的石墨烯硬碳复合材料作为电极材料,该电化学电容器的能量密度显著提高。而且上述电化学电容器的制备方法工艺简单,便于操作,容易实现大规模工业化生产。
以下为具体实施例部分:
实施例1
本实施例制备的石墨烯硬碳复合材料的工艺流程如下:石墨→氧化石墨→氧化石墨烯与酚醛树脂的复合材料→石墨烯硬碳复合材料,具体制备步骤如下:
(1)石墨:纯度99.5%。
(2)氧化石墨:称取上述纯度为99.5%的石墨1g加入由90mL质量分数为98%的浓硫酸和25mL质量分数为65%的浓硝酸组成的混合溶液中,将混合液置于冰水混合浴环境下进行搅拌20分钟,再慢慢地向混合液中加入6g高锰酸钾,搅拌1小时,接着将混合液加热至85°C并保持30分钟,之后加入92mL去离子水继续在85°C下保持30分钟,最后加入10mL质量分数为30%的过氧化氢溶液,搅拌10分钟以除去未反应的高锰酸钾,之后对得到的混合物进行抽滤,再依次分别用100mL稀盐酸和150mL去离子水对固体物进行洗涤,共洗涤三次,最后固体物质在60°C真空烘箱中干燥12小时得到氧化石墨。
(3)氧化石墨烯与酚醛树脂的复合材料:将(2)中制备的氧化石墨加入去离子水中,超声分散2小时使氧化石墨剥离成氧化石墨烯得到浓度为1mg/mL的氧化石墨烯的去离子水悬浮液,之后将悬浮液的pH值调至3,再加入苯酚和甲醛,氧化石墨烯与苯酚的质量比为5:1,苯酚和甲醛的质量比为1.2:1,将反应体系的温度升至60°C,搅拌12小时,过滤,将固体物质置于60°C的真空烘箱中烘12小时,得到氧化石墨烯与酚醛树脂的复合材料。
(4)石墨烯硬碳复合材料:将(3)中得到的氧化石墨烯与酚醛树脂的复合材料置于流速400mL/min的氩气氛围下,30分钟后以20°C/min的升温速率使复合材料周围的温度从室温升至800°C,并保持2小时,再在氩气氛围下降至室温,得到石墨烯硬碳复合材料。
实施例2
本实施例制备的石墨烯硬碳复合材料的工艺流程如下:石墨→氧化石墨→氧化石墨烯与酚醛树脂的复合材料→石墨烯硬碳复合材料,具体制备步骤如下:
(1)石墨:纯度99.5%。
(2)氧化石墨:称取上述纯度为99.5%的石墨5g加入由475mL质量分数为98%的浓硫酸和120mL质量分数为65%的浓硝酸组成的混合溶液中,将混合液置于冰水混合浴环境下进行搅拌20分钟,再慢慢地向混合液中加入20g高锰酸钾,搅拌1小时,接着将混合液加热至85°C并保持30分钟,之后加入92mL去离子水继续在85°C下保持30分钟,最后加入30mL质量分数为30%的过氧 化氢溶液,搅拌10分钟以除去未反应的高锰酸钾,之后对得到的混合物进行抽滤,再依次分别用300mL稀盐酸和450mL去离子水对固体物进行洗涤,共洗涤三次,最后固体物质在60°C真空烘箱中干燥12小时得到氧化石墨。
(3)氧化石墨烯与酚醛树脂的复合材料:将(2)中制备的氧化石墨加入去离子水中,超声分散3小时使氧化石墨剥离成氧化石墨烯得到浓度为2mg/mL的氧化石墨烯的去离子水悬浮液,之后将悬浮液的pH值调至4,再加入苯酚和甲醛,氧化石墨烯与苯酚的质量比为5:2,苯酚和甲醛的质量比为1.1:1,将反应体系的温度升至50°C,搅拌24小时,过滤,将固体物质置于60°C的真空烘箱中烘12小时,得到氧化石墨烯与酚醛树脂的复合材料。
(4)石墨烯硬碳复合材料:将(3)中得到的氧化石墨烯与酚醛树脂的复合材料置于流速400mL/min的氩气氛围下,30分钟后以25°C/min的升温速率使复合材料周围的温度从室温升至900°C,并保持1小时,再在氩气氛围下降至室温,得到石墨烯硬碳复合材料。
实施例3
本实施例制备的石墨烯硬碳复合材料的工艺流程如下:石墨→氧化石墨→氧化石墨烯与酚醛树脂的复合材料→石墨烯硬碳复合材料,具体制备步骤如下:
(1)石墨:纯度99.5%。
(2)氧化石墨:称取上述纯度为99.5%的石墨2g加入由170mL质量分数为98%的浓硫酸和48mL质量分数为65%的浓硝酸组成的混合溶液中,将混合液置于冰水混合浴环境下进行搅拌20分钟,再慢慢地向混合液中加入8g高锰酸钾,搅拌1小时,接着将混合液加热至85°C并保持30分钟,之后加入92mL去离子水继续在85°C下保持30分钟,最后加入16mL质量分数为30%的过氧化氢溶液,搅拌10分钟以除去未反应的高锰酸钾,之后对得到的混合物进行抽滤,再依次分别用250mL稀盐酸和300mL去离子水对固体物进行洗涤,共洗涤三次,最后固体物质在60°C真空烘箱中干燥12小时得到氧化石墨。
(3)氧化石墨烯与酚醛树脂的复合材料:将(2)中制备的氧化石墨加入去离子水中,超声分散1小时使氧化石墨剥离成氧化石墨烯得到浓度为0.5mg/mL的氧化石墨烯的去离子水悬浮液,之后将悬浮液的pH值调至3,再加 入苯酚和甲醛,氧化石墨烯与苯酚的质量比为5:3,苯酚和甲醛的质量比为1.2:1,将反应体系的温度升至70°C,搅拌15小时,过滤,将固体物质置于60°C的真空烘箱中烘12小时,得到氧化石墨烯与酚醛树脂的复合材料。
(4)石墨烯硬碳复合材料:将(3)中得到的氧化石墨烯与酚醛树脂的复合材料置于流速400mL/min的氩气氛围下,30分钟后以15°C/min的升温速率使复合材料周围的温度从室温升至850°C,并保持0.5小时,再在氩气氛围下降至室温,得到石墨烯硬碳复合材料。
实施例4
本实施例制备的石墨烯硬碳复合材料的工艺流程如下:石墨→氧化石墨→氧化石墨烯与酚醛树脂的复合材料→石墨烯硬碳复合材料,具体制备步骤如下:
(1)石墨:纯度99.5%。
(2)氧化石墨:称取上述纯度为99.5%的石墨1g加入由90mL质量分数为98%的浓硫酸和25mL质量分数为65%的浓硝酸组成的混合溶液中,将混合液置于冰水混合浴环境下进行搅拌20分钟,再慢慢地向混合液中加入4g高锰酸钾,搅拌1小时,接着将混合液加热至85°C并保持30分钟,之后加入92mL去离子水继续在85°C下保持30分钟,最后加入9mL质量分数为30%的过氧化氢溶液,搅拌10分钟以除去未反应的高锰酸钾,之后对得到的混合物进行抽滤,再依次分别用100mL稀盐酸和150mL去离子水对固体物进行洗涤,共洗涤三次,最后固体物质在60°C真空烘箱中干燥12小时得到氧化石墨。
(3)氧化石墨烯与酚醛树脂的复合材料:将(2)中制备的氧化石墨加入去离子水中,超声分散2小时使氧化石墨剥离成氧化石墨烯得到浓度为1mg/mL的氧化石墨烯的去离子水悬浮液,之后将悬浮液的pH值调至5,再加入苯酚和甲醛,氧化石墨烯与苯酚的质量比为10:1,苯酚和甲醛的质量比为1.3:1,将反应体系的温度升至80°C,搅拌10小时,过滤,将固体物质置于60°C的真空烘箱中烘12小时,得到氧化石墨烯与酚醛树脂的复合材料。
(4)石墨烯硬碳复合材料:将(3)中得到的氧化石墨烯与酚醛树脂的复合材料置于流速400mL/min的氩气氛围下,30分钟后以5°C/min的升温速率使复合材料周围的温度从室温升至900°C,并保持2小时,再在氩气氛围下降至室 温,得到石墨烯硬碳复合材料。
实施例5
(1)按照质量比为85:5:10的比例,将实施例1制备的石墨烯硬碳复合材料、聚偏氟乙烯粘结剂以及导电剂乙炔黑混合均匀,得到浆料;
(2)将浆料涂覆在铝箔上,经80°C干燥2小时后作切片处理,制得电化学电容器的电极片。
(3)将(2)中获得的电极片、隔膜、(2)中获得的电极片按照顺序叠片组装成电芯,再用壳体密封电芯,随后往设置在壳体上的注液口往壳体里注入电解液[EMIM][Tf2N],密封注液口,得到电化学电容器。
(4)对(3)中组装的电化学电容器进行充放电测试,电压窗口为4V。
实施例6-8
实施例6-8的电化学电容器的制备方法与实施例5的方法相同,只是采用的电极材料分别是实施例2-4所制备的石墨烯硬碳复合材料,采用的电解液依次为[BMIM][BF4]、[BMIM][PF6]和[EMIM][Tf2N],采用的集流体分别是铜箔、镍箔和铝箔,采用的导电剂分别为活性炭、炭黑和乙炔黑。
表1为实施例1-4所制备的石墨烯硬碳复合材料是比表面积测试数据,如下:
表1

比表面积(m2/g)实施例1894实施例21021实施例31174实施例4812

由表1数据可以看出采用实施例1-4的制备方法制备出的石墨烯硬碳复合材料的比表面积都在800m2/g以上,最高达到1174m2/g,具有较高的比表面积。
表2为实施例5-8制备的电化学电容器在1A/g电流下进行充放电测试的比容量数据,如下:
表2
比容量(F/g)实施例5169实施例6188实施例7153实施例8194

由表2可以看出,采用石墨烯硬碳复合材料制备的电化学电容器在1A/g电流密度下的比容量都在150F/g以上,最高达到194F/g,具有优异的储能性能。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

石墨烯硬碳复合材料及其制备方法和应用.pdf_第1页
第1页 / 共11页
石墨烯硬碳复合材料及其制备方法和应用.pdf_第2页
第2页 / 共11页
石墨烯硬碳复合材料及其制备方法和应用.pdf_第3页
第3页 / 共11页
点击查看更多>>
资源描述

《石墨烯硬碳复合材料及其制备方法和应用.pdf》由会员分享,可在线阅读,更多相关《石墨烯硬碳复合材料及其制备方法和应用.pdf(11页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104064365A43申请公布日20140924CN104064365A21申请号201310086367522申请日20130318H01G11/38201301H01G11/84201301H01G11/8620130171申请人海洋王照明科技股份有限公司地址518100广东省深圳市南山区南海大道海王大厦A座22层申请人深圳市海洋王照明技术有限公司深圳市海洋王照明工程有限公司72发明人周明杰钟辉王要兵刘大喜74专利代理机构广州华进联合专利商标代理有限公司44224代理人何平54发明名称石墨烯硬碳复合材料及其制备方法和应用57摘要本发明涉及一种石墨烯硬碳复合材料的制备方法。

2、,该制备方法工艺简单,便于操作,容易实现大规模工业化生产。通过在氧化石墨烯的悬浮液中加入甲醛和苯酚进行酚醛树脂的聚合反应得到氧化石墨烯与酚醛树脂的复合材料,再将复合材料在保护气体氛围中缓慢加热,一方面氧化石墨烯热还原为石墨烯,另一方面酚醛树脂受热分解形成硬碳材料,得到的石墨烯硬碳复合材料中硬碳材料均匀分散在片层的石墨烯中,可以有效防止石墨烯片层之间相互堆叠,从而可以增大石墨烯的比表面积,通过实验检测,通过上述方法制备得到的石墨烯硬碳复合材料的比表面积可以达到8001174M2/G之间,较之单纯的石墨烯材料显著提高。51INTCL权利要求书2页说明书7页附图1页19中华人民共和国国家知识产权局1。

3、2发明专利申请权利要求书2页说明书7页附图1页10申请公布号CN104064365ACN104064365A1/2页21一种石墨烯硬碳复合材料的制备方法,其特征在于,包括如下步骤将氧化石墨加入水中,经超声分散后制得氧化石墨烯悬浮液;调节所述悬浮液的PH至25,按照氧化石墨烯与苯酚的质量比为5053以及苯酚与甲醛的质量比为11131的比例,向所述氧化石墨烯悬浮液中加入甲醛和苯酚,加热搅拌使甲醛和苯酚进行聚合反应,制备得到氧化石墨烯与酚醛树脂的复合材料;将所述氧化石墨烯与酚醛树脂的复合材料置于惰性保护气体氛围中,以525每分钟的升温速率加热所述复合材料至800900,保持052小时,冷却后得到所述。

4、石墨烯硬碳复合材料。2如权利要求1所述的石墨烯硬碳复合材料的制备方法,其特征在于,所述氧化石墨通过如下步骤制备得到将纯度不低于995的石墨加入至浓硫酸和浓硝酸的混合溶液中,在0下搅拌混合均匀,再向混合溶液中加入高锰酸钾,搅拌反应使石墨初步氧化,再将反应体系加热至85使石墨完全氧化,最后向反应体系中加入过氧化氢溶液除去过量的高锰酸钾,抽滤,依次用稀盐酸和去离子水对得到的固体物进行洗涤,干燥后得到所述氧化石墨。3如权利要求2所述的石墨烯硬碳复合材料的制备方法,其特征在于,所述浓硫酸的质量浓度为98,所述浓硝酸的质量浓度为65,所述过氧化氢溶液的质量分数为30,每克所述石墨对应9095ML浓硫酸、2。

5、425ML浓硝酸、46G高锰酸钾及610ML过氧化氢。4一种采用如权利要求13中任一项所述的石墨烯硬碳复合材料的制备方法制备的石墨烯硬碳复合材料。5一种电化学电容器,包括在壳体内叠片设置的电极片、隔膜和电极片以及填充在所述壳体内的电解液,所述电极片包括集流体以及涂覆在所述集流体上的电极浆料,其特征在于,所述电极浆料包括混匀的粘结剂、导电剂以及如权利要求4所述的石墨烯硬碳复合材料。6如权利要求5所述的电化学电容器,其特征在于,所述电解液为BMIMBF4、BMIMPF6或EMIMTF2N。7如权利要求5所述的电化学电容器,其特征在于,所述集流体为铝箔、铜箔或镍箔。8如权利要求5所述的电化学电容器,。

6、其特征在于,所述粘结剂为聚偏氟乙烯,所述导电剂为乙炔黑、活性炭或炭黑,所述石墨烯硬碳复合材料、所述粘结剂及所述导电剂的质量比为85510。9一种电化学电容器的制备方法,其特征在于,包括如下步骤将权利要求4所述的石墨烯硬碳复合材料、粘结剂与导电剂混合均匀,得到电极浆料;将所述电极浆料涂覆在集流体上,干燥后切片得到电极片;将两个所述电极片配合隔膜叠片设置组装成电芯,所述隔膜位于两个所述电极片之间,再用壳体封装所述电芯,注入电解液,得到所述电化学电容器。10如权利要求9所述的电化学电容器的制备方法,其特征在于,所述氧化石墨通过如下步骤制备得到将纯度不低于995的石墨加入至浓硫酸和浓硝酸的混合溶液中,。

7、在0下搅拌混合均匀,再向混合溶液中加入高锰酸钾,搅拌反应使石墨初步氧化,再将反应体系加热至85权利要求书CN104064365A2/2页3使石墨完全氧化,最后向反应体系中加入过氧化氢溶液除去过量的高锰酸钾,抽滤,依次用稀盐酸和去离子水对得到的固体物进行洗涤,干燥后得到所述氧化石墨。权利要求书CN104064365A1/7页4石墨烯硬碳复合材料及其制备方法和应用技术领域0001本发明涉及电极材料领用,尤其是涉及一种石墨烯硬碳复合材料及其制备方法和应用。背景技术0002电化学电容器作为一种新型储能器件,因其具有充放电速率快、功率密度高、循环寿命长等优点,是继锂离子电池后又一极具应用潜力和开发价值的。

8、储能器件。然而能量密度较低是制约超级电容器发展和应用的一个关键因素,探索如何提高超级电容器的能量密度是目前该领域研究的重点。根据能量密度的计算公式E1/2CV2,提高电极材料的比容量,会使超级电容器的能量密度提高。0003石墨烯作为一种二维单分子层材料,具有较高的比表面积和较高的电导率,是一种理想的电化学电容器电极材料。虽然石墨烯的理论比表面积达到2630M2/G,但由于在石墨烯材料中,石墨烯片之间相互堆叠,使得比表面积大大下降,目前文献报道的最高比表面积为600M2/G,大大限制了石墨烯在超级电容器电极材料上的应用。发明内容0004基于此,有必要提供一种比容量较大的石墨烯硬碳复合材料及其制备。

9、方法。0005一种石墨烯硬碳复合材料的制备方法,包括如下步骤0006将氧化石墨加入水中,经超声分散后制得氧化石墨烯悬浮液;0007调节所述悬浮液的PH至25,按照氧化石墨烯与苯酚的质量比为5053以及苯酚与甲醛的质量比为11131的比例,向所述氧化石墨烯悬浮液中加入甲醛和苯酚,加热搅拌使甲醛和苯酚进行聚合反应,制备得到氧化石墨烯与酚醛树脂的复合材料;0008将所述氧化石墨烯与酚醛树脂的复合材料置于惰性保护气氛围中,以525每分钟的升温速率加热所述复合材料至800900,保持052小时,冷却后得到所述石墨烯硬碳复合材料。0009在其中一个实施例中,所述氧化石墨通过如下步骤制备得到0010将纯度不。

10、低于995的石墨加入至浓硫酸和浓硝酸的混合溶液中,在0下搅拌混合均匀,再向混合溶液中加入高锰酸钾,搅拌反应使石墨初步氧化,再将反应体系加热至85使石墨完全氧化,最后向反应体系中加入过氧化氢溶液除去过量的高锰酸钾,抽滤,依次用稀盐酸和去离子水对得到的固体物进行洗涤,干燥后得到所述氧化石墨。0011在其中一个实施例中,所述浓硫酸的质量浓度为98,所述浓硝酸的质量浓度为65,所述过氧化氢溶液的质量分数为30,每克所述石墨对应9095ML浓硫酸、2425ML浓硝酸、46G高锰酸钾及610ML过氧化氢。0012一种采用上述石墨烯硬碳复合材料的制备方法制备的石墨烯硬碳复合材料。0013该石墨烯硬碳复合材料。

11、的制备方法工艺简单,便于操作,容易实现大规模工业化生产。通过在氧化石墨烯的悬浮液中加入甲醛和苯酚进行酚醛树脂的聚合反应得到氧化石说明书CN104064365A2/7页5墨烯与酚醛树脂的复合材料,再将复合材料在保护气体氛围中缓慢加热,一方面氧化石墨烯热还原为石墨烯,另一方面酚醛树脂受热分解形成硬碳材料,得到的石墨烯硬碳复合材料中硬碳材料均匀分散在片层的石墨烯中,可以有效防止石墨烯片层之间相互堆叠,从而可以增大石墨烯的比表面积,通过实验检测,通过上述方法制备得到的石墨烯硬碳复合材料的比表面积较之单纯的石墨烯材料显著提高。0014此外,还有必提供一种能量密度较高的电化学电容器及其制备方法。0015一。

12、种电化学电容器,包括在壳体内叠片设置的电极片、隔膜和电极片以及填充在所述壳体内的电解液,所述电极片包括集流体以及涂覆在所述集流体上的电极浆料,所述电极浆料包括混匀的粘结剂、导电剂以及上述石墨烯硬碳复合材料。0016在其中一个实施例中,所述电解液为BMIMBF4、BMIMPF6或EMIMTF2N。0017在其中一个实施例中,所述集流体为铝箔、铜箔或镍箔。0018在其中一个实施例中,所述粘结剂为聚偏氟乙烯,所述导电剂为乙炔黑、活性炭或炭黑,所述石墨烯硬碳复合材料、所述粘结剂及所述导电剂的质量比为85510。0019一种电化学电容器的制备方法,包括如下步骤0020将上述石墨烯硬碳复合材料、粘结剂与导。

13、电剂混合均匀,得到电极浆料;0021将所述电极浆料涂覆在集流体上,干燥后切片得到电极片;0022将两个所述电极片配合隔膜叠片设置组装成电芯,所述隔膜位于两个所述电极片之间,再用壳体封装所述电芯,注入电解液,得到所述电化学电容器。0023在其中一个实施例中,所述氧化石墨通过如下步骤制备得到0024将纯度不低于995的石墨加入至浓硫酸和浓硝酸的混合溶液中,在0下搅拌混合均匀,再向混合溶液中加入高锰酸钾,搅拌反应使石墨初步氧化,再将反应体系加热至85使石墨完全氧化,最后向反应体系中加入过氧化氢溶液除去过量的高锰酸钾,抽滤,依次用稀盐酸和去离子水对得到的固体物进行洗涤,干燥后得到所述氧化石墨。0025。

14、通过使用上述比表面积显著提高的石墨烯硬碳复合材料作为电极材料,该电化学电容器的能量密度显著提高。而且上述电化学电容器的制备方法工艺简单,便于操作,容易实现大规模工业化生产。附图说明0026图1为一实施方式的石墨烯硬碳复合材料的制备方法流程图;0027图2为一实施方式的电化学电容器的制备方法流程图。具体实施方式0028下面结合附图及具体实施例对石墨烯硬碳复合材料及其制备方法以及电化学电容器及其制备方法进行进一步的说明。0029如图1所示,一实施方式的石墨烯硬碳复合材料的制备方法,包括如下步骤0030步骤S110将氧化石墨加入水中,经超声分散后制得氧化石墨烯悬浮液。0031在本实施方式中,上述氧化。

15、石墨通过如下步骤制备得到0032将纯度不低于995的石墨加入至浓硫酸和浓硝酸的混合溶液中,在0下搅拌混合均匀,再向混合溶液中加入高锰酸钾,搅拌反应使石墨初步氧化,再将反应体系加热至说明书CN104064365A3/7页685使石墨完全氧化,最后向反应体系中加入过氧化氢溶液除去过量的高锰酸钾,抽滤,依次用稀盐酸和去离子水对得到的固体物进行洗涤,干燥后得到氧化石墨。进一步,在本实施方式中,浓硫酸的质量浓度为98,浓硝酸的质量浓度为65,过氧化氢溶液的质量分数为30,每克石墨对应9095ML浓硫酸、2425ML浓硝酸、46G高锰酸钾及610ML过氧化氢。可以理解,在其他实施方式中,浓硫酸、浓硝酸及过。

16、氧化氢溶液的浓度不限于上述数据,且各原料之间的用量比也不限于此。0033在本实施方式中,氧化石墨烯悬浮液浓度为052MG/ML。0034步骤S120调节悬浮液的PH至25,按照氧化石墨烯与苯酚的质量比为5053以及苯酚与甲醛的质量比为11131的比例,向氧化石墨烯悬浮液中加入甲醛和苯酚,加热搅拌使甲醛和苯酚进行聚合反应,制备得到氧化石墨烯与酚醛树脂的复合材料。0035步骤S130将氧化石墨烯与酚醛树脂的复合材料置于惰性保护气体氛围中,以525每分钟的升温速率加热复合材料至800900,保持052小时,冷却后得到石墨烯硬碳复合材料。0036其中,惰性保护气体氛围可以为惰性气体或氮气氛围等。003。

17、7该石墨烯硬碳复合材料的制备方法工艺简单,便于操作,容易实现大规模工业化生产。通过在氧化石墨烯的悬浮液中加入甲醛和苯酚进行酚醛树脂的聚合反应得到氧化石墨烯与酚醛树脂的复合材料,再将复合材料在保护气体氛围中缓慢加热,一方面氧化石墨烯受热还原为石墨烯,另一方面酚醛树脂受热分解形成硬碳材料,得到的石墨烯硬碳复合材料中硬碳材料均匀分散在片层的石墨烯中,可以有效防止石墨烯片层之间相互堆叠,从而可以增大石墨烯的比表面积,通过实验检测,通过上述方法制备得到的石墨烯硬碳复合材料的比表面积较之单纯的石墨烯材料显著提高。0038此外,本实施方式还提供了一种能量密度较高的电化学电容器及其制备方法。0039一种电化学。

18、电容器,包括在壳体内叠片设置的电极片、隔膜和电极片以及填充在壳体内的电解液,电极片包括集流体以及涂覆在集流体上的电极浆料,电极浆料包括混匀的粘结剂、导电剂以及上述石墨烯硬碳复合材料。0040在本实施方式中,电解液为EMIMTF2N(I乙基一3一甲基咪唑三氟甲基磺酰亚胺盐)、BMIMBF4(1丁基3甲基咪唑四氟硼酸盐)或BMIMPF6(1丁基3甲基咪唑六氟磷酸盐)等离子液体。集流体为铝箔、铜箔或镍箔等。粘结剂为聚偏氟乙烯,导电剂为乙炔黑、活性炭或炭黑等,石墨烯硬碳复合材料、粘结剂及导电剂的质量比为85510。0041如图2所示,本实施方式的电化学电容器的制备方法,包括如下步骤0042步骤S210。

19、按照上述方法制备石墨烯硬碳复合材料。0043步骤S220将石墨烯硬碳复合材料、粘结剂与导电剂混合均匀,得到电极浆料。0044在本实施方式中,粘结剂为聚偏氟乙烯,导电剂为乙炔黑、活性炭或炭黑,石墨烯硬碳复合材料、粘结剂及导电剂的质量比为85510。0045步骤S230将电极浆料涂覆在集流体上,干燥后切片得到电极片。0046在本实施方式中,集流体为铝箔、铜箔或镍箔。0047步骤S240将两个电极片配合隔膜叠片设置组装成电芯,隔膜位于两个电极片之间,再用壳体封装电芯,注入电解液,得到电化学电容器。0048在本实施方式中,电解液为BMIMBF4、BMIMPF6或EMIMTF2N。说明书CN104064。

20、365A4/7页70049通过使用上述比表面积显著提高的石墨烯硬碳复合材料作为电极材料,该电化学电容器的能量密度显著提高。而且上述电化学电容器的制备方法工艺简单,便于操作,容易实现大规模工业化生产。0050以下为具体实施例部分0051实施例10052本实施例制备的石墨烯硬碳复合材料的工艺流程如下石墨氧化石墨氧化石墨烯与酚醛树脂的复合材料石墨烯硬碳复合材料,具体制备步骤如下00531石墨纯度995。00542氧化石墨称取上述纯度为995的石墨1G加入由90ML质量分数为98的浓硫酸和25ML质量分数为65的浓硝酸组成的混合溶液中,将混合液置于冰水混合浴环境下进行搅拌20分钟,再慢慢地向混合液中加。

21、入6G高锰酸钾,搅拌1小时,接着将混合液加热至85C并保持30分钟,之后加入92ML去离子水继续在85C下保持30分钟,最后加入10ML质量分数为30的过氧化氢溶液,搅拌10分钟以除去未反应的高锰酸钾,之后对得到的混合物进行抽滤,再依次分别用100ML稀盐酸和150ML去离子水对固体物进行洗涤,共洗涤三次,最后固体物质在60C真空烘箱中干燥12小时得到氧化石墨。00553氧化石墨烯与酚醛树脂的复合材料将(2)中制备的氧化石墨加入去离子水中,超声分散2小时使氧化石墨剥离成氧化石墨烯得到浓度为1MG/ML的氧化石墨烯的去离子水悬浮液,之后将悬浮液的PH值调至3,再加入苯酚和甲醛,氧化石墨烯与苯酚的。

22、质量比为51,苯酚和甲醛的质量比为121,将反应体系的温度升至60C,搅拌12小时,过滤,将固体物质置于60C的真空烘箱中烘12小时,得到氧化石墨烯与酚醛树脂的复合材料。00564石墨烯硬碳复合材料将(3)中得到的氧化石墨烯与酚醛树脂的复合材料置于流速400ML/MIN的氩气氛围下,30分钟后以20C/MIN的升温速率使复合材料周围的温度从室温升至800C,并保持2小时,再在氩气氛围下降至室温,得到石墨烯硬碳复合材料。0057实施例20058本实施例制备的石墨烯硬碳复合材料的工艺流程如下石墨氧化石墨氧化石墨烯与酚醛树脂的复合材料石墨烯硬碳复合材料,具体制备步骤如下00591石墨纯度995。00。

23、602氧化石墨称取上述纯度为995的石墨5G加入由475ML质量分数为98的浓硫酸和120ML质量分数为65的浓硝酸组成的混合溶液中,将混合液置于冰水混合浴环境下进行搅拌20分钟,再慢慢地向混合液中加入20G高锰酸钾,搅拌1小时,接着将混合液加热至85C并保持30分钟,之后加入92ML去离子水继续在85C下保持30分钟,最后加入30ML质量分数为30的过氧化氢溶液,搅拌10分钟以除去未反应的高锰酸钾,之后对得到的混合物进行抽滤,再依次分别用300ML稀盐酸和450ML去离子水对固体物进行洗涤,共洗涤三次,最后固体物质在60C真空烘箱中干燥12小时得到氧化石墨。00613氧化石墨烯与酚醛树脂的复。

24、合材料将(2)中制备的氧化石墨加入去离子水中,超声分散3小时使氧化石墨剥离成氧化石墨烯得到浓度为2MG/ML的氧化石墨烯的去离子水悬浮液,之后将悬浮液的PH值调至4,再加入苯酚和甲醛,氧化石墨烯与苯酚的质量比为52,苯酚和甲醛的质量比为111,将反应体系的温度升至50C,搅拌24小时,过滤,说明书CN104064365A5/7页8将固体物质置于60C的真空烘箱中烘12小时,得到氧化石墨烯与酚醛树脂的复合材料。00624石墨烯硬碳复合材料将(3)中得到的氧化石墨烯与酚醛树脂的复合材料置于流速400ML/MIN的氩气氛围下,30分钟后以25C/MIN的升温速率使复合材料周围的温度从室温升至900C。

25、,并保持1小时,再在氩气氛围下降至室温,得到石墨烯硬碳复合材料。0063实施例30064本实施例制备的石墨烯硬碳复合材料的工艺流程如下石墨氧化石墨氧化石墨烯与酚醛树脂的复合材料石墨烯硬碳复合材料,具体制备步骤如下00651石墨纯度995。00662氧化石墨称取上述纯度为995的石墨2G加入由170ML质量分数为98的浓硫酸和48ML质量分数为65的浓硝酸组成的混合溶液中,将混合液置于冰水混合浴环境下进行搅拌20分钟,再慢慢地向混合液中加入8G高锰酸钾,搅拌1小时,接着将混合液加热至85C并保持30分钟,之后加入92ML去离子水继续在85C下保持30分钟,最后加入16ML质量分数为30的过氧化氢。

26、溶液,搅拌10分钟以除去未反应的高锰酸钾,之后对得到的混合物进行抽滤,再依次分别用250ML稀盐酸和300ML去离子水对固体物进行洗涤,共洗涤三次,最后固体物质在60C真空烘箱中干燥12小时得到氧化石墨。00673氧化石墨烯与酚醛树脂的复合材料将(2)中制备的氧化石墨加入去离子水中,超声分散1小时使氧化石墨剥离成氧化石墨烯得到浓度为05MG/ML的氧化石墨烯的去离子水悬浮液,之后将悬浮液的PH值调至3,再加入苯酚和甲醛,氧化石墨烯与苯酚的质量比为53,苯酚和甲醛的质量比为121,将反应体系的温度升至70C,搅拌15小时,过滤,将固体物质置于60C的真空烘箱中烘12小时,得到氧化石墨烯与酚醛树脂。

27、的复合材料。00684石墨烯硬碳复合材料将(3)中得到的氧化石墨烯与酚醛树脂的复合材料置于流速400ML/MIN的氩气氛围下,30分钟后以15C/MIN的升温速率使复合材料周围的温度从室温升至850C,并保持05小时,再在氩气氛围下降至室温,得到石墨烯硬碳复合材料。0069实施例40070本实施例制备的石墨烯硬碳复合材料的工艺流程如下石墨氧化石墨氧化石墨烯与酚醛树脂的复合材料石墨烯硬碳复合材料,具体制备步骤如下00711石墨纯度995。00722氧化石墨称取上述纯度为995的石墨1G加入由90ML质量分数为98的浓硫酸和25ML质量分数为65的浓硝酸组成的混合溶液中,将混合液置于冰水混合浴环境。

28、下进行搅拌20分钟,再慢慢地向混合液中加入4G高锰酸钾,搅拌1小时,接着将混合液加热至85C并保持30分钟,之后加入92ML去离子水继续在85C下保持30分钟,最后加入9ML质量分数为30的过氧化氢溶液,搅拌10分钟以除去未反应的高锰酸钾,之后对得到的混合物进行抽滤,再依次分别用100ML稀盐酸和150ML去离子水对固体物进行洗涤,共洗涤三次,最后固体物质在60C真空烘箱中干燥12小时得到氧化石墨。00733氧化石墨烯与酚醛树脂的复合材料将(2)中制备的氧化石墨加入去离子水中,超声分散2小时使氧化石墨剥离成氧化石墨烯得到浓度为1MG/ML的氧化石墨烯的去离说明书CN104064365A6/7页。

29、9子水悬浮液,之后将悬浮液的PH值调至5,再加入苯酚和甲醛,氧化石墨烯与苯酚的质量比为101,苯酚和甲醛的质量比为131,将反应体系的温度升至80C,搅拌10小时,过滤,将固体物质置于60C的真空烘箱中烘12小时,得到氧化石墨烯与酚醛树脂的复合材料。00744石墨烯硬碳复合材料将(3)中得到的氧化石墨烯与酚醛树脂的复合材料置于流速400ML/MIN的氩气氛围下,30分钟后以5C/MIN的升温速率使复合材料周围的温度从室温升至900C,并保持2小时,再在氩气氛围下降至室温,得到石墨烯硬碳复合材料。0075实施例500761按照质量比为85510的比例,将实施例1制备的石墨烯硬碳复合材料、聚偏氟乙。

30、烯粘结剂以及导电剂乙炔黑混合均匀,得到浆料;00772将浆料涂覆在铝箔上,经80C干燥2小时后作切片处理,制得电化学电容器的电极片。00783将(2)中获得的电极片、隔膜、(2)中获得的电极片按照顺序叠片组装成电芯,再用壳体密封电芯,随后往设置在壳体上的注液口往壳体里注入电解液EMIMTF2N,密封注液口,得到电化学电容器。00794对(3)中组装的电化学电容器进行充放电测试,电压窗口为4V。0080实施例680081实施例68的电化学电容器的制备方法与实施例5的方法相同,只是采用的电极材料分别是实施例24所制备的石墨烯硬碳复合材料,采用的电解液依次为BMIMBF4、BMIMPF6和EMIMT。

31、F2N,采用的集流体分别是铜箔、镍箔和铝箔,采用的导电剂分别为活性炭、炭黑和乙炔黑。0082表1为实施例14所制备的石墨烯硬碳复合材料是比表面积测试数据,如下0083表10084比表面积(M2/G)实施例1894实施例21021实施例31174实施例48120085由表1数据可以看出采用实施例14的制备方法制备出的石墨烯硬碳复合材料的比表面积都在800M2/G以上,最高达到1174M2/G,具有较高的比表面积。0086表2为实施例58制备的电化学电容器在1A/G电流下进行充放电测试的比容量数据,如下0087表20088说明书CN104064365A7/7页10比容量(F/G)实施例5169实施例6188实施例7153实施例81940089由表2可以看出,采用石墨烯硬碳复合材料制备的电化学电容器在1A/G电流密度下的比容量都在150F/G以上,最高达到194F/G,具有优异的储能性能。0090以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。说明书CN104064365A101/1页11图1图2说明书附图CN104064365A11。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 >


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1