通过精馏进行空气分离的方法及设备.pdf

上传人:奻奴 文档编号:657458 上传时间:2018-03-02 格式:PDF 页数:17 大小:788.62KB
返回 下载 相关 举报
摘要
申请专利号:

CN88104228.5

申请日:

1988.07.09

公开号:

CN1031131A

公开日:

1989.02.15

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的终止(未缴年费专利权终止)授权公告日:1992.12.16|||保护期延长|||授权|||审定||||||公开

IPC分类号:

F25J3/02

主分类号:

F25J3/02

申请人:

林德股份公司

发明人:

赫尔斯特·科杜安; 迪特里克·罗特曼

地址:

联邦德国威斯巴登

优先权:

1987.07.09 DE P3722746.7

专利代理机构:

中国国际贸易促进委员会专利代理部

代理人:

姚珊

PDF下载: PDF下载
内容摘要

本方法是用精馏法进行空气分离。紧接着一个两级型精馏塔3之后,馏份22从粗氩精馏塔10的塔釜上方若干塔板处采出,再输入到高纯氧精馏塔23中,在那里分离成剩余气体馏份24和高纯氧25,26。此外,还可以借助高纯氮精馏塔31(该精馏塔输入来自第一精馏级2的富氮气体27)附加地或者分别地制备高纯氮。来自高纯氮精馏塔31的塔底馏份29则返回第一精馏级2,从第一精馏级顶部下方若干塔板处可以获得高纯氮34。

权利要求书

1: 通过精馏进行空气分离的方法,其中空气在一精馏级予分离成富氮馏分和富氧馏分,然后这两种馏分被输往第二精馏级,在那里分离成氧和氮,其特征在于:来自第二精馏级(6)、基本上只含有氧和氩的气流(17)进入一粗氩精馏塔(10),从该精馏塔的塔釜上方采出另一馏分(22),并在一高纯氧精馏塔(23)中分离成高纯氧(25,26)和较轻的剩余馏分(24)。
2: 按照权利要求1的方法,其特征在于:该另一馏分(22)是以液态形式采出的,并作为回流液提供给高纯氧精馏塔(23)。
3: 按照权利要求1或2的方法,其特征在于:从粗氩精馏塔(10)的塔釜上方多个塔板处采出该另一馏分(22)。
4: 按照权利要求1至3中任一项的方法,其特征在于:高纯氧(25,26)是从高纯氧精馏塔(23)的塔釜上方多个塔板处采出的。
5: 按照权利要求1至4中任一项的方法,其特征在于:高纯氧精馏塔(23)的塔釜是由第一精馏级(2)顶部的氮(27)来加热的。
6: 实施权利要求1所述方法的设备,带有一个两级型精馏塔以及与该第二精馏级相联接的粗氩精馏塔,其特征在于有一个高纯氧精馏塔(23),它用一个侧线出料管路(22)与粗氩精馏塔(10)相联。
7: 按照权利要求6的设备,其特征在于:侧线出料管路(22)设在粗氩精馏塔(10)上方的多个塔板处。
8: 通过精馏进行空气分离的方法,其中空气在第一精馏级予分 精馏级,在那里分离成氧和氮,其特征在于:来自第一精馏级(2)顶部的另一富氮馏分(27)被输入到高纯氮精馏塔(31),在那里分离成塔釜液体(29)和剩余气体馏分(33)。
9: 按照权利要求8的方法,其特征在于:釜液(29)回流到第一精馏级(2)的顶部。
10: 按照权利要求9的方法,其特征在于:从第一精馏级(2)顶部下方的若干塔板处采出高纯氮液态馏分(34)。
11: 按照权利要求10的方法,其特征在于:这些液态的高纯氮至少部分地被过冷处理。
12: 按照权利要求10或11的方法,其特征在于:该液态高纯氮(34)至少部分地在与来自第一精馏级(2)顶部的、正在冷凝的氮(40)作热交换的过程中被蒸发。
13: 实施权利要求8至10中任一项所述方法的设备,其特征在于这样一种高纯氮精馏塔(31)和高纯氮出料管路(34),高纯氮精馏塔经由气体管路(27)和液体管路(29)与第一精馏级(2)相联;高纯氮出料管路安排在第一精馏级(2)顶部下方若干塔板处。
14: 进行空气分离的方法,其中共同采用根据权利要求1至6中任一项的处理步骤以及根据权利要求9至12中任一项的处理步骤,其特征在于:通过与高纯氮精馏塔(31)顶部的气体热交换,对高纯氧精馏塔(23)的塔釜液体进行加热。
15: 实施权利要求14所述方法的设备,其特征在于这样一种冷凝-蒸发器(28),它安排在高纯氧精馏塔和高纯氮精馏塔之间的位置上。

说明书


本发明涉及通过精馏进行空气分离的方法,其中,空气在第一精馏级予分离成富氮馏分和富氧馏分,然后这两种馏分被送往第二精馏级,在那里分离成氧和氮。本发明进而还涉及实施这类方法的设备。

    这样一种通过两级精馏获取氧和氮的方法在US-PS    4,575,388中已作过说明。分离产物氧和氮分别从第二精馏级的塔釜和塔顶获得。

    US-PS    4    575    388还描述了一个粗氩精馏塔,来自第二精馏级的富氩气体通入其内。一种基本上由氧组成的液态塔底馏分从该粗氩精馏塔回流入第二精馏级。

    在粗氩精馏塔塔釜形成的富氧液体含有相当高浓度的杂质,因为来自第二精馏级的富氩馏分中,除了氧、氮之外还含有氪、氙和碳氢化合物,这些都聚集在粗氩精馏塔的塔釜内。将这些塔釜液体返回第二精馏级,结果使这些杂质到了第二精馏级的塔釜,从而进入了作为分离产物所得到的氧中。

    由于氧中有杂质,因此这一方法不能够从第二精馏级获得不含氪、氙和碳氢化合物的高纯氧,特别是不含这些杂质的高纯液态氧。举例来说,高纯氧乃是电子工业所必需的。

    从该已知方法获得到的氮也含有痕量的其他气体,例如氦、氖、氢和一氧化碳。然而,对于现代半导体工业而言,极其高纯度的氮仍是必需的。

    可以用催化方法分离出一氧化碳。一种按通常方式安装在第一精馏级顶部的氦排放器仅仅对氦、氩及氢起着少许的减小作用。

    因此,本发明的任务是:开发在本文起首所述种类的、能制备出高纯度地分离产物、特别是高纯氧和高纯氢的方法。

    这个任务可以按本发明用下述方式解决:来自第二精馏级、基本上只含有氧和氩的气流进入一粗氩精馏塔,从该精馏塔的塔釜上方取出另一馏分,并且在一高纯氧精馏塔分离成高纯氧和较轻的剩余馏分。

    藉助这一处理步骤,可以制备出作为高纯度分离产物的氧,它基本上不再含有氩、氪、氙和碳氢化合物了。

    在粗氩精馏塔中的氪、氙和碳氢化合物的浓度从该精馏塔塔釜开始,随位置向上而下降。在该精馏塔塔釜上方取出的馏分因而只含有氧、氩和氮的成分,而不含有氪,氙和碳氢化合物。在高纯氧精馏塔中,氧通过精馏方法从氮和氩中分离出去。用这一方法制成的氧其纯度达到:氪、氙、氮和碳氢化合物含量均低于10ppm,好的可以到低于5ppm,最佳的能低于2ppm;氩的含量则可以低于20ppm,好的可以低于15ppm。

    在高纯氧精馏塔的塔釜中获得的氧主要是液态形式。如果要用这个方法来制备高纯度气态氧,则从这高纯氧精馏塔中至少抽取一部分气态高纯氧,它是在紧接该精馏塔塔釜上方的位置取得的。

    基本上只含有氧、氩和氮的剩余馏分从高纯氧精馏塔的顶部采出,该剩余馏份回流到粗氩精馏塔或第二精馏级,其位置最好在抽取其他馏份的出料位置的上方。

    本发明方法的一种的优选方案是:以液态形式取出这种其他馏份,它再作为回流液提供给高纯氧精馏塔。

    按照本发明方法的一个优选方案:在粗氩精馏塔的塔釜上方多块塔板处,取出该其他馏份。

    位于塔釜及出料位置之间的精馏塔板,其作用是阻挡氪,氙和氢这些不希望要的成份。最好是设定三块至五块精馏塔板作为阻挡之用。

    在本发明方法的一个优选方案中,高纯氧从高纯氧精馏塔(23)塔釜上方多块板处采出。

    输入到高纯氧精馏塔的唯一馏分一般总含有数量级远远低于ppm的这样的杂质。尽管如此,由于对最为微小的痕量的集累,或由于从外面,例如通过塔釜加热装置渗漏位置的渗入,这些组份仍会出现在该高纯氧精馏塔的塔釜中。因此,在高纯氧精馏塔塔釜上方若干精馏塔板处,特别是在三块至五块板处取料是有利的,因为这些精馏塔板如同在粗氩精馏塔中的塔板一样,是作为对不希望有的痕量氪,氙和碳氢化合物起阻挡之用。在这一部位,既可以获得气态的高纯氧,也可以获得液态的高纯氧。为了避免在运行过程中塔釜内的杂质缓慢地聚积,最好是从高纯氧精馏柱中引出小量塔釜液体,并把它们排掉或者回流到第二精馏级去。

    在另一种本发明方法的优选方案中,利用第一精馏级顶部的氮来对其他精馏塔的塔釜进行加热。

    这种加热最好是通过安装在高纯氧精馏塔塔釜内的冷凝-蒸发器的热交换来完成的。其优点是:在加热过程中至少有一部分氮会冷凝,该冷凝液返回压力级。

    实施本发明方法的设备包括一个两级型精馏塔以及与该第二精馏级相联接的粗氩精馏塔,其特征在于有一个高纯氧精馏塔,它通过一个侧线出料管路与粗氩精馏塔相联。

    本发明设备的一个优选方案是在粗氩精馏塔塔釜上方多个塔板处设置侧线出料管路。

    进而还可以用下列方法解决本发明提出的任务:将另一种来自第一精馏级顶部的富氮馏分输入到高纯氮精馏塔,并在那里分离成塔釜液体和剩余气体馏分。

    运用这些处理步骤,可以制备出非常纯的分离产物氮。为此,在高纯氮精馏塔中,氦、氖、氢和一氧化碳用精馏方法从氮中分离出去,它们作为剩余气体馏分被采用。该剩余气体馏分例如可与不纯的氮混合,而这些氮通常取自第二精馏级并用于分子筛吸附器的再生。

    高纯氮精馏塔的釜液最好回流到第一精馏级的顶部。

    采用这些措施提高了在第一精馏级顶部的氮的纯度,并可以附带获得到高纯氮。这些高纯氮最好以液态形式取自第一精馏级顶部。

    在本发明装置的进一步的结构中,从第一精馏级顶部下方若干塔板处取出高纯氮液态馏分,这表现出特别的优越性。

    借助塔顶冷凝器下方的中间塔板,可以抑制诸如氦、氖和氢的其他轻气体。虽然存在着氦排放管,但这些轻气体即使在高纯氮精馏塔使用附加精馏时仍可以在第一精馏级顶部富集。这些液态高纯氮具有99.999%的纯度并还含有氩,氦,氖,氢和一氧化碳。

    本发明的方法的一种有益改进乃是将这种液态高纯氮至少部分地作过冷处理,由此便易于在一个贮罐内贮藏这种液态产品。这种冷却主要是用第二精馏级的氮作间接热交换来实现的。这以后,氮被输往一分离器,可以由该分离器取出液态氮。

    如果要获取一部分气态高纯氮,则一种有效的办法是:将这液态高纯氮至少部分地与来自第一精馏级顶部的正在冷凝的氮进行热交换后蒸发而得。

    实施上述这种获取高纯氮方法的设备包括一个高纯氮精馏塔和一高纯氮采出管路,该高纯氮精馏塔经由气体管路和液体管路与第一精馏级相联,高纯氮采出管路则连接在第一精馏级顶部下方若干塔板处。

    在本发明方法的一种优选方案中,共同采用根据权利要求1至5中任一项的处理步骤以及根据权利要求8至12中任一项的处理步骤,此外,对高纯氧精馏塔釜液的加热是通过与高纯氮精馏塔顶部的气体进行热交换而实现的。

    用这种方式可以制备出高纯氧和高纯氮这些分离产物。由于高纯氧精馏塔和高纯氮精馏塔之间的热交换,故能量消耗很小。

    实施这一方法的设备还具有一个安排在高纯氧精馏塔和高纯氮精馏塔之间的冷凝-蒸发器。按这一方式,高纯氧精馏塔和高纯氮精馏塔可作为一个整体制作,这会更节省制作成本和投资额。

    本发明及其细节可以通过示意图表示的实施例作出详细的说明:

    这里表出了:

    图1    按本发明方法制取高纯氧的实施形式的流程图,

    图2    制取高纯氧另一实施形式的细节示意图,

    图3    按本发明方法制取高纯氧的实施形式,

    图4    按本发明的方法同时制备高纯氧和高纯氮的另一种实施形式的流程图。

    上述各图中,相同的或类似的处理步骤和装置部件均用相同的标号。

    按一般方法,将空气除掉其中的CO2和H2O不纯物进行予先净化,然后压缩到约6.3巴的压力,由管路1输入两级精馏塔3的第一精馏级2。在约-177℃的温度条件下,该空气予分离成顶部的富氮馏分和塔底的富氧馏分。一部分富氮馏分由管路4以液态形式采出,它们在热交换器5经受过冷处理、减压、并以约-193℃温度回流到该精馏塔3的第二精馏级6。属于该精馏塔3的两个精馏级2、6通过一公共的冷凝-蒸发器7互相作热交换联接。

    第一精馏级2塔釜富氧馏分经管路8采出,在热交换器5作过冷处理后可在一中间位置排出,该中间位置所处温度高于所输入的富氮馏分4的温度。一部分温度约为-182℃的富氧馏分在一个中间位置处提供给第二精馏级6,而其余部分则作为致冷剂输往居于粗氩精馏塔10的顶部的冷凝-蒸发器9。

    另一股经过予先净化的空气流,它们先经压缩再作减压供制冷用之后,通过管路11输往第二精馏级6,其输入位置高度约等于富氧馏分8的输入高度。在第二精馏级6,它的工作温度约-179℃、工作压力约1.6巴,这些来自第一精馏级的予分离馏分被分离成纯氧(可以从精馏塔釜得到)和纯氮(可以从精馏塔的顶部取得),这些氧的典型纯度为99.5%,含有约0.5%的氩,另外还带有存在于空气中的总量为ppm范围的氪,氙和碳氢化合物。

    在塔釜上方经管路12采出气态的氧和/或在塔釜中经管路13采出液态的氧。这些液态氧在热交换器5中作过冷处理。

    从第二精馏级6的顶部采出(经由管路14)纯度为99.995%的液态氮。从第二精馏级6的顶部(经由管路15)可以获得纯度为99.995%的气态氮。这两种氮馏分还含有诸如氧、氩、氦、氖、氢以及一氧化碳这些普通成分的杂质。

    不太纯的气态氮(约有0.15%的O2含量)可以由精馏塔上方三分之一的地方、经由管路16得到。这两股氮气流在热交换器5加热后从装置中输出。

    在第二精馏级6塔中间部位下方总板数为96块时,约在第35和第36块塔板之间,氩的浓度达到最高。在这个高度位置,经由管路17,可以将这一种馏分从第二精馏级内取出,它含有最高91%的O2,几ppm的N2和最高9%的氩,以及ppm数量级的痕量氙,氪和碳氢化合物。该馏分通向粗氩精馏塔10的下端,在那里经过精馏,分离成气态的粗氩馏份(它可以从粗氩精馏塔顶部经由管路18得到)和液态的塔底馏份(它经由管路19返回第二精馏级)。这种粗氩馏份主要包含以下的组成:2%的氧,97%的氩和1%的氮,而塔底馏份则具有这样的组成:94%的氧和6%的氩。

    一部分粗氩在冷凝-蒸发器9中,通过与来自第一精馏级2、经予先减压的富氧液体作热交换而冷凝下来,构成回流液。同时,富氧液体部分地被蒸发。被蒸发的那部分气体可经由管路20采出,它连同(经由管路21)自蒸发室取得的液体一起输往第二精馏级6。

    在粗氩精馏塔釜液上方三到五块塔板的地方,经由管路22取出一液态馏份,它提供给高纯氧精馏塔23。馏份22仅仅由成分O2,氩及N2所组成,不包含氪、氙及碳氢化合物,其原因是,杂质(氪、氙和碳氢化合物)受到居于塔釜和出料部位之间的一些塔板的滞留而保留在塔釜中,它们经由管路19开闸流回第二精馏级6。

    在工作温度约-179℃、工作压力约1.5巴的高纯氧精馏塔23中,氮和氩从氧中被分离出来,作为气态馏份经由管路24从顶部取出并返回粗氩精馏塔10,其输入位置在液态馏份22的采出部位的上方,或者(经由用虚线表示的管路42)返回精馏塔6,其输入位置居于管路17之上。从高纯氧精馏塔23的塔釜,经由管路25可以获得纯度为99.999%的高纯液氧。该氧具有以下典型的杂质:小于1ppm的碳氢化合物、氪、氙和氮以及小于10ppm的氩。这些高纯液氧在热交换器5进行过冷处理后可由此设备导出。必要时,在塔釜上方经由管路26能够附加地或分别地取得高纯度的气态氧。

    从第一精馏级2的顶部取出氮,经由管路27把它输入安装在塔釜中的冷凝-蒸发器28,通过这些氮实现对该塔釜的加热。在热交换过程中,氮冷凝下来,经由管路29重新返回第一精馏级的顶部;一部分气态氮从管路27分岔,由管路30采出。

    图2表示图1所示的、略加变化后的方法。由于略加变化后的方法绝大部分内容和图1完全相同,因此在图2只表出高纯氧精馏塔23。

    这里,在塔釜上方若干塔板处,经由管路25可以取得液态高纯氧,经由管路26可以取得气态高纯氧。诸如氪、氙和碳氢化合物这些不希望有的成分最好由三块至五块精馏塔板所抑制。由于痕量的积累、或者由于冷凝-蒸发器28上的不太密封部位的渗入使这些不纯物成份到达高纯氧精馏塔23的塔釜中。

    管路43用来输出少量的塔釜液体。这些液体或是放弃掉,或是返回第二精馏级。用这一方式,可在相当大程度上阻止这些不希望有的成分在高纯氧精馏塔23中的富集。

    图3表示按本发明方法制取高纯氧的另一种实施形式。图中,类似的设备部件具有与图1相同的标号。

    来自第一精馏级顶部的气态氮,经由管路27,输到在和第一精馏级相同的工作压力条件下运行的高纯氮精馏塔31中去,在那里分离成液态塔底馏份和剩余气体馏份。剩余气体馏份有诸如氦、氖和一氧化碳这些不希望有的成分,这一馏份经由管路33取出,混合到来自第二精馏级6的不纯的氮馏份16中去。

    塔底馏份经由管路29流回第一精馏级,高纯氮则经由管路34由第一精馏级抽取出来。在塔顶冷凝器与管路34的出料位置之间有两块至五块精馏塔板,用来阻挡氦、氖和一氧化碳,这些气体的浓度在精馏塔的顶部最大。高纯氮34具有99.999%的纯度,剩余的基本上由氩组成。

    除了管路27之外,还有另一管路32通入高纯氮精馏塔31。管路32直接与冷凝器7相联,它也称为氦排放管。在这区域内,氦、氖和一氧化碳这些空气组分产生富集。这些组分连同氮一起,从第一精馏级2经由管路32输出,并与高纯氮精馏塔31的塔顶馏份一起取出。

    高纯氮精馏塔31的顶部用来自第一精馏级2塔釜的富氧液体46进行冷却。这些富氧液体在其间被部分地蒸发,分别经由管路44和45离开该高纯氮精馏塔31的塔顶冷凝器,接着输入到第二精馏级6。

    如果希望获得液态形式的高纯氮,则可以将经由管路34采出的氮在热交换器5中作过冷冷却处理,然后减压。减压所生成的闪蒸气体在分离器35中分离出来,附后经由管路36混合到管路15中的氮中去。由管路37可以取得高纯液态氮。

    如果附加地或者交替地需要有高纯气态氮,则这些高纯液态氮(经由管路38)可以部分地或全部地不予先进行过冷处理而减压并输往蒸发器39。这个蒸发器由管路30内的一部分氮气流加热,该氮气流在管路40分岔,在蒸发器39中换热后混合到富氮馏份4之中。高纯的气态氮则经由管路41从蒸发器中导出。

    图4表示按本发明方法同时制备高纯氧和高纯氮的实施形式。这里,高纯氧精馏塔23和高纯氮精馏塔31结合成一个整体,它们通过现在共用的冷凝-蒸发器28成热交换联接。这样,只用一个换热装置便能对高纯氧精馏塔23的塔釜进行加热和对高纯氮精馏塔31的顶部进行冷却。

通过精馏进行空气分离的方法及设备.pdf_第1页
第1页 / 共17页
通过精馏进行空气分离的方法及设备.pdf_第2页
第2页 / 共17页
通过精馏进行空气分离的方法及设备.pdf_第3页
第3页 / 共17页
点击查看更多>>
资源描述

《通过精馏进行空气分离的方法及设备.pdf》由会员分享,可在线阅读,更多相关《通过精馏进行空气分离的方法及设备.pdf(17页珍藏版)》请在专利查询网上搜索。

本方法是用精馏法进行空气分离。紧接着一个两级型精馏塔3之后,馏份22从粗氩精馏塔10的塔釜上方若干塔板处采出,再输入到高纯氧精馏塔23中,在那里分离成剩余气体馏份24和高纯氧25,26。此外,还可以借助高纯氮精馏塔31(该精馏塔输入来自第一精馏级2的富氮气体27)附加地或者分别地制备高纯氮。来自高纯氮精馏塔31的塔底馏份29则返回第一精馏级2,从第一精馏级顶部下方若干塔板处可以获得高纯氮34。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 机械工程;照明;加热;武器;爆破 > 制冷或冷却;加热和制冷的联合系统;热泵系统;冰的制造或储存;气体的液化或固化


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1