本发明系关于天然气之液化方法,其应用了操作负载(process-loaded)液体膨胀器以增进液化之效率。 天然气之液化为一重要且广泛运用之技术,其将天然气气体转换成一种容易且较经济之输送及贮藏形态。液化天然气所消耗之能源必须被尽量降低以产生一种将天然气从产地生产并运送至终端使用者之有效低成本方式。所使用技术如果能降低液化成本,当然也就降低终端使用者使用天然气之成本。
习知天然气之液化循环运用了等熵(isentropic)膨胀阀,或焦耳-汤普生(J-T)阀以产生液化天然气所需之冷冻。典型地使用有此等膨胀阀之方法循环例如有美国专利第3,763,658号,第4,065,276号,第4,404,008号,第4,445,916号,第4,445,917号,及4,504,296号所描述者。
当操作流体经过此等阀所产生之膨胀功基本上系流失掉。为了获得至少一部分此等操作流体膨胀所产生之功,可以使用膨胀机构例如往复式膨胀器或涡轮膨胀器。此等膨胀机械所产生之作功轴可用于发电,压缩或泵送其它操作流体,或其它用途。使用此等膨胀器于饱和或过冷液态操作流之膨胀,在选择情况下系对整体操作效率有利。此“膨胀器”名词通常系用于描述涡轮膨胀器或往复式膨胀器。在天然气液化领域中,“膨胀器”一词经常指涡轮膨胀器而言,在本发明内容中亦同。
美国专利第3,205,191号揭露了一液压发动机之使用包含在一过冷液化天然气流经过一阀而等熵膨胀前,以-Pelton轮膨胀该过冷液化天然气流。其操作情况被控制以使得该液压发动机膨胀器内没有发生蒸发现象。此膨胀所产生的功例如可以被用作为驱动液化方法中之一或多个压缩机。
于美国专利第3,400,547号中揭露了一方法,其中液态氮或液态空气被运用于气井旁天然气之冷冻液化,以使用冷槽车将液化天然气送至一运送站。于运送站时该液化天然气被蒸发,而所产生冷冻再用来液化氮气或空气,其液化氮气或空气再由槽车送回气井旁再次蒸发以提供液化另一槽车量之天然气的冷冻。于气井旁时,过冷天然气被膨胀并且此膨胀所作的功被用于泵送槽车中之液态氮或空气。于运送站时,加压过之液态氮或空气被膨胀并且膨胀所作的功被用于泵送槽车中之液化天然气。
日本专利公开54(1976)-86479号揭露了运用液化天然气蒸发所产生之冷冻来生产液态空气之方法。于此方法中,饱和液态空气于一膨胀涡轮中膨胀,而膨胀所作的功被用于起初液化所需之进料空气之压缩。
美国专利第4,334,902号揭露了液化-压缩过天然气流之方法,其系藉于-冷冻热交换器中与一蒸发多成分冻剂进行非直接热交换而达成。预冷之双相冻剂被分离成一液态及一气态流;该液态流于一冷冻热交换器中被进一步冷却,于一涡轮膨胀器膨胀,并导入于该热交换器而在其中蒸发产生冷冻;而该气态流冷该热交换器中被进一步冷却及液化,于一涡轮膨胀器膨胀,再导入该交换器而在其中蒸发产生附加之冷冻。压力为45 bar之天然气被送经该热交换器,藉非直接热交换而液化,并于一涡轮膨胀器中膨胀至约3bar压力而产生液化天然气产品。该液体涡轮膨胀器所产生之膨胀功被用于发电或其它未特定用途。一附加冷冻循环被揭露用于上述冻剂之预冷,此等循环中亦使用液体膨胀器,其中膨胀所产生的功被用于发电或其它未特定用途。
在美国专利第4,456,459号中揭露了于一最后骤沸步骤前使用一涡轮膨胀器进行一液化天然气流之膨胀。在骤沸前之膨胀增加了液化天然气之产量并且减少了骤沸气体量。该涡轮膨胀器所产生之功可藉合适之具有轴的压缩机,泵或发电机而操作各种不同需动力来源之元件。
美国专利第4,778,497号揭露了一气体液化方法,其中一气体被压缩并且冷却而产生一冷的高压流体,并进一步冷却而产生一冷的高压流体,并进一步冷却而产生一冷的超临界流体。该冷的高压流体之一部分被膨胀以提供进一步之冷却并且膨胀所产生之功被利用于冷却前气体压缩之进行。该冷的超临界流体被进一步冷却并于一膨胀器中膨胀但不经过蒸发而产生一最终液体产品。此液体产品之一部分被骤沸而提供了该冷的临界流体进一步冷却所需要的冷冻。
于一冷冻或气体液化方法中使用膨胀所产生之功来驱动该方法中之泵或压缩机可以增进该方法之效率。于一给定气体液化方法中将膨胀所产生的功与压缩所作之功最佳地结合,以产生该方法在资本及操作成本上最大整体降低系与一些因素呈相依。在此等因素中牵涉到所处理气体流之组成成分及热力学性质以及有关于压缩机、泵、膨胀器及管线上之机械设计因素。如以下内容所描述之本发明允许了在天然气液化方法中膨胀所产生之功的改良运用。
所附之惟一图示为本发明方法,包括将三个膨胀器与一个泵及二个压缩机结合使用之流程示意图。
本发明为液化一被加压气体进料流,例如天然气之方法,其中一部分之冷冻系藉膨胀至少一液态操作流而提供,并利用所产生之膨胀功来压缩或泵送被冷却及膨胀前之相同操作流。以此方式利用膨胀功降低了液化所需之最小功并且增加了该方法之液化产能。
于一天然气液化方法中,一加压进料流于一冷冻热交换器中藉与一或多个蒸发多成分冻剂流进行非直接热交换而被液化,依本发明方法数个液态流选择性地于一操作负载膨胀器中膨胀而在液化方法功能表现上产生改良。此等液态流中的第一个为加压天然气进料流,其于一冷冻热交换器中加压、冷却并液化,并被膨胀而产生一最终液化产品。从膨胀器所获得之功被用于驱动压缩机;该压缩器与压缩机系机械地连结成一单一压缩膨胀单元。而且,一多成分液态冻剂流在于冷冻热交换器中蒸发以提供大部分冷冻前被选择性地膨胀,此膨胀之功被用于压缩被液化及压缩前之相同冻剂流(其原始为一蒸气)。此膨胀器及压缩器系机械地连结成一单一压缩膨胀单元。一第二多成分液态冻剂流在于冷冻热交换器中蒸发以提供另一大部分冷冻前被选择性地膨胀,此膨胀之功被用于泵送被过冷及膨胀前之相同液态冻剂流。此膨胀器及泵系机械地连结成一单一膨胀/泵单元。
液化方法之进料流及冻剂流在膨胀前的冷却及液化系藉于一冷冻热交换器与蒸发冻剂流进行非直接热交换而达成,该于冻热交换器包含位于一垂直容器中之复数根蛇管及将液态冻剂流分散并使其往下流而在该蛇管外表面蒸发之机构。从该热交换器出来之蒸发过冻剂藉一外界冷冻系统而被压缩、冷却并部分液化,并回流而提供如上所述被压缩之蒸发冻剂流及被泵送之液态冻剂流。
应用本发明方法可以增进气体液化方法之效率并降低所消耗之能源,或者在固定能源消耗下增加液化容量。
本发明之特点为每个膨胀器之膨胀功藉直接机械联结而驱动形成本身液化循环方法之一部分的一液体泵或气体压缩机。每一膨胀器及与其所结合机械均作用在相同操作流,而达到增加操作效率及可靠性,并且降低资本成本等目的。
依本发明方法将液体膨胀器与一泵及压缩机结合使用而进行天然气之液化,比利用等熵膨胀阀而非操作负载液体膨胀器之相似液化方法者具有整体操作压缩能量减少6.3%之优点。相对地,于固定操作压缩能量下,本发明方法比使用等熵膨胀阀者具有液化容量增加6.3%之优点。于本发明中将膨胀功应用于泵及压缩机之驱动比将膨胀功应用于其它目的例如发电者具有液化容量增加1.5%之优点。
液化天然气(LNG)系从一含有甲烷之进料流中产生,典型地该进料流包含约60至90莫耳%甲烷,较重碳氢化合物例如乙烷,丙烷,丁烷,及一些较重分子量碳氢化合物,及氮。此含甲烷进料流以一习知方式被压缩,干燥及预冷,例如美国专利第4,065,278号所揭露者,该案之说明书在此作为本案发明之参考资料。上述被压缩,干燥,及预冷的气体包含了本发明方法之天然气进料流。
请参照所附图示,预先冷却,干燥,及压缩之天然气进料流1,其压力介于约400至1,200 psia,温度介于约20°至-30°F间,被送入洗气塔180,其中比甲烷较重之碳氢化合物被移除于流3中。富于甲烷流2经过热交换器元件121并被部份地凝结。含有蒸气及液体之流4被送至分离器181,而分离出液体流5以提供洗气塔180之回流。藉此种洗气塔将较重碳氢化合物移除为习知技艺,例如前述美国专利第4,065,278号即有描述。视进料流成分及操作情况,不同之洗气塔配置亦可以被使用。如果进料流1含有一足够低之较重碳氢化合物浓度,可不使用洗气塔180。含有一般约93莫耳%甲烷及约630psia压力及-45°F之流6于压缩机132中被压缩至约675 psig,于是产生天然气进料流8。此流通过位于中间部位110之热交换器元件111及位于冷部位101之元件102而产生压力约580 psig,温度约-255°F之过冷液化天然气流10。流10于膨胀器131中膨胀,其压力从约580 psig降低至约0 psig,并标示为流12而送至最终LNG产品20。膨胀器131驱动压缩机132,并且两者被机械地联结成压缩膨胀器130。
另一含甲烷之进料流16,压力介于约300至400 psig间,可选择性地藉流经热交换器元件122,112,及103而被液化,产生了另一液化天然气流18,其压力约200至300psig间,温度约-225°F。流18经过阀170膨胀并与流12合并而产生最终产品20。此附加进料流系从此方法中其它地方或从一外界来源而获得。
如上所述液化天然气所需之冷冻系藉于冷冻热交换器100之内壳蒸发一低程度多成分冷冻(LL MCR)而提供。LL MCR流21系藉于一外界封闭环路冷冻系统190中,如前述美国专利第4,065,278号中所描述者,压缩及冷却被蒸发MCR而提供。冷却该外界MCR线路之冷冻系藉一第二,较高温度封闭环路冷冻系统,如该专利所描述者,而提供。已部分液化之LL MCR流21,压力一般约565 psig及温度约20°至-40°F,被送入分离器160。MCR蒸发流22于压缩机142中被压缩至约595psig,而温度约30°至-30°F之被压缩流24进入冷冻热交换器100。此流经过热交换元件123,113,及104,而成为一压力约465psig及温度-255°F之液体流26流出。液体流26于膨胀器141膨胀至约30psig及-265°F,而所产生的流28含有6%蒸气。膨胀器141及压缩机143系机械地联结成压缩膨胀器140,并且膨胀器141之膨胀功被用于驱动压缩机142。被冷却MCR流28经分配器126而被导入冷冻热交换器100,并通过其中热交换器元件之外表面而在冷部位101,中部位110,及温部位120蒸发。液体泵152将从分离器160出来之液态MCR流30加压至约975psig,所产生之流36流入冷冻热交换器100并经过热交换器元件124及114。液化MCR流38,具有约865psig及-200°F,于膨胀器151中膨胀至约30psgi,并冷却至约-205°F。膨胀器151及泵152系机械地联结成膨胀器/泵单元150,从膨胀器151所产生之功被用于驱动泵152。膨胀过之MCR流40进入冷冻热交换器100,并经分配器128而分散流过热交换器元件。液体MCR流往下流经位于中部位110及温部位120之热交换器元件,同时在其中蒸发而提供冷却管内流体之冷冻。蒸发之MCR流42回流至封闭环路冷冻系统190,而如早先所描述再次被压缩及冷却。
冷冻热交换器100之壳内典型温度在冷部位101之顶部介于-275°至-250°F之间,在中部位110之顶部介于-220°至-190°F之间,在温部位120之顶部介于-100°至-40°F之间。上述用于冷却冷冻热交换器100壳内之多成分冻剂(MCR)为包含氮,甲烷,乙烷,及丙烷之一混合物。实施本发明之一具体例为使用一由5.8莫耳%氮,35.8%甲烷,44.0%乙烷,及13.4%丙烷组成之特定混合物。此成分比例及组成成分可视天然气进料流之组成及影响液化方法操作之其他因素而变动。
本发明与其它先前技艺天然气液化方法比较,其改良之处在于以膨胀器取代等熵膨胀阀,而对冷冻热交换器100提供了冷冻及LNG产品之最终降压,以及多成分冻剂在被冷却及液化前藉利用此液化流在膨胀器141膨胀所产生之功而于压缩机142进行附加之压缩。再者,其改良之处包括液体多成分冻剂在过冷前藉利用此过冷液体于膨胀器151膨胀所产生之功而于泵152进行此液体多成分冻剂之泵压。本发明之另一特点系利用LNG产品于膨胀器131之最终降压所产生之功将进入冷冻热交换器100前之冷蒸气进料于压缩机132进行压缩。以膨胀器取代等熵膨胀阀,可以获得附加之冷冻及增加液化之容量。于本发明中,藉利用膨胀所产生之功来压缩或泵压较高温度操作流,可以降低液化所需之最小功并且增加液化之容量。
实施例
为了测定本发明优点,进行一完整LNG方法流程之比较性电脑模拟计算。此流程包括早先所描述之高阶及低阶多成分冷冻环路以及图示中所示之冷冻热交换器线路。一基准情形被选择,其中图示中之膨胀器131,141及151均为等熵膨胀阀所取代,而且未使用有压缩机132,压缩机142,及泵152。一被模拟之膨胀器情形为使用有膨胀器131,141及151而未使用压缩机132,压缩机142及泵152。上述两情形与图示中之本发明方法流程相互比较。一具有每天设计产能320×106标准立方英尺之实际商业运转LNG厂,其进料及操作条件等资料被用于上述比较性电脑模拟计算。
此三种情形之操作能量需求被比较列于表1。
表1
基准情形 膨胀器情形 本发明方法
压缩能量,HP 80,426 76,017 74,459
LL MCR冷冻线路 39,440 38,086 37,897
高阶冷冻线路 119,866 114,103 112,356
全体
与基准情形比较下,能量节省1%
或产量增加%(相同能量下) 0.0 4.8 6.3
膨胀器/压缩机能量,HP
MCR蒸气(压缩机142) - - 258
(膨胀器141) - 281 276
MCR液体(泵152) - - 1,462
(膨胀器151) - 802 1,509
LNG(压缩机132) - - 723
(膨胀器131) - 679 736
如表1所显示,以膨胀器131,141,及151取代膨胀阀会在方法流程之压缩能量需求上降低4.8%,或者相对地在相同膨胀能量下会增加4.8LNG产量。本发明使用操作负载膨胀器来驱动压缩机132及142及泵152更进一步降低了一附加1.5%能量消耗或者在相同能量消耗下产生一附加1.5%LNG产量,此附加1.5%之增进系从两方面达成。第一,比膨胀器情形比较具有较多冷冻产生系因为每一个膨胀器之吸压变高,于是膨胀比值变高。此现象尤以本实施例中之多成分冻剂膨胀器151更为明显,其比未使用泵152之膨胀器情形具有高出87%之冷冻效果。此乃因为流38之压力藉泵152之作用而由565psig增加至975psig,而此流再由865psig膨胀至一压力约30psig,相对地此流在经一膨胀阀膨胀时压力仅从455psig至约30psig。第二,因为与膨胀器情形比较下,本发明方法中之流24及36系在一较高压力下于冷冻热交换器100中被凝结及过冷,所以液化所需之最小功被降低。于是多成分冻剂流之压力也可以被升高,再导致冻剂压缩器之吸压升高,而降低能量之消耗。选择性地,表1所列之各种情形在相同操作压缩能量消耗下,本发明方法可增加LNG液化产品之产能。
于本发明中,每一个膨胀器均驱动一泵或压缩器,如图示中所示之压缩膨胀器130及140,及膨胀器/泵150。本发明之一特点,如早先所描述,为每一个膨胀器均为相同流体所操作负载;膨胀器131及压缩机132均作用于天然气进料/产品;膨胀器141及压缩机142均作用于多成分冻剂蒸气/凝结物,及膨胀器151及泵152均作用于多成分冻剂液体,表1显示了膨胀器141产生了276HP能量,其中(在机械磨耗下)之258 HP被用于于压缩142中压缩流22。如果以膨胀阀取代此膨胀器141,那么上述膨胀器141所产生之能量将无法获得。同样地如果以膨胀阀取代膨胀器131及151时,驱动泵152之1462HP的一半及驱动压缩机132之723HP能量的一半将会损失掉。
在膨胀器情形中膨胀器131,141,及151所产生之功被用于发电,因此表1中基准情形所遗失掉之功的大部分均被收回。但是,一般而言更理想地是将膨胀器131,141,及151所产生之功直接利用于与其结合之操作机械,如本发明方法一般而可在固定压缩机及能量消耗下增加LNG产品之产量,因为在一典型偏僻LNG厂,多生产之LNG产品通常比多产生之电无论用在厂内或输出均具有较佳经济价值。
将此操作负载膨胀器所产生之功应用于何处之选择,系在操作效率与资本成本两者间寻求一最佳平衡点。将膨胀器131,141,及151所产生之功以电脑模拟计算利用在不同操作条件下而评估出此平衡点。模拟计算显示,最大程度能量节省系将膨胀器所产生之功应用于驱动位在进料干燥及预冷步骤上游之主天然气进料压缩机。但是此运用具有一些缺点:(1)将此三个膨胀器与该压缩机联合成一单一机械之机械将非常复杂并且资本成本高;及(2)该天然气进料流必须从进料干燥器进入热交换器100再回至进料预冷系统。此配置所产生之压力降及热漏将会抵销此方式知所获得之增进效率。于是本发明之操作负载膨胀器配置被选择为应用膨胀功以增进天然气液化方法整体效率之最具成本效益选择。