一种热交换器 本申请要求享有2001年10月9日提交的题为“Candy Cane热交换器”的美国临时专利申请,序列号为60/328,013,的优先权,在此引用参考其全部内容。
【技术领域】
本发明总体上涉及一种热传递装置。具体地本发明涉及一种热交换器。
背景技术
使用单相工作流体将热量从热源传递到散热器的热交换器称为单相热交换器。单相热交换器可用于许多方面,从普通的汽车散热器到特殊的用于外层空间上如航天飞机或太空站维持生命的水-氨热交换器。单相热交换器还有其它许多用途,例如去除电子器件如微处理器的余热、冷却聚变反应堆分流器、以及用于生产湿氢(slushhydrogen)。
紧凑的单相热交换器尤其适合于具有较高热流量的场合。比如,不断增大速度和复杂程度的微处理器使得微处理器产生的热量相应增大。现代微处理器的热流量通常在5瓦特/平方厘米至15瓦特/平方厘米的范围内。预计下几代微处理器具有大得多的热流量,比如大约为50瓦特/平方厘米至200瓦特/平方厘米或更大。一种用于高流量传热的紧凑热交换器称作法向流热交换器(NFHX)。法向流热交换器的具体实施例已经由本发明者在美国专利No.5,029,638、5,145,001和美国专利公报No.US-2001-0050162-A1公开,在此引用参考其全部内容。法向流热交换器适合冷却微处理器这样的应用,因为它提供:(1)具有高表面热流量能力的单相热交换器;(2)工作流体通过热交换器时压降很小地紧凑热交换器;和(3)具有高热传递效率的小及轻的热交换器。
图1示出了一种可形成如美国专利公报No.US-2001-0050 162-A1所述法向流热交换器的芯部的热交换器板20。热交换器板20设计成可使相邻热交换器板之间不需要独立的隔板。热交换器板20具有入口孔22和出口孔24,分别构成所述芯部的入口和出口分流管26、28的一部分。然而,互连通道30是由设在热交换器板20中的凹进部位32构成而不是主要由隔板中的孔构成。因此,热交换器板20的连接板34、边缘部位36和间隔38分别由制造热交换器板的整个厚度的材料构成,而翅片40由该材料的部分厚度构成。由于热交换器板20的某些部分具有整个厚度,而其它部分是部分厚度,所以不需要有独立的隔板。但是应当认识到热交换器板20也可以由两个独立的板组成,即对应于部分厚度部分的第一板和对应于整个厚度部分的隔板。
法向流热交换器20包括一个或多个板20,流体进入法向流热交换器20并流经入口分流管26。接着流体向下流经凹进部位32并在翅片40上朝(沿垂直于热传递表面21的方向,由此得名)构成法向流热交换器20底部的热传递表面21流动。然后,流体从热传递表面21流开而进入互连通道30,并通过出口分流管28离开法向流热交换器20。
热交换器板20的入口和出口孔22、24布置成可使入口和出口分流管中的大部分流通面积远离热传递表面21。这种方式避免了将大尺寸的孔设置在热传递表面21附近,如美国专利No.5,029,638和No.5,145,001中所介绍的。靠近热传递表面21的这种孔由于减小了翅片40的尺寸和/或热传递表面与翅片之间的可导热横截面积而使热交换器板20的热传递效率降低。
现有技术的热交换器如法向流热交换器20通常设计成可使流体的温度梯度与翅片的温度梯度一致(即,传递到流体的所有热量发生在流体朝传热表面移动时)。这被认为可使热交换器的热性能达到最大。为了使流体的温度梯度与翅片一致,现有技术的热交换器必然具有某些结构限制。
为了使法向流热交换器20的热传递性能达到最大,要求翅片40的宽度(横向于流动的流体)尽可能多地利用热交换器的全部宽度。上述结构限制的一个实例是互连通道30内的流通面积降低了供热交换翅片40使用的宽度。此外,由于现有技术的设计方法顾及到温度梯度,所以并不认为在互连通道30内或者在流体从传热表面21流走的任何区域中包括翅片40是必须或有效的。
虽然图1中的设计确实对以前的法向流热交换器设计作了改进,但是使翅片40的面积达到最大而必须使用相对较窄的互连通道30,从而导致通过法向流热交换器20的总压降增大。互连通道30内压降的增大会使翅片40上面的流动分布不均,从而降低热传递能力。而且,由于压降增大,可能需要有较大的泵或其它更昂贵的装置以加大入口压力。总翅片面积和压降增大之间的矛盾最终限制了现有技术热交换器如法向流热交换器20的综合性能。
【发明内容】
本发明包括新颖的热交换器、组件和方法,在提高热性能的同时可降低通过热交换器的压降,从而提高装置总的传热能力。
本发明的热交换器的壳体具有长度、宽度、高度和包括至少一个热传递表面的多个表面。壳体包括接收和排出交换器流体的至少两个开口。在壳体内设有至少一个热交换器板。所述至少一个热交换器板具有至少两个孔以形成至少两个分流管。所述至少两个分流管的每一个与所述至少两个开口中的至少一个流体相通。此外,在所述至少一个热交换器板内设有至少一个互连通道。所述至少一个互连通道使所述至少两个分流管流体连接在一起。所述至少一个互连通道包括用来沿第一方向引导流体到所述至少一个传热表面的第一部分和沿第二方向引导流体离开所述至少一个传热表面的第二部分。
在本发明的另一个实施例中,热交换器包括具有至少一个传热表面的壳体和延伸到壳体中的一个或多个传热翅片。传热翅片与传热表面热连通并延伸到壳体中,终止于离开传热表面一定距离的顶部边缘。此外,在壳体内设有用来引导流体通过壳体的流体流道。流道包括用来沿第一方向引导流体到传热表面的第一部分和沿第二方向引导流体离开传热表面的第二部分。在至少一个实施例中,传热表面与所述第二部分中传热翅片顶部边缘的距离大于或小于传热表面与所述第一部分中传热翅片顶部边缘的距离。
在本发明的其它实施例中,上述热交换器可以构成装置的一部分,该装置具有与交换器的传热表面热连通的机构,而且上述热交换器还可用于将热量传递到所述装置或从所述装置转移走热量的方法。
通过下面参考附图对本发明优选实施例所作的详细说明将能更加完整地理解本发明及其范围。
【附图说明】
为了说明本发明,附图示出了本发明的优选形式。但是,应当认识到本发明并不限于附图所示的具体构造和方法。在附图中:
图1是可用来形成法向流热交换器芯部的现有技术热交换器板的平面图;
图2是靠近一装置设置的本发明热交换器的透视图,通过该热交换器可以将热量传递到装置或者从装置转移走热量;
图3是本发明热交换器的叠层板实施例的分解透视图;
图4是具有双支撑分流管的热交换器板的平面图和对应的具有单支撑分流管的热交换器板的平面图,可用来形成图2所示热交换器的芯部;
图5是图4中彼此适当对齐的热交换器板的部分平面图,示出了所形成的流动通道;和
图6是可形成图2中热交换器芯部的热交换器板的另一实施例的平面图。
【具体实施方式】
本发明的热交换器是考虑到现有技术热交换器的缺点来设计的。现有技术热交换器如法向流热交换器和其它热交换器的主要缺点是通过特定热交换器设备的流体的总压降水平大。除了对流体的传热能力造成不利影响之外,压降增大还需要使用较大的入口泵装置,从而增加操作成本。而且,法向流热交换器20中互连通道30所需的面积不能有效用于热传递,因此限制了总的热交换效率。
如前面所介绍的,现有技术的热交换器设计成,流体的温度梯度与装置本身的温度梯度一致。因此,传热翅片40(见图1)的尺寸(和表面面积)在流体沿法线方向朝传热表面21流动的区域达到最大。相反地,在流体从传热表面21流走的区域互连通道30的尺寸减小。这种设计导致通过设备的总压降增大,因为互连通道30必须变窄使翅片40的表面积达到最大。
现在认识到不必使翅片40的表面积达到最大。反而是与流动方向无关的传热翅片40的总表面积对于热性能来说是重要的。即,沿法线方向从热传递表面21流走的流体与沿法线方向朝热传递表面21流动的流体就热性能来说是同样有效的。因此,可以扩宽互连通道30以加大通道内的流通面积。通道30的扩宽导致了通道内流动速度和流体压力的减小,从而使通过热交换器的总压降减小。而且,通道30的扩宽不会牺牲热性能,因为在本发明中传热翅片40设置到互连通道30,从而增大了翅片40的总表面积,因此提高了热交换器的总的热效率。
现在参考附图,其中相同的标号代表相同的部件,图2示出了根据本发明的热交换器(HX),用标号120表示。热交换器120适合使用传热流体或工作流体如水、氨和制冷剂如R-134等从与热交换器热连通的装置122带走热量或是提供热量给装置122。在一实施例中,装置122是产生余热的微处理器。可用热交换器120带走热量的其它装置的实例包括电子器件或激光二极管阵列等。或者,装置122可能需要输入热量,比如在宇宙飞船或太空站的居住舱中使用的散热屏等。所属领域的技术人员应当认识到本发明热交换器120的各种应用,因此在此不必穷举这些应用。
热交换器120最好是闭合传热回路123的一部分,该回路带有用来提供工作流体给热交换器以及引导工作流体离开热交换器的流动再循环系统125。再循环系统还与其它介质交换能量使输送到热交换器120的流体保持恒温。相应地,热交换器120包括从再循环系统125接收工作流体的入口增压室124和使工作流体返回到再循环系统的出口增压室126。热交换器120还包括可与装置122热连通的热传递表面128,使热量能够在热交换器120和装置122之间流动。举例来说,热传递表面128可以直接接触装置122或者可以通过媒介材料(未示出)如粘结剂、导热油脂或柔曲垫等与装置122热连通。如下面所要详细介绍的,热交换器120包括引导工作流体流经热交换器的内通道。内通道可以设计成使热交换器120在高热流量下具有传热能力,同时还能保持紧凑的总体尺寸,其类似于微处理器的芯片尺寸。在某些实施例中,热交换器120可以设计成能处理1,000瓦特/平方厘米或更大的热流量。而且如下面所要介绍的,热交换器120可以由若干个相互层叠的精密成形板组成以形成热交换器的单体结构。这种精密成形可使热交换器120的尺寸很小同时还能提供较高的热流量传递能力。
现在参考图2-5,热交换器120的芯部130可以包括若干对沿层叠轴线彼此堆叠的层叠板132,比如延伸穿过热交换器120的入口和出口增压室124、126的层叠轴线134。每对板一般包括热交换器板136和热交换器板138。虽然图3只是示出了一对板132,但是应当认识到芯部130通常包括许多对这样的板,比如50对或更多,这些板彼此对齐层叠而在其中形成下面所要介绍的各种通道。通过适当层叠,若干对板132可以形成多个沿芯部130长度方向延伸的入口分流管140、多个沿芯部130长度方向延伸的出口分流管142、以及若干个互连通道144,互连通道144在一端与至少一个入口分流管流体连通,而在另一端与至少一个出口分流管流体连通。所属领域的技术人员应当认识到所示入口和出口分流管的具体数目只是说明性的。可以设置任何数目的入口和出口分流管。此外,所属领域的技术人员还应认识到在本文以及在所附权利要求中使用的术语“入口”和“出口”是可彼此互换的。比如,沿某一方向流动的入口分流管在沿相反方向流动时将变为出口分流管。
如果如附图所示,层叠轴线平行于入口和出口分流管140、142的纵轴134,那么板132的对数主要是热交换器120的工作特性以及热交换器板136、138的厚度的函数。虽然图中所示热交换器120的每对板132由热交换器板136和热交换器板138构成,但是本领域的技术人员应当认识到每个热交换器板可以由两个或更多个形状类似的板复合而成。当制造板的薄板材料的厚度小于相应板所要求的厚度时需要这么做。所属领域的技术人员还应当认识到可以用单块板来代替成对板132。用来形成这种板的技术将在下面结合图6的板236来介绍。层叠轴线的方向可以与纵轴134正交。比如,层叠轴线的方向可以垂直于热传递表面128。。在这种情况下,各层叠板的构造形式与图3所示板136、138不相同,具有限制所需板数目的其它要求,比如在其中形成通道的能力。
如图4所示,使用不同的截面阴影线来表示热交换器板136、138的不同材料厚度。对于热交换器板136和138,狭窄间隔的阴影线表示板的部分137,整个材料厚度都是用于制造板。此外在板136、138,较宽间隔的阴影线表示板的部分139,只有部分材料厚度用于制造板。板136、138中的阴影线方向相反以突出当板136、138如图5所示层叠在一起时每个板136、138的交叠部分。
如图4清楚所示,每个热交换器板136、138可以包括多个入口孔146,每个入口孔146构成对应入口分流管140的一部分。每个热交换器板136、138还可以包括多个出口孔148,每个出口孔148构成对应出口分流管142的一部分。只包括部分材料厚度的板136、138的凹进部分139构成互连通道144,从入口分流管140流入的流体在那里改变方向流入出口分流管142,如下面所要更详细介绍的。
继续参考图4,入口分流管140和出口分流管142可以包括一个或多个支撑149,用来加强分流管的结构完整性。在图4所示实施例中,热交换器板136的每个分流管140、142具有两个支撑149,而热交换器板138的每个分流管140、142具有一个支撑149。
图5示出了一对彼此适当对齐的热交换器板136、138,说明入口分流管140和出口分流管142如何由成对的热交换器板构成。图5还示出了板136上的每个入口分流管140部分和出口分流管142部分如何与板138上的对应分流管部分140、142交叠,以促进每个板的入口分流管部分140和每个板的出口分流管部分142之间的流体连通。当把板136层叠在板138的上面时,板138上的支撑139相对于板136上的支撑139交错布置,使得入口和出口分流管140、142中的流体能够沿芯部130的长度方向连通。
互连通道144可以包括从入口分流管140延伸到热传递表面128的第一部分145和从热传递表面128延伸到出口分流管142的第二部分147。一般来说,流体通过入口分流管140进入热交换器,流入互连通道144的第一部分,通过该第一部分朝热传递表面128流动,进入互连通道144的第二部分,在那里引导流体离开热传递表面128而进入出口分流管142。通道144与热传递表面128导热连通并起到传热翅片154的作用,因为在这些区域大部分热量在芯部130和工作流体之间传递。
各互连通道144可选择地包括一个或多个流动间隔168,用来帮助引导和/或分配流体从一个入口分流管140流向两个或更多个出口分流管142。此外,在凹进部分139中可以包括一个或多个流动引导片151。在某些实施例中,比在图6所示的实施例中,可以没有引导片。在其它一些实施例中,可以包括两个以上的引导片。所属领域的技术人员应当认识到,需要一个或多个引导片一般取决于热交换器通道的长宽比。
流动间隔168和流动引导片151可促进沿传热通道更加均匀的流动分布(一起称作流动控制件151、168)。流动控制件151、168有助于流体分布到出口分流管142的整个宽度上。流动控制件151、168还可以用来控制流经各互连通道144的工作流体量。因此,流动控制件151、168可以用来控制每个翅片154的传热能力。
例如,在所示实施例中,热交换器板136、138包括相对热交换器板的总面积来说较大的入口和出口孔146、148(构成分流管部分140、142)。因此,互连通道144相对较宽,并由相对较窄的连接板170与入口和出口孔146、148隔开。这些特征使暴露于工作流体的翅片154的面积达到最大,而且使相应互连通道144中的流体流动达到最大,从而在所有其它变量相同的情况下,该翅片的传热能力达到最大。然而,在另一个可供选择的实施例中,可以增大流动控制件151、168和/或连接板170的尺寸以减小直接暴露于工作流体的相应翅片154的面积,并减小相应互连通道144中的流体流动,从而降低该翅片的传热能力。
因此,本发明的热交换器120的设计人员能够改变芯部130沿热传递表面128长度和宽度方向的热传递效率以适应装置122各部位的传热要求。例如,装置122在沿热传递表面长度方向延伸的中间带状部位可能需要最大的冷却能力,而在靠近边缘的带状部位可能只需要最小的冷却能力。因此,在热交换器板136、138中沿芯部130长度方向靠近中间入口和出口孔146、148的流动控制件151、168和/或连接板170相对较窄,从而形成沿芯部中间具有较高传热能力的相对较宽的互连通道144。与此相反,靠近中间部位外侧入口和出口孔146、148的流动控制件151、168和/或连接板170相对较宽,从而在靠近芯部130侧缘处形成具有较低传热能力的相对较窄的互连通道144。
在一实施例中,出口分流管142与入口分流管140沿芯部130的宽度交替布置,如附图所示那样,且出口分流管142的数目比入口分流管的数目少一个。这种构造方式使得每个互连通道144能够与通道144上游部分的一个入口分流管140以及通道144下游部分的两个紧靠在一起的出口分流管142流体连通。
本领域的技术人员应当认识到,如果需要的话,出口分流管142的数目可以比入口分流管多一个。而且,入口和出口分流管140、142可以具有其它任何构造形式和所要求的任何数目,包括交替排列的布置方式,比如在相邻入口分流管之间设有一个以上的出口分流管142。在一个实施例中,由入口分流管140的体积和出口分流管142的体积构成的复合体积至少占到热交换器120芯部130总体积的20%。在另一个实施例中,入口和出口分流管140、142的复合体积占到芯部130总体积的30%或以上。为了降低入口和出口分流管中的压降,入口和出口分流管140、142可以具有更大的复合体积。本领域的技术人员还应当认识到,为了满足一个或多个其它条件,比如为了限制热交换器120的总体尺寸,所述复合体积可以小于芯部130总体积的20%。
具体参见图2和3,入口增压室124从流动再循环系统125接受工作流体并将其分布到入口分流管140中。入口增压室124包括入口盖和入口增压室板的组合体172以及入口壁板174。入口盖/增压室板172包括从流动再循环系统125接收工作流体的入口178。入口壁板174设计成只能将工作流体均匀地分布到入口分流管140,并能阻止工作流体进入出口分流管142。因此,入口壁板174包括与芯部130的入口分流管140对齐的多个入口孔180。入口盖/增压室板172可以包括一个增压室孔(未示出),当装配入口增压室124时,可形成与入口178以及入口孔180流体连通的增压室通道(未示出)。与芯部130的热交换器板136、138类似,入口增压室124的一个或多个板172、174可以是两个或更多个形状类似的板构成的复合板,以提供所必需的总板厚和/或在板中形成所要求的孔径。
出口增压室126从出口分流管142收集工作流体并使其返回流动再循环系统125。出口增压室126包括出口壁板186以及出口盖和出口增压室板的组合体188。出口壁板186可阻止工作流体从入口分流管140流出,因此包括与芯部130的出口分流管142对齐的多个出口孔192。出口盖/增压室板188包括使工作流体返回流动再循环系统125的出口194。出口盖/增压室板188包括一个增压室孔196,当装配出口增压室126时,可形成与出口孔192以及出口194流体连通的增压室通道(未示出)。与入口增压室124的板172、174类似,一个或多个板186、188可以是两个或更多个形状类似的板构成的复合板,以提供所必需的总板厚和/或在板中形成所要求的孔径。所示入口和出口增压室124、126的构造形式只是说明性的,其中热交换器120的工作流体在一端流入并在另一端流出。本领域的技术人员应当认识到入口和出口增压室124、126可以设置成使工作流体在热交换器120的一端或两端流入和流出、沿垂直于端部和传热表面128的热交换器120的一侧或两侧流入和流出、或者在热交换器120的上下表面或其中一个表面流入和流出。
热交换器板136、138可以用高导热率的材料如铜或铝制成。在某些应用中,可能要求使热交换器120和装置122(见图2)之间的热应变的不一致减到最小。例如,当装置122是硅基微处理器,热交换器120用来冷却微处理器时,微处理器与比如铜的热交换器板之间的热应变不一致会导致微处理器产生机械故障,因为硅基微处理器的热膨胀系数比铜小很多。不过,其它具有良好导热性和较低热膨胀系数的材料可以用于热交换器板136、138。这种材料的实例包括铜钨合金、铜钼合金、以及碳化铝硅的复合材料。使用这些材料能够将热交换器120直接粘合到微处理器或其它硅基或类似材料的装置122上。
入口增压室124的板172、174和出口增压室126的板186、188最好用与热交换器板136相同的材料制成,但也可以采用不同材料。
在一个实施例中,热交换器的板136、138、172、174、186、188的厚度在亚毫米级范围。因此,板136、138、172、174、186、188可以用箔材制成。不过,其中有些板或全部板的厚度可大于一毫米,因而可以用片材或板材制成。孔146、148、180、182、192、196以及口178、194可以利用材料去除技术如化学蚀刻、激光烧蚀、微切削加工、普通切削加工或热切割等在箔材中形成。构成互连通道144的凹进部位139可以通过冲压加工或者通过材料去除技术如化学蚀刻、激光烧蚀、微切削加工或普通切削加工等形成。本领域的技术人员应当认识到上述凹进部分成形技术可以在板的一侧或两侧使用,使得可以用单个板来取代两个或更多个板,而只要能在其中形成孔以构成层叠板内的特定通道。所用技术的选择在很大程度上取决于形成板的材料的厚度和类型,以及各种技术的限制。板136、138、172、174、186、188可以利用任何适当的粘结技术如扩散粘结、铜焊、钎焊或粘合剂粘结等方法互相结合。
在一说明性实施例中,热交换器120用水作为工作流体,并能在大约20立方厘米/秒的流量下提供大约为250瓦特/平方厘米的冷却能力,此时热传递表面128可以具有大约10毫米的长度和大约10毫米的宽度。这实施例可以用于冷却微处理器。在此实施例中,全部板136、138、172、174、186、188最好都用铜制成,并通过将流动间隔168和连接板170的尺寸减到最小来使互连通道144的尺寸达到最大,如上面所介绍的那样。因此,热交换器板136、138的厚度可以大约为0.15毫米。互连通道144的深度大约为0.05毫米。
在使用时,工作流体按以下方式流经图2-6所示的热交换器120。首先,工作流体流经入口178而进入设在入口增压室板172中的入口增压室通道,在那里工作流体通过入口壁板174中的入口孔180分配到入口分流管140。当工作流体沿各入口分流管140流动时,部分工作流体流入沿芯部130长度方向分布的各互连通道144。当工作流体流经各互连通道144时,首先流入靠近入口分流管140的通道144的第一部分145(图5),在那里被流动间隔168分成两个流道朝热传递表面128流动。接着工作流体流入通道144的第二部分147,在那里从热传递表面128流走而进入相应的出口分流管142。当工作流体进入其中一个出口分流管142之后,又流经出口壁板186中相应的一组出口孔192而流入出口增压室板188中的出口增压室通道(未示出),然后流过出口194。所属领域的技术人员应当认识到,通过热交换器120的流动方向可以反过来,于是现在称作“入口”的通道和开口变为出口通道和开口,而现在称作“出口”的通道和开口变为入口通道和开口。
出口流动通道147的长度一般为入口流动通道145长度的两倍或更多,这样各通道中的传热量相同。入口通道具有较高的接近温差,因此需要较小的面积来传输与出口通道相同的热量。换句话说,通过适当地选择通道145和147的长度,流体的一半升温(降温)将在入口通道145中发生,而另一半升温(降温)将在出口通道147中发生。因此,各通道中的传热量是相同的。利用这种设计方法,可以使热交换器120底部的热阻均匀。在其它一些实施例中,热阻的均匀性不是很重要,两种通道的长度可以是相同的。这种设计将形成较低的总压降,但是边界条件的均匀性较差。
图6示出了本发明的另一个实施例。热交换器板236与图4-5中的板136、138类似,且其部件也按类似方式编号。不过,分流管240、242不包括任何支撑,而且互连通道244不包括在出口通道中的任何流动引导片。
采用本发明热交换器板的热交换器与现有技术相比具有许多优点。首先,通过省去在传热界面处或传热翅片之间的流体集合通道大大降低了热阻。本发明中的传热翅片覆盖整个传热界面,从而提高了热交换器的传热能力。其次,由于流体集合通道省去,大大降低了压降。在现有技术的法向流热交换器中,流体集合通道的尺寸加工得很小以减少对热阻的影响。尽管使用了较小的集合通道,但相当一部分压降相关于确保良好的流动分布。
虽然已经结合优选实施例对本发明作了介绍,但是应当认识到这并不是限制性的。相反地,本发明应当包括所附权利要求限定的本发明精神和范围内的各种变型、修改和等效形式。