光记录和读出系统,光数据存储介质以及这种介质的使用.pdf

上传人:Y94****206 文档编号:6239089 上传时间:2019-05-24 格式:PDF 页数:17 大小:903.09KB
返回 下载 相关 举报
摘要
申请专利号:

CN03815757.8

申请日:

2003.06.25

公开号:

CN1666270A

公开日:

2005.09.07

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):G11B 7/135申请日:20030625授权公告日:20080430终止日期:20100625|||授权|||实质审查的生效|||公开

IPC分类号:

G11B7/135; G11B7/24

主分类号:

G11B7/135; G11B7/24

申请人:

皇家飞利浦电子股份有限公司;

发明人:

M·B·范德马克; G·N·菲利普斯

地址:

荷兰艾恩德霍芬

优先权:

2002.07.10 EP 02077754.6

专利代理机构:

中国专利代理(香港)有限公司

代理人:

杨凯;王忠忠

PDF下载: PDF下载
内容摘要

描述一种供光学数据存储介质(5)使用的光记录和读出系统。所述系统包括具有形成在衬底(8)上的记录叠堆(9)的介质(5)。记录叠堆适合于用空气中波长为λ的聚焦辐射束(1)进行记录。记录叠堆(9)具有距衬底(8)最远的第一光学表面(6)。光学头(3)设置在所述光学数据存储介质(5)的记录叠堆(9)一侧,光学头(3)的物镜(2)具有数字孔径NA,记录时聚焦辐射束(1)从物镜(2)发射出来。物镜具有离记录叠堆(9)最近的第二光学表面(7)并且适合于以距第一光学表面(6)小于50μm的自由工作距离dF进行记录/读出。第一光学表面(6)和第二光学表面(7)中至少一个表面配备有透明疏水层(10),所述疏水层的折射率为n,厚度小于0.5λ/n。这样,可以实现可靠的记录和读出,具体地说,可以防止或消解在第二光学表面(7)上的污染物积聚。

权利要求书

1: 一种供光学数据存储介质(5)使用的光记录和读出系统,所述 系统包括: 所述介质(5),它具有形成在衬底(8)上的记录叠堆(9),所述记 录叠堆适合于用空气中波长为λ的聚焦辐射束(1)进行记录,所述记 录叠堆具有距衬底(8)最远的第一光学表面(6);以及 光学头(3),其物镜(2)具有数字孔径NA,记录时聚焦辐射束(1) 从所述物镜(2)发射出来,所述物镜(2)设置在所述光学数据存储介质 (5)的所述记录叠堆(9)一侧并具有离所述记录叠堆(9)最近的第二光 学表面(7),所述物镜(2)适合于以距所述第一光学表面(6)小于50μ m的自由工作距离d F 进行记录/读出,其特征在于:所述第一光学表 面(6)和所述第二光学表面(7)中的至少一个表面配备有透明疏水层 (10),所述疏水层的折射率为n,厚度小于0.5λ/n。
2: 如权利要求1所述的系统,其中,所述第二光学表面(7)配备 有疏水层(11),其厚度基本上等于0.25λ/n。
3: 如权利要求1所述的系统,其中,所述第二光学表面(7)配备 有亲水层(11),其厚度基本上等于0.25λ/n。
4: 如权利要求1所述的系统,其中,所述光学头(3)还包括磁线 圈(4),所述磁线圈(4)这样设置在所述光学头最靠近所述记录叠堆(9) 的一侧,使得所述光学头(3)的光轴经过所述磁线圈(4)的中心,并且 所述光学数据存储介质(5)的所述记录叠堆(9)是磁光型的。
5: 如权利要求4所述的系统,其中,所述磁线圈(4)具有小于 60μm的内径。
6: 如权利要求1-5中任一项所述的系统,其中,所述疏水层(10, 11)包括从由以下材料构成的组中选择的材料:聚对亚苯基二甲基; 碳氟化合物;以及它们共聚物。
7: 如权利要求4-6中任一项所述的系统,其中,所述磁线圈(4) 被包括在部分透明的滑块中,所述滑块适合于以距所述第一表面(6) >0.5λ/n而<2μm的距离滑行。
8: 一种光学数据存储介质(5),它具有形成在衬底(8)上的记录 叠堆(9),所述记录叠堆适合于用空气中波长为λ的聚焦辐射束(1) 进行记录,所述记录叠堆具有距所述衬底最远的第一光学表面,其 中,所述第一光学表面(6)上配备有透明的疏水层(10),所述疏水层 (10)的折射率为n,厚度小于0.5λ/n。
9: 如权利要求8所述的光学数据存储介质,其中,所述第一光 学表面上配备有疏水层(10),其厚度小于0.25λ/n。
10: 如权利要求8或9所述的光学数据存储介质,其中,所述疏 水层包括从由以下材料构成的组中选择的材料:聚对亚苯基二甲基; 碳氟化合物;以及它们共聚物。
11: 使用如权利要求8-10中任一项所述的光学数据存储介质(5) 的方法,用于在如权利要求1-5中任一项所述的系统中进行可靠的记 录和读出。

说明书


光记录和读出系统,光数据存 储介质以及这种介质的使用

    本发明涉及用于光数据存储介质的光记录和读出系统,所述系统包括:

    -介质:它具有在衬底上形成的记录叠堆,所述记录叠堆适合于利用在空气中波长为λ的聚焦辐射束叠层录,记录叠堆具有距衬底最远的第一光学表面;以及

    -光学头,其物镜具有数字孔径NA,记录时聚焦辐射束从所述物镜发射出来,物镜设置在所述光学数据存储介质的记录叠堆一侧,并具有离记录叠堆最近的第二光学表面,适合于以距第一光学表面小于50μm的自由工作距离dF进行记录/读出。

    本发明还涉及一种光数据存储介质,它具有在衬底上形成的记录叠堆,所述记录叠堆适合于利用在空气中波长为λ的聚焦辐射束进行记录,记录叠堆具有距衬底最远的第一光学表面。

    本发明还涉及这种介质在这种系统中的使用。

    从美国专利6,069,853已知本文开始这段提到的这种类型的系统。

    新一代记录光盘具有更大的数据容量和更小的位尺寸。现在的发展趋势是每出现新地一代,光学读出所用的波长就减小而光学拾波单元(OPU)的数字孔径(NA)就增大。焦距和工作距离减小,且倾斜容限更为严格。其结果是透明层(通过该透明层对记录层进行记录和读出)的厚度逐渐减小:CD盘为1.2mm;数字通用盘(DVD)为0.6mm;Blu-ray盘(BD)为0.1mm;第四代(磁)光盘小到几个微米。所述透明层至少有三个用途:通过保护信息层而使光盘更耐用;用作消反射涂层;以及有助于存储层的冷却。

    对于未来几代的光存储系统来说,物镜的数字孔径会上升到NA=0.85,或甚至NA=0.95,以改进分辨力。尽管物镜有增加尺寸的趋势,但对高数据速率和接入时间的日益增加的需求迫使物镜的总体质量要缩小。这只有在焦距和自由工作距离(FWD)减小的情况下才能实现。

    但是,如果FWD减小,聚焦束所通过的透明衬底的厚度就需要减小。而且,如果NA增大,在由透明衬底的厚度引起的双折射或像差的影响下,介质表面偏离相对于光学系统光轴的垂直面的角度容差就减小。在高NA条件下减小所述倾斜角的影响是减小透明衬底厚度的另一理由。厚度减小的所述透明衬底也称为覆盖层或更常称为覆盖叠堆。所以在第四代光记录中覆盖层的作用是保护记录叠堆不受破坏,并允许低的FWD。为了在上述(磁)光数据存储介质中记录信息,从光学头发出聚焦辐射束(例如光束)穿过厚度在0.6到1.2mm之间的透明衬底,到达记录叠堆,以便将记录层加热到记录温度。如果是磁光(MO)介质,同时要通过磁头施加磁场。可以利用磁场调制装置以信息调制所述磁场。结果,可以将信息记录在记录介质上。

    在磁光数据存储介质的情况下要求小自由工作距离的另一论据是线圈尺寸。如果想要高数据速率的系统,就需要有大带宽来调制通过线圈的电流。对于大约为100-200Mbit/sec的数据速率,通过线圈的电流的开关频率必需至少在1-2GHz,才能形成磁场转换性能中的清晰的脉冲波前。这要求线圈具有小自感,低电阻和小寄生电容。除了线圈的速度之外,线圈的功耗也是一个问题。所以最好使用具有小内径(例如小于100μm)的小线圈。使用较大的线圈会损失数据速率和能量效率,因为较大的线圈具有较大的电感和较高的功耗。线圈越靠近表面,就能越节能地调制数据存储介质处的磁场。但是这种小线圈的大约每安培为15Ka/m的磁场只能穿透几十个微米进入空间,所以线圈必需靠近记录叠堆,而厚度大于例如100μm的覆盖层却妨碍了这一点。为了从(磁)光数据存储介质再现信息,光学系统也要发射光线穿过透明衬底。在这种情况下,光学头设置在光盘的透明衬底一侧。

    小工作距离(通常小于50μm)的光学头中的物镜,无论是基于滑块的(见图4)或基于激励器的(见图1A),在最靠近存储介质的物镜光学表面上发生污染。这是由于水的重新凝聚,因为将数据写入到记录叠堆(或从中读出)需要高辐射束功率和温度,导致表面温度很高(大约250℃),水就可能从存储介质中解吸附,见图3。污染最终会因例如系统控制信号的失真导致光学存储系统失效,见图2。在下列情况下,这个问题更为严重:高湿度,高辐射束功率,数据存储介质中记录叠堆的低光学发射率,存储介质的低导热率,小工作距离和高表面温度。从专利US 6,069,853已知,可利用绝热体或覆盖层来增加记录叠堆和存储介质外光学表面之间的距离,以防止对物镜的污染。在没有这种绝热体层的情况下,记录时来自介质的污染物就会蒸发和凝聚到光学头的物镜上。污染可能例如是水并混有小量的其它污染物。含有其它污染物的水很可能在介质的外表面上呈现为一薄(单)层。当没有这种绝热层时,所述薄(单)层非常靠近记录叠堆,它被记录叠堆间接加热、蒸发,随后和其它污染物一起凝聚到物镜上。这种情况发生得非常迅速,即在半小时或可能更短的时间内,导致系统的不可靠记录和读出,最终可能导致整个记录和读出的失败。加上绝热层或覆盖层的一个优点是防止单层和污染物被加热而将污染积聚到物镜上。这是因为绝热层形成了一个有效的阻挡层,它防止了介质上的单层被加热和蒸发。但这种绝热层,通常厚度为数十毫微米或多一些,具有好几个缺点。例如,它会由于绝热层的像差和干扰导致数据的记录和读出不可靠。而且,还会发生光学头聚焦到不能记录和读出数据的绝热层外表面上,然后光学头需要重新聚焦到随后的表面上。这个过程可能导致数据流的中断,以致数据记录和读出都不可靠。再有,较厚的绝热层要求MO磁线圈在线圈的轴向上具有较大的磁场距离范围,这就限制了线圈的转换速度以及在较大数据速率时的记录可靠性。

    本发明的一个目的是提供在本文第一段中所述的那种系统,它可在记录叠堆中进行可靠的记录和读出,并防止光学头物镜的污染,没有所述的缺点。

    本发明的第二个目的是提供一种用于数据的可靠记录和读出的光学数据存储介质,供在第一段所述的那种系统中使用。

    根据本发明,通过一种光学记录和读出系统来实现这些目的,所述系统的特征在于第一光学表面和第二光学表面中至少一个表面配备有疏水层,所述疏水层的折射率为n,厚度小于0.5λ/n。第一个新见解是通过在物镜上加较薄的透明疏水层可以防止水重新凝聚到光学元件上。第二个新见解是在光学数据存储介质的记录叠堆上加疏水层而首先防止水被吸附,以后也就不会被解吸附。这样就消除了污染源。当疏水层的厚度保持在所述极限以下时,光学像差和干扰就被抵消。此技术的一个重要特征是不需要随后清洗物镜。而且,还可以改善光学驱动器可靠工作的湿度范围。最好第二光学表面配备有疏水层,其厚度基本上等于0.25λ/n,此时它可用作消反射涂层。事实上要在物镜上具有足够的疏水层可能很困难。在这种情况下,第二光学表面上最好配备有亲水层,其厚度基本上等于0.25λ/n。利用亲水层时,积聚在第二光学表面上的水形成基本上是均匀厚度的层,例如大约1微米厚。这是因为所述表面润湿是均匀的。液体层的中心部分,即,辐射束通过其中传播的部分,基本上不影响聚焦辐射束的波前。亲水层可以用以下这类层来实现:这类层的亲水特性通常源于表面上的氧原子,例如Al2O3-或SiO2层的情况。大多数情况下,这种低FWD系统中NA大于0.80。

    在一个实施例中,光学头还包括设置在光学头的最靠近记录叠堆一侧的磁线圈,使得光学头的光轴经过磁线圈的中心,且光学数据存储介质的记录叠堆是磁光型的。在这种情况下,有可能以高密度和高数据速率进行可靠的磁光记录,因为可以有高NA,即小光点,且可以使磁线圈靠近记录叠堆,在这种情况下可以以节能的方式调制磁场。

    在磁线圈具有小于60μm的内径时特别有利。使用较大的线圈会损失数据速率和能量效率,因为较大的线圈具有较大的电感和较高的功耗。

    在一个实施例中,疏水层包括从由以下材料构成的组中选择的材料:聚对亚苯基二甲基(poly-para-xylylene);碳氟化合物;以及它们共聚物。Parylene是聚对亚苯基二甲基族的通用名称。市场上可以购买到四种不同类型:Parylene-N是最基本的形式,以对二甲苯单体的线性链的形式构造。其它类型有Parylene-C,Parylene-D和Parylene-AF4。虽然可以使用Parylene的任何衍生物,但是Parylene-C对于我们的目的特别有价值。另一种适合的材料是杜邦制造的AF1600,它是四氟乙烯和全氟-2,2-二甲基-1,3-间二氧杂环戊烯(perfluor-2,2-dimethyl-1,3-dioxide)的共聚物,特别适用。

    在一个实施例中,磁线圈被包括在滑块中,滑块适合于在距第一表面>0.5λ/n而<2μm的距离处滑行。在这种情况下,滑块形成物镜的一部分,疏水层存在于滑块的面对光学数据存储介质的表面上。从例如硬盘驱动器(HDD)技术可知滑块技术。利用这种技术,有可能实现”近场”配置,在这种情况下,物镜的外表面和光学数据存储介质的外表面相互间隔的距离大大小于一个波长λ,即FWD≤λ/10。在这种配置中,可以通过渐消失波光耦合来实现介质和物镜之间的耦合。在这种配置中,NA可以大于1。利用基于滑块的技术,也可实现远场配置,即FWD>>λ/10。

    在光学数据存储介质的实施例中,其第一光学表面上配备有折射率为n,厚度小于0.5λ/n的透明疏水层。当疏水层的厚度保持在所述极限以下时,光学像差和干扰就被抵消。在介质上加疏水层的一个重要特征是可降低物镜上对疏水层的需求,因为污染源,即物镜上的污染物已消除或大大减少。这样作的优点是:一些老的光学记录系统原来在光学头的物镜上没有采取任何措施例如疏水层来减少污染影响,现在也可从介质上的疏水层受益,因为介质不会或很少引起污染。而且还可以改善光学驱动器可靠工作的湿度范围。最好第一光学表面上配备有疏水层,其厚度小于0.25λ/n,此时光学像差和干扰甚至更小。

    最好,疏水层包括从由以下材料构成的组中选择的材料:聚对亚苯基二甲基(poly-para-xylylene);碳氟化合物;以及它们共聚物。

    最好用硬度较高的材料,以防止因光学头与疏水层的可能接触而破坏疏水层。当介质和物镜至少其中之一有疏水层时,由于这两层之间的摩擦系数极低,剪切力引起的破坏大大减少。

    以下将用示范实施例并参阅附图对本发明作详细说明,附图中:

    图1A示出按照本发明的系统的实施例,它具有在MO驱动器中使用的小自由工作距离光学元件;

    图1B示出图1A的介质叠堆结构;

    图2示出污染前后的示波器轨迹;

    图3示出随时间而变的物镜污染的显微镜照片;

    图4示出基于滑块的记录系统;

    图5示出具有磁场调制线圈的透明滑块;

    图6示出疏水层不适当时物镜第二光学表面的显微镜照片;

    图7示出没有疏水层,但有非常亲水层的物镜第二光学表面的显微镜照片。

    图1A和1B中示出供光学数据存储介质5使用的光记录和读出系统的实施例。介质5包括在衬底8上用例如溅射法形成的记录叠堆9。记录叠堆9适用于用聚焦辐射束1进行记录。聚焦辐射束1的波长λ为405nm。记录叠堆9的第一光学表面6距衬底8最远。光学头3具有其数字孔径NA=0.85的物镜2,工作时聚焦辐射束由此孔径发射出去,光学头3设置在光学数据存储介质5的记录叠堆9一侧。光学头3的物镜2具有最靠近记录叠堆9的第二光学表面7并且适合于以距介质5的第一光学表面6的自由工作距离dF=15μm进行记录/读出。应当指出,包括磁线圈4的透明元件形成物镜2的一部分,且第二光学表面7就是所述元件最靠近介质5的表面。第一光学表面6和第二光学表面7上配备有用AF1600制成的疏水层10和11,AF1600是四氟乙烯和全氟-2,2-二甲基-1,3-间二氧杂环戊烯(perfluor-2,2-dimethyl-1,3-dioxide)的共聚物,其折射率大约为1.35。疏水层的厚度为30nm。氟聚合物涂层,例如AF1600,可如下制备。根据具体情况,可能需要光盘表面的清洗步骤,包括超声处理,清洗和干燥。光盘清洁后,在室温下汽相预淀积一层氟硅烷,以改善氟聚合物涂层的附着力。可以通过浸涂或旋涂来制造氟聚合物涂层。为此,可将氟聚合物,例如AF1600,溶解于FC-75中(perfluro-2-butyltetrahydrofuran,Acros制造)。最后把涂覆后的光盘在层流空气中干燥。此时也可进行热处理。用parylene涂覆光盘时光盘需要彻底清洁。Parylene在金属表面上通常附着良好,但在氧化表面上,例如玻璃或氧化铝上,其附着通常较差。在这些情况下,先淀积一层A174(gamma-methacryl-oxypropyl-trimethoxysilane),或通过室温下的汽相淀积,或在1∶100∶100的A174∶水∶异丙醇混合物中旋涂或浸涂。多余的A174用纯异丙醇清洗掉,光盘在环境温度下在洁净空气中干燥。Parylene淀积可在市售的Parylene涂覆机中进行,例如PDS2010(可从SCS Europe购得)。实质上,Parylene单体是被蒸发并淀积在旋转的衬底上。更进一步的众所周知的一些细节可在文献中找到。光学头3还包括磁线圈4,它设置在光学头3最靠近记录叠堆9的一侧。光学头3的光轴经过磁线圈47的中心,且光学数据存储介质5的记录叠堆9是磁光型的。记录叠堆9可以例如从衬底8开始依次包括:业界已知的反射金属层,例如25nm的铝;其它辅助层;24nm的TbFeCo磁性材料层;以及60nm的SiN或ZnS/SiO2的干涉层。

    当介质5上没有疏水层10时,混有污染物的水(单)层就会积聚在第一光学表面6上。当利用第二光学表面上没有疏水层11的物镜在这种介质上进行记录时,记录系统会有几分钟显示伺服(随动)失败,例如聚焦或跟踪失败。这种情况示于图2。图3示出没有使用疏水层10和11时在第二光学表面7处的污染物积聚。至少在第一光学表面上有一层疏水层10,系统就很稳定和健壮。

    图2示出两种不同激光束功率P情况下示波器轨迹22和23,它们具有径向开环和闭环聚焦伺服机构的错误信号。光学系统是在焦点上,但跟踪伺服机构未逼近。在低功率(P=0.5mW)时,信号正常。较高功率(P=1.0mW)时,由于在第二表面7的污染物积聚,发生信号的严重不稳定。

    图3示出在没有疏水层情况下物镜3的第二光学表面7的显微镜照片,t=0分钟时表面仍很清洁,而在较高激光功率记录1分钟后表面有污染物积聚。可以清晰地看到用标号30表示的水。物镜留在显微镜下干燥,12分钟和40分钟后再作观察。在t=40分钟时水已全部蒸发,可见污染物,用标号31表示。污染物是蒸发的水/污染混合物层在没有疏水层10的介质5的第一光学表面6上的再淀积物。分别在介质5和/或物镜2的第一光学表面6和第二光学表面7上加疏水层10和11可以大大消解污染物积聚问题,因为在较低激光功率时没有观察到污染物积聚。

    图4示出基于滑块的光记录系统。滑块2a在光盘上方的运行高度大约为1μm。应当指出,这不是以上定义的近场记录,因为1μm>>λ/n。在此实例中,滑块包括磁场调制(MFM)线圈4,它用于磁光记录。其它标号对应于图1A中的标号。应当指出:聚焦辐射束1从中穿过的滑块2a的部分构成物镜2的一部分。

    图5示出带有磁场调制(MFM)线圈的透明滑块。通过中间的孔径聚焦图4的激光束。

    图6示出带有不适当的疏水层11的物镜3第二光学表面7的显微镜照片。”不适当”是指水滴和疏水层之间接触角的值,在此例中所述接触角比90度大不了多少,但对于理想的疏水层,此接触角值等于或接近180度。由于水和表面之间接触角比90度大不了多少,因而明显地形成并且可以看到一些小水滴,如标号60所示。小水滴簇的尺寸可以与物镜和记录介质之间的自由工作距离以及聚焦激光束的直径相比拟。激光束将基本上被小水滴簇散射。自由工作距离是第一光学表面6和第二光学表面7之间的距离。

    图7示出没有疏水层,但有非常亲水层的物镜3的第二光学表面7的显微镜照片。亲水特性通常源于表面上的氧原子,例如Al2O3-或SiO2的情况。液体(水)和表面之间的接触角现在非常小,即比90度小得多。在照片中可见,和图6作比较,具有基本均匀厚度的完整水层积聚在表面上,以标号70表示,层厚大约为1微米或甚至更厚。由于表面润湿是均匀的,故至少液体水层的中心部分具有光学恒定的厚度,基本上不影响聚焦辐射束的波前。

    应当指出,上述实施例是说明而非限制本发明,且本专业的技术人员能够设计许多不同的实施例而不会背离所附权利要求书的范围。在权利要求书中,放在括弧内的任何参考符号都不应被认为是限制该项权利要求。词语”包括”并不排除可以有权利要求中未列出的元件和步骤。元件前的不定冠词”a”和”an”并不排除有多个这种元件。在相互不同的权利要求中列举的某些措施并不表示不能有利地使用这些措施的组合。

    按照本发明,描述了供光学数据存储介质使用的光记录和读出系统。所述系统包括具有形成在衬底上的叠堆的介质。所述记录叠堆适合于用空气中波长为λ的聚焦辐射束进行记录。所述记录叠堆具有距衬底最远的第一光学表面。光学头的物镜具有数字孔径NA,记录时聚焦辐射束从所述物镜发射出来,光学头设置在所述光学数据存储介质的记录叠堆一侧。物镜具有离记录叠堆最近的第二光学表面并且适合于以距第一光学表面小于50μm的自由工作距离dF进行记录/读出。在第一光学表面和第二光学表面中至少一个表面上配备有透明疏水层,其折射率为n,厚度小于0.5λ/n。这样,可以实现可靠的记录和读出,具体地说,可以防止或消解在第二光学表面上的污染物积聚。

光记录和读出系统,光数据存储介质以及这种介质的使用.pdf_第1页
第1页 / 共17页
光记录和读出系统,光数据存储介质以及这种介质的使用.pdf_第2页
第2页 / 共17页
光记录和读出系统,光数据存储介质以及这种介质的使用.pdf_第3页
第3页 / 共17页
点击查看更多>>
资源描述

《光记录和读出系统,光数据存储介质以及这种介质的使用.pdf》由会员分享,可在线阅读,更多相关《光记录和读出系统,光数据存储介质以及这种介质的使用.pdf(17页珍藏版)》请在专利查询网上搜索。

描述一种供光学数据存储介质(5)使用的光记录和读出系统。所述系统包括具有形成在衬底(8)上的记录叠堆(9)的介质(5)。记录叠堆适合于用空气中波长为的聚焦辐射束(1)进行记录。记录叠堆(9)具有距衬底(8)最远的第一光学表面(6)。光学头(3)设置在所述光学数据存储介质(5)的记录叠堆(9)一侧,光学头(3)的物镜(2)具有数字孔径NA,记录时聚焦辐射束(1)从物镜(2)发射出来。物镜具有离记录叠。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 信息存储


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1