异源刺激门控离子通道及其使用方法.pdf

上传人:1520****312 文档编号:6234728 上传时间:2019-05-23 格式:PDF 页数:79 大小:4.10MB
返回 下载 相关 举报
摘要
申请专利号:

CN03817754.4

申请日:

2003.06.02

公开号:

CN1672055A

公开日:

2005.09.21

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回|||实质审查的生效|||公开

IPC分类号:

G01N33/567; C12P21/06; C12N1/20; C07H21/04; C07K1/00

主分类号:

G01N33/567; C12P21/06; C12N1/20; C07H21/04; C07K1/00

申请人:

斯隆-凯特林癌症研究所;

发明人:

G·A·米森博克; B·V·泽梅尔曼

地址:

美国纽约

优先权:

2002.05.31 US 60/384,670; 2003.01.21 US 60/441,452

专利代理机构:

中国专利代理(香港)有限公司

代理人:

王景朝

PDF下载: PDF下载
内容摘要

体内或体外人工激活经遗传操作的特定靶细胞(或靶细胞群体)的方法和组合物,用异源刺激门控离子通道的触发激活所述细胞。所述刺激门控离子通道适宜为TRPV1、TRPM8或P2X2。导致所述离子通道开放或“门控”的刺激可以是物理刺激或化学刺激。物理刺激可以是加热或机械力,而化学刺激适宜为配体,例如对于TRPV1为辣椒素或对于P2X2为ATP,或者为“笼蔽配体”,例如光不稳定配体衍生物,在这种情况下,以光形式的物理信号可用于提供化学信号。所述细胞的选择性激活可以用于各种各样的应用,包括神经元作图和神经内分泌作图和药物筛选。

权利要求书

1: 一种用于激活真核靶细胞的方法,所述方法包括下述步骤: a.通过在靶细胞中表达异源刺激门控离子通道来致敏所述靶细 胞,和 b.将刺激施加于所述致敏靶细胞,以触发所述离子通道,从而激 活所述靶细胞。
2: 权利要求1的方法,其中所述刺激门控离子通道是配体门控离 子通道。
3: 权利要求2的方法,其中通过使所述靶细胞接触门控所述离子 通道的配体,将所述刺激施加于所述配体门控离子通道。
4: 权利要求2的方法,其中所述刺激门控离子通道选自TRPV1 和TRPM8。
5: 权利要求4的方法,其中所述刺激门控离子通道是TRPV1, 并且所述靶细胞由于所述细胞与辣椒素接触而受到刺激。
6: 权利要求4的方法,其中所述刺激门控离子通道是TRPM8, 并且所述靶细胞由于所述细胞与薄荷醇或icilin接触而受到刺激。
7: 权利要求2的方法,其中所述刺激门控离子通道是P2X 2 。
8: 权利要求7的方法,其中所述靶细胞由于所述细胞与ATP接 触而受到刺激。
9: 权利要求3-8中任一项的方法,其中所述配体开始是以光不稳 定笼蔽配体的形式存在,并且其中所述刺激当所述光不稳定笼蔽配体 暴露在光下后施加所述配体门控离子通道。
10: 权利要求9的方法,其中所述光不稳定笼蔽配体暴露在光脉 冲。
11: 权利要求9的方法,其中所述刺激门控离子通道是TRPV1, 并且所述配体是DMNB-辣椒素。
12: 权利要求9的方法,其中所述刺激门控离子通道是TRPM8, 并且所述配体是DMNB-薄荷醇。
13: 权利要求9的方法,其中所述刺激门控离子通道是P2X 2 ,并 且所述配体是DMNPE-ATP。
14: 权利要求1-13中任一项的的方法,其中所述异源刺激门控离 子通道的表达受到控制,以仅在特定细胞类型中发生。
15: 权利要求14的方法,其中所述表达受到诱导型启动子或阻抑 型启动子的控制。
16: 权利要求15的方法,其中所述启动子选自响应类固醇、抗生 素、4-OH他莫昔芬或重金属的启动子。
17: 权利要求14的方法,其中所述异源刺激门控离子通道的表达 受到细胞类型特异性启动子的控制。
18: 权利要求14的方法,其中所述异源刺激门控离子通道的表达 受到第二种细胞类型特异性控制元件的控制。
19: 权利要求18的方法,其中所述第二种细胞类型特异性控制元 件包含一个loxP-stop-loxP序列和一个细胞类型特异性启动子,其中所 述loxP-stop-loxP序列安插在编码所述异源刺激门控离子通道的遗传 序列和该序列相关启动子之间,而所述细胞类型特异性启动子与控制 编码细菌Cre蛋白的遗传序列的表达相关。
20: 权利要求1的方法,其中所述刺激门控离子通道是TRPV1, 并且所述靶细胞由于所述细胞与热或辐射接触而受到刺激。
21: 权利要求1的方法,其中所述刺激门控离子通道是TRPM8, 并且所述靶细胞由于所述细胞与冷接触而受到刺激。
22: 权利要求1-21中任一项的方法,其中所述靶细胞在体外被激 活。
23: 权利要求1-21中任一项的方法,其中所述靶细胞在体内被激 活。
24: 一种光活化笼蔽配体,所述配体包含一种通过光不稳定键连 接配体的笼形物,所述配体当与所述笼形物连接的键不存在时能有效 触发刺激门控离子通道,其中所述配体选自辣椒素、薄荷醇和icilin。
25: 权利要求24的组合物,其中所述笼形物选自DMNB和 DMNPE。
26: 权利要求25的组合物,其中所述配体是辣椒素,并且所述笼 形物是DMNB。
27: 权利要求25的组合物,其中所述配体是薄荷醇,并且所述笼 形物是DMNB。
28: 一种表达单元,所述表达单元包含一个编码功能性刺激门控 离子通道的序列;一个有效导致所述离子通道在真核靶细胞内表达的 启动子;以及一个细胞类型特异性表达控制元件,所述元件可以与所 述启动子相同或不同。
29: 权利要求28的表达单元,所述表达单元还包含一个编码蛋白 的核苷酸序列,所述蛋白有助于示踪或选择表达所述刺激门控离子通 道的细胞。
30: 权利要求29的表达单元,其中编码刺激门控离子通道的核苷 酸序列和编码有助于示踪细胞的蛋白的核苷酸序列被一个内部核糖体 进入位点分开。
31: 权利要求28的表达单元,其中所述刺激门控离子通道是配体 门控离子通道。
32: 权利要求31的表达单元,其中所述刺激门控离子通道选自 TRPV1、TRPM8和P2X 2 。
33: 权利要求31的表达单元,所述表达单元还包含一个编码蛋白 的核苷酸序列,所述蛋白有助于示踪表达所述刺激门控离子通道的细 胞。
34: 权利要求33的表达单元,其中有助于示踪或选择细胞的蛋白 选自GFP、EGFP、GAP43-EGFP、DsRed、DsRed2、synapto-pHluorin、 cameleon、camgaroo、pericam、G-CaMP、clomeleon、lacZ、β-内酰胺 酶、氨基糖苷磷酸转移酶、谷氨酰胺合成酶和二氢叶酸还原酶。
35: 权利要求28的表达单元,其中所述启动子是诱导型启动子或 阻抑型启动子。
36: 权利要求28的表达单元,其中所述启动子选自响应类固醇、 抗生素、4-OH他莫昔芬或重金属的启动子。
37: 权利要求28的表达单元,其中所述启动子是细胞类型特异性 的。
38: 权利要求28的表达单元,其中所述启动子的表达被第二种细 胞类型特异性控制元件所控制。
39: 权利要求38的表达单元,其中所述第二种细胞类型特异性控 制元件包含一个安插在编码所述异源刺激门控离子通道的核苷酸序列 和所述启动子之间的loxP-stop-loxP序列。
40: 权利要求28的表达单元,其中所述表达单元是基因工程病 毒。
41: 权利要求40的表达单元,其中所述病毒是逆转录病毒。
42: 权利要求41的表达单元,其中所述病毒是慢病毒。
43: 权利要求42的表达单元,其中所述病毒是带有其自身包膜外 壳蛋白或其它病毒包膜外壳蛋白的假型病毒。
44: 权利要求43的表达单元,其中所述病毒是带有疱疹性口腔炎 病毒包膜外壳蛋白的假型病毒。
45: 表达异源刺激门控离子通道的致敏细胞,其中所述异源刺激 门控离子通道的表达被表达控制元件所控制,所述控制元件可以与所 述异源刺激门控离子通道相关的启动子相同或不同,其中所述离子通 道响应在没有人工干预的细胞环境中不存在的刺激。
46: 权利要求45的致敏细胞,其中所述致敏细胞是神经元细胞。
47: 权利要求45的致敏细胞,其中所述刺激门控离子通道是配体 门控离子通道。
48: 权利要求47的致敏细胞,其中所述刺激门控离子通道选自 TRPV1、TRPM8和P2X 2 。
49: 权利要求45的致敏细胞,其中所述控制元件包含一个安插在 编码所述异源刺激门控离子通道的核苷酸序列和所述启动子之间的 loxP-stop-loxP序列。
50: 权利要求45的致敏细胞,其中所述细胞是培养细胞。
51: 权利要求45的致敏细胞,其中所述细胞是在移植组织中。
52: 一种包含权利要求45-49中任一项的致敏细胞的活体生物。
53: 权利要求52的活体生物,其中所述生物是所述异源刺激门控 离子通道转基因的非人类动物。
54: 权利要求52的活体生物,其中所述生物是具有所述异源刺激 门控离子通道的敲入基因的非人类敲入动物。
55: 一种用于神经元通路和神经内分泌通路作图的方法,所述方 法包括下述步骤: (a)通过在靶细胞中表达异源刺激门控离子通道来致敏所述靶细 胞,和 (b)将刺激施加于所述致敏靶细胞,以触发所述离子通道,从而 激活所述靶细胞;和 (c)监测推定下游细胞对所述致敏细胞激活的反应,其中对下游 细胞反应的观察表明这些细胞在神经元通路或神经内分泌通路中实际 上是位于所述致敏细胞的下游。
56: 一种用于评价特定细胞类型的细胞以确定所述细胞是否参与 产生疾病相关表型的方法,所述方法包括下述步骤: (a)通过在靶细胞中表达异源刺激门控离子通道来致敏所述靶细 胞,和 (b)将刺激施加于所述致敏靶细胞,以触发所述离子通道,从而 激活所述靶细胞;和 (c)观察触发所述离子通道的效应,如果有的话,其中与所述表 型的出现或减少相对应的效应表明所述细胞类型涉及所述疾病。
57: 一种用于鉴定特定细胞类型的细胞以确定所述细胞是否参与 产生疾病相关表型的方法,所述方法包括下述步骤: (a)通过在靶细胞中表达异源刺激门控离子通道来致敏所述靶细 胞,和 (b)将刺激施加于所述致敏靶细胞,以触发所述离子通道,从而 激活所述靶细胞;和 (c)观察触发所述离子通道的效应,如果有的话,其中与所述表 型的出现或减少相对应的效应表明所述细胞类型涉及所述疾病。
58: 一种用于筛选对细胞类型有影响的候选分子的方法,所述方 法包括下述步骤: (a)使所述分子与所述细胞类型的致敏细胞接触,所述致敏细胞 表达异源刺激门控离子通道,其中所述异源刺激门控离子通道的表达 被表达控制元件所控制,所述控制元件可以与所述异源刺激门控离子 通道相关的启动子相同或不同,其中所述离子通道响应在没有人工干 预的细胞环境中不存在的刺激,和 (b)监测所述致敏细胞,以检测在所述细胞中响应所述接触的变 化,如果有的话。
59: 权利要求58的方法,所述方法还包括将刺激施加于所述细 胞,以触发所述异源离子通道,并且检测在所述受刺激细胞中响应所 述接触的变化,如果有的话。
60: 权利要求59的方法,其中监测所述细胞的形态学变化、生理 学变化、生物化学变化和基因表达变化。
61: 权利要求58的方法,其中监测所述细胞的形态学变化、生理 学变化、生物化学变化和基因表达变化。
62: 一种用于筛选对一种或多种细胞类型有影响的候选分子的方 法,所述方法包括下述步骤: (a)在包含表达异源刺激门控离子通道的致敏细胞的生物中诱导 表型,其中所述异源刺激门控离子通道的表达被表达控制元件所控 制,所述控制元件可以与所述异源刺激门控离子通道相关的启动子相 同或不同,其中所述离子通道通过触发所述异源离子通道而响应在没 有人工干预的细胞环境中不存在的刺激,和 (b)将所述候选分子给予所述生物,和 (c)监测所述生物,以检测给予所述分子的生物的所述疾病相关 表型变化,并将所述生物与没有给予所述候选分子的生物进行比较。
63: 权利要求62的方法,其中监测所述生物的形态学变化、生理 学变化、生物化学变化或基因表达变化。
64: 一种用于筛选对细胞类型有影响的候选分子的方法,所述方 法包括下述步骤: (a)通过包括下述步骤的方法选择一组筛选检查细胞,所述步骤 包括通过在所述细胞中表达异源刺激门控离子通道来致敏潜在的筛选 检查细胞,将刺激施加于所述致敏细胞,以触发所述离子通道,从而 激活所述细胞;然后观察触发所述离子通道的效应,如果有的话,其 中选择观察到有效应的细胞; (b)分离与所选细胞相同类型的筛选检查细胞,所述筛选检查细 胞不含有所述异源刺激门控离子通道,和 (c)使所述分子与所分离的筛选检查细胞接触,和 (d)监测所分离的筛选检查细胞,以检测在所述细胞中响应所述 接触的变化,如果有的话。
65: 权利要求64的方法,其中监测所述细胞的形态学变化、生理 学变化、生物化学变化和基因表达变化。

说明书


异源刺激门控离子通道及其使用方法

    本申请要求于2002年5月31日申请的美国临时申请第60/384,670号以及于2003年1月21日申请的美国临时申请第60/441,452号的权益,所述临时申请通过引用结合到本文中。

    【发明背景】

    本申请涉及异源刺激门控离子通道、所述通道的触发,所述通道当在细胞中表达时,能选择性激活这些细胞。

    细胞激活定义为细胞跨质膜电位从静息(或极化)值向兴奋(或去极化)值的移位,或者定义为胞内钙离子浓度从静息(或基础)值增加到升高值。通过膜电位移位的细胞激活是以下的基础,例如:神经元活性;感觉传导;骨骼肌、心肌和平滑肌收缩;以及胰β细胞的葡萄糖敏感。通过钙离子浓度增加的细胞激活是以下的基础,例如:外分泌、内分泌和旁分泌;化学神经传递;骨骼肌、心肌和平滑肌收缩;细胞死亡;以及T细胞激活。对这些过程中任一过程或所有过程的调节,在生物学研究、药物开发和医学上具有重要意义。

    机械地讲,细胞激活是受跨膜离子通道的影响,所述通道控制孔的开放和关闭(即“门控”),以响应物理或化学刺激。门控离子通道的已知物理刺激包括在膜电位(电压门控通道)、机械应力(机械力敏感通道)或温度(温度敏感通道)上的变化。门控离子通道的已知化学刺激包括胞内信使(例如钙门控通道和环核苷酸门控通道)或胞外信号分子(例如离子型神经递质受体)浓度的变化。

    发明概述

    本发明提供在体内或体外人工激活经遗传操作的指定靶细胞(或靶细胞群体)的方法和组合物。所述方法采用异源刺激门控离子通道地触发,以激活所述细胞。所述刺激门控离子通道适宜是TRPV1、TRPM8或P2X2。导致所述离子通道开放或“门控”的刺激可以是物理刺激或化学刺激。物理刺激可以是加热或机械压力,而合适的化学刺激可适宜是配体,例如对于TRPV1的辣椒素或对于P2X2的ATP,或“笼蔽(caged)配体”,例如光不稳定配体衍生物,在这种情况下,以光形式的物理信号用于提供化学信号。

    本发明提供用于产生基因工程动物(最好是小鼠)的方法,所述动物的细胞或细胞群体表达所述刺激门控离子通道,因而可以被对这些通道有特异性的物理刺激或化学配体所激活。所述动物可以是敲入动物、转基因动物或非转基因动物,所述动物的细胞瞬时表达所述刺激门控离子通道。

    本发明提供在基因工程动物或在来自这些动物的移植组织中激活表达所述异源刺激门控离子通道的细胞的方法。本发明也提供在移植组织或细胞培养物中激活表达异源刺激门控离子通道的转染细胞或感染细胞的方法。此外,本发明提供监控所述细胞激活的形态学效应、生理学效应、生物化学效应和遗传学效应的方法。

    本发明提供通过在移植组织或动物中激活特定细胞和监控下游细胞的响应而进行神经元通路作图的方法。所述通路可包括神经递质通路、细胞信号传导途径和神经元回路。

    本发明提供通过在移植组织或动物中随机激活神经元细胞并监控下游细胞的响应而鉴定新神经元通路的方法。所述通路可包括神经递质通路、细胞信号传导途径、已知的神经元回路和先前未知的神经元回路。

    本发明提供鉴定细胞的方法,所述细胞的激活导致特定的生理学状态、行为状态或疾病状态。本发明还提供鉴定细胞的方法,所述细胞的激活导致特定的生理学状态、行为状态或疾病状态或响应的缓解。所述状态或响应可包括外分泌、内分泌和旁分泌;骨骼肌、心肌和平滑肌收缩;胰β细胞的葡萄糖敏感,细胞死亡和T细胞激活;疼痛、运动、性行为、奖赏期望(reward-seeking)和成瘾、注意力、攻击性、抑郁、睡眠、进食、厌食、认知、情感、学习、记忆、自体调节及其它的感觉和感受。

    本发明提供在敲入生物或转基因非人类生物以及来自所述生物的移植组织中的活化细胞在鉴定和分离特定类型细胞纯群体中的使用方法。本发明还提供所述分离的细胞。所述细胞可以是例如来自特定的真核组织或组织区。所述真核细胞或组织最好是哺乳动物,例如小鼠、大鼠或人类,但也可以是其它种类,包括但不限于秀丽新小杆线虫(C.elegans)、衰鲉(zebrafish)或果蝇属(Drosophila)。本发明还提供所述分离的细胞在试验中的使用方法,所述试验例如药物筛选试验、药理学试验、生物化学试验、生理学试验、形态学试验和基因表达试验。所述分离的细胞可表达所述刺激门控离子通道,或者它们可以是相同类型的未经修饰的细胞。此外,表达所述刺激门控离子通道的细胞可呈刺激态或未刺激态。

    本发明提供新的修饰的(“笼蔽”)配体,所述配体可以与刺激门控离子通道一起使用。所述修饰由光不稳定基团组成,所述基团通过光不稳定键连接所述配体,使所述配体失活,直到被光解除笼蔽。具体地说,本发明提供修饰的(笼蔽)辣椒素。此外,本发明提供笼蔽其它化学配体(包括薄荷醇和icilin)的方法,因而使它们失活,直到被光解除笼蔽。

    本发明提供使用所述笼蔽配体、在选定的时间和/或以选定的间隔重复刺激所述刺激门控离子通道的方法。此外,本发明提供在真核生物或所述生物组织内选定部位刺激所述刺激门控离子通道的方法。具体地说,本发明提供刺激所述离子通道的方法,所述方法通过在选定的时间或部位使用光将笼蔽配体解除笼蔽,因而释放功能性配体并激活表达这些离子通道的近基细胞或细胞群。

    本发明提供用于将所述异源刺激门控离子通道导入非人类生物细胞中的表达单元。所述表达单元能限制所述刺激门控离子通道表达为某些指定的细胞类型或种类;所述表达单元也可对刺激门控离子通道表达期间的生物发育提供时间或阶段上的控制。

    本发明还提供用于将所述异源刺激门控离子通道导入人类细胞中的表达单元,其目的是通过基因治疗来治疗人类特定的生理学状态、行为学状态或疾病状态或响应。

    附图简述

    图1显示制备DMNB-辣椒素的反应流程。

    图2显示经遗传操作的指定靶神经元的药理学刺激。

    图3A和图3B显示表达TRPV1的神经元内辣椒素响应的剂量依赖性。

    图4A和图4B显示经遗传操作的指定靶神经元的光刺激,其中显示出表达TRPV1(A,黑色曲线)或P2X2(B,黑色曲线)的海马神经元的膜电位或未转染的对照神经元(A和B,灰色曲线)的膜电位。

    图5显示编码所示离子通道基因的慢病毒双顺反子载体,该载体用于注射到组织中,感染培养的真核细胞和组织以产生转基因动物。所述载体编码荧光蛋白,有助于鉴定和示踪感染细胞。

    图6显示编码所示离子通道基因的慢病毒单顺反子载体和双顺反子载体,该载体用于产生转基因动物。在启动子和离子通道基因间,每个载体在loxP序列侧翼的三个读框中都含有一个翻译终止子,阻止离子通道的表达,除非在同一细胞中表达细菌Cre重组酶。对Cre蛋白的需求使细胞精确地表达所述离子通道。为了标记感染细胞,提供成功终止盒缺失的可靠指标,在loxP位点之间也编码一个荧光蛋白。

    图7显示ROSA26基因组打靶载体。所述载体编码一个离子通道基因(在P2X2的情况下还编码一个共价三聚体)的基因组拷贝和一个荧光蛋白,所述荧光蛋白用于示踪在双顺反子盒中表达所述离子通道的细胞。在内源ROSA26启动子或异源CAG启动子之间,每个载体在loxP序列侧翼都含有一个转录终止序列,阻止离子通道的表达,除非在同一细胞中表达细菌Cre重组酶。对Cre蛋白的需求使细胞精确地表达所述离子通道。所述载体还包括Neo基因和白喉毒素基因,Neo基因用于使用G418来选择稳定整合体,白喉毒素基因用于选择非同源整合体。

    图8显示光解解除笼蔽的光谱学测量。5μM DMNB-辣椒素样品在补充了100mM DTT的胞外记录液中暴露在波长<400nm的0.371mJ光能,导致44%光解。在350-370nm波长(阴影区)下吸光度减少,定量测定DMNB-辣椒素光解部分。

    图9显示根据本文提供的方法所笼蔽的薄荷醇和icilin的化学结构。

    发明详述

    本发明提供激活真核细胞的方法,所述方法采用异源刺激门控离子通道的触发来致敏所述细胞。本申请使用的术语“细胞”是指细胞培养、移植器官或结构中的活细胞和活生物体中的细胞。所述真核细胞最好是哺乳动物,例如小鼠、大鼠或人类,但也可以是其它类型,包括但不限于秀丽新小杆线虫、衰鲉或果蝇。

    本发明提供在各种各样的应用中使用异源刺激门控离子通道的方法,所述方法使用通过在选定的时间和部位使用刺激来选择性可控刺激而直接触发的离子通道。在本申请的说明书和权利要求书中,术语“使用刺激”是指使用人工干预刺激的应用,而所述刺激在缺乏所述干预的给定转导细胞的正常环境中是不存在的。因此,所述刺激可以是接触化学配体或物理刺激,所述化学配体通常是不存在的,即:在可检测刺激所需水平上不存在;而所述物理刺激通常是不存在的,例如局部加热或冷却。因此,本发明与例如以下专利文献公开的方法不同:美国专利第6,548,272和相应的PCT公布号WO00/06289,所述专利文献描述了用于评价与内源离子通道或异源离子通道相互作用的药物的筛选方法,所述内源离子通道或异源离子通道例如由HIV-1基因组编码的钙通道等。相比之下,本发明采用异源刺激门控离子通道以及它们的关连刺激作为人工激活细胞的工具,并描述了用于评价药物的筛选方法,所述药物影响特定细胞类型的活性或所述活性的结果,而不是所述药物与所述异源离子通道本身相互作用。

    本申请使用的术语“激活”或“活化”(或某些情况下“致敏”或“敏化”)是指在所述离子通道触发时引起细胞特异性应答。在神经元细胞中,该应答可以是极化和/或去极化。在其它细胞中,所述应答可以是分泌开始或终止、胞内Ca2+浓度上升、收缩或舒张(即在肌肉或其它收缩性细胞中)或感觉响应。

    本申请使用的术语“异源刺激门控离子通道”是指跨膜离子通道,所述通道在即将被激活的细胞中表达,被选择性可控刺激(或者是物理刺激形式例如加热,或者化学刺激形式例如配体与所述通道的结合)直接触发。所述通道可以在所述细胞的质膜上表达和/或在胞内区室膜上表达,所述胞内区室例如内质网(ER)(Liu,Liu等,2003;Marshall,Owen等,2003)。

    本申请使用的术语“触发”是指在物理或化学刺激后通道开放,以容许离子穿过所述通道从较高离子浓度区向较低离子浓度区被动转运。就钙而论,所述离子可穿过质膜向细胞质转运,或从胞内区室(例如ER)向细胞质转运。

    刺激门控离子通道如果是通过人工干预导入细胞时,被认为是“异源的”。离子通道可以来自与靶细胞相同的物种或来自不同物种。异源刺激门控离子通道最好在没有人工干预时也不会在细胞中天然存在。例如,所述离子通道可以通过改变其氨基酸组成而修饰,以便被外源配体或人工配体触发,或者被不同物理刺激(例如比正常所需温度高或低的温度)触发。最好通过采用以下7个标准来选择用于本发明的刺激门控离子通道。理想的通道是(i)携带合适的极性和/或离子组成的电流和(ii)被物理刺激(例如光、热、机械力)或小的药物样化学激动剂直接门控,所述化学激动剂(iii)不是用作中枢神经系统的神经递质(尤其是在将被激活的细胞是神经元细胞时)。所述通道的(iv)非脱敏电导或缓慢脱敏电导将由以下化合物形成:(v)单体蛋白或同型寡聚体蛋白,所述蛋白的(vi)亚基含有偶数跨膜区段。该跨膜拓扑结构保证所述通道多肽的两端都出现在质膜的同侧,容许亚基以共价结合成多聚体,阻止亚基与内源通道混合。(vii)最后,所述通道被激动剂门控,所述激动剂可以用光不稳定保护基团(“笼”)来衍生,所述基团赋予分子生物学无反应性。然后,可以通过直接应用激动剂对细胞进行药理学刺激,或者间接地例如通过从笼蔽前体经光致释放激动剂对细胞进行光刺激。

    TRPV1和TRPM8即周围神经系统伤害感受神经元的香草素受体和薄荷醇受体(Caterina,Schumacher等,1997;McKemy,Neuhausser等,2002;Peier,Moqrich等,2002),几乎与该滤器完全匹配。这两个通道和它们的主要激动剂—辣椒素和冷却化合物例如薄荷醇—在中枢神经系统实际上是不存在的(Caterina,Schumacher等,1997;McKemy,Neuhausser等,2002;Peier,Moqrich等,2002),也参见Mezey(Mezey,Toth等,2000)。这两个通道被认为是作为非选择性的、可渗透钠和钙的同型四聚体起作用(Caterina,Schumacher等,1997;Clapham,Runnels等,2001;McKemy,Neuhausser等,2002;Montell,Birnbaumer等,2002;Peier,Moqrich等,2002)。这两个通道都可以被温度变化以及化学配体的结合而触发。最后,辣椒素和一些冷却化合物,包括薄荷醇和icilin,含有光不稳定保护基团的潜在接受位点(图9)。光不稳定保护基团与所述接受位点的缔合会导致刺激门控离子通道,其中光通过释放活性配体而起到间接触发剂的作用。

    P2X2即ATP门控非选择性阳离子通道(Brake,Wagenbach等,1994;Valera,Hussy等,1994)的特征在于它脱敏速度缓慢(Ding和Sachs 2000;North 2002),代表了通道家族的候选者,不同于离子通道的TRP超家族。采用P2X2作为去极化电流的选择性可寻址来源,在某种程度上可以被某些中枢突触上存在的内源嘌呤能受体限制(Brake,Wagenbach等,1994;Valera,Hussy等,1994;Brake和Julius1996;North 2002)。然而,P2X2为产生完全缺乏天然激动剂的工程通道-配体组合提供一个理想的平台。

    ATP门控离子通道例如P2X2具有一个最简单的已知通道结构(Brake,Wagenbach等,1994;Valera,Hussy等,1994;Brake和Julius1996;Hille 2001;North 2002)和一个大的胞外结合配体的结构域(Brake,Wagenbach等,1994;Valera,Hussy等,1994;Newbolt,Stoop等,1998;North 2002),所述结构域的原子结构可比较容易地测定。高分辨率结构可以用来指导设计通道与配体结合的结构域的突变,以消除对ATP的敏感性(Shah,Liu等,1997;Bishop,Buzko等2000)。所述核苷酸配体上“第二位点”取代(Shah,Liu等,1997;Bishop,Buzko等,2000)可以补充这些突变并恢复功能性(但完全是非天然的)受体-配体对。也可使用定向性较差的突变或者甚至是随机突变,以产生对天然激动剂缺乏亲和力的突变类型。然后可以筛选潜在激动剂化合物文库,鉴定有用的非天然激动剂。类似的化学遗传学方法也可用于改变离子通道的传导特性,例如离子选择性。

    化学遗传学方法可用于改变异源刺激门控离子通道的配体结合特性、物理激活特性或传导特性。例如,可以选择突变通道传导钾离子而不是钠离子或钙离子的能力。当在神经元中表达并被物理或化学刺激触发时,所述突变离子通道会超极化,使所述神经元失活。

    TRPV1、TRPM8和P2X2的遗传序列是本领域已知的,例如Caterina等(Caterina,Schumacher等,1997)、McKemy(McKemy,Neuhausser等,2002)、Valera等(Valera,Hussy等,1994)和Brake等(Brake,Wagenbach等,1994)。所述序列也在GenBank登记号AF029310、NM134371和NM053656之下列出,并附在本文(Seq.IDNos:1、2和3)。

    TRPV1、TRPM8和P2X2都是离子通道大家族成员,都具有共同的结构特征和门控原理。例如TRPV4与TRPV1类似,也被热触发,但不被辣椒素触发(Guler,Lee等,2002)。此外,P2X3被ATP触发,同P2X2一样,但脱敏更快(North 2002)。本发明预期,按照生物学应用的具体要求,可以使用单个离子通道基因以在靶细胞中形成同型寡聚体通道,以及使用离子通道基因组合以形成具有新特性的混合的、异型寡聚体通道(North 2002)。因此,TRPV1、TRPM8和P2X2是非限制性实例。

    为了根据本发明激活细胞,将一个编码异源刺激门控离子通道的遗传序列导入到靶细胞群体中并在其中表达。所述导入可采用“敲入”动物(最好是小鼠)的形式,其中编码异源刺激门控离子通道的遗传序列的敲入结构,通过同源取代插入到所述动物基因组内特定基因座,例如ROSA26基因座(Zambrowicz,Imamoto等1997;Soriano1999),破坏、消除或尾随一个已知其表达模式的内源序列;然后,编码所述异源刺激门控离子通道的遗传序列的表达可在负责所述内源基因表达的启动子的控制下进行,就象在ROSA26基因座的情况下一样(Zambrowicz,Imamoto等,1997;Soriano 1999;Awatramani,Soriano等,2001),且基本上类似于所述内源基因表达模式。在所述刺激门控离子通道基因插入到基因组中所述内源基因终止密码子后的情况下,所述刺激门控离子通道基因之前必须有一个内部核糖体进入位点(IRES),例如ECMV(脑心肌炎病毒)IRES(Jang,Krausslich等,1988;Jackson,Howell等,1990)。或者,有效连接异源启动子的刺激门控离子通道基因可以通过异源取代插入到动物基因组中,破坏、消除或尾随一个内源序列;然后编码所述异源刺激门控离子通道的遗传序列的表达可以在所述异源启动子控制下进行,且基本上类似于非转基因动物中有效连接该启动子的基因的表达模式。或者,刺激门控离子通道基因和与它有效连接的异源启动子可随机(非同源地)插入到所述宿主基因组中,产生“转基因”动物;然后编码所述异源刺激门控离子通道的遗传序列的表达可以在所述异源启动子控制下进行,且基本上类似于非转基因动物中与该启动子有效连接的基因的表达模式。或者,缺乏启动子的刺激门控离子通道基因可以随机(非同源地)插入到宿主基因组中;然后编码所述异源刺激门控离子通道的遗传序列的表达可以在插入位点附近的启动子的控制下进行,且基本上类似于插入位点附近的内源基因的表达模式。或者,刺激门控离子通道基因和与它有效连接的异源启动子可导入到病毒载体或其它载体中。下面提供用于此目的的慢病毒载体的实例。(有关产生转基因动物和控制转基因表达的方法概述参见Houdebine(Houdebine 2002))。

    在所有这些情况下,按照本申请,将所述异源刺激门控离子通道的表达限制在某种或某些限定的细胞类型中,是取决于使用本身具有所需特异性的细胞特异性或组织特异性启动子。所述启动子的实例包括下列启动子:对抑制性神经元具有特异性的GABA脱羧酶的启动子(Makinae,Kobayashi等,2000);Wnt-1的启动子/增强子和内皮缩血管肽受体B启动子(Zinyk,Mercer等,1998;Jiang,Rowitch等,2000),这两类启动子都对小鼠神经嵴具有特异性;囊泡谷氨酸转运蛋白启动子(Takamori,Rhee等,2001);对小脑浦肯野细胞具有特异性的钙结合蛋白启动子(Arnold和Heintz 1997);突触泡蛋白即突触蛋白1的2kb启动子,所述启动子已用于在成神经细胞瘤和其它神经元细胞系中表达转基因,但在非神经元细胞系中不能表达转基因(Kugler,Meyn等,2001);血小板衍生生长因子B链(PDGF B)启动子,所述启动子已优先用于皮层、小脑和海马中的靶神经元(Georgopoulos,McKee等,2002;Rockenstein,Mallory等,2002);1.8kb的神经元特异性烯醇化酶(NSE)启动子,所述启动子已用于在小鼠视网膜和脊髓中表达转基因(Sakai,Thome等,2002);来自肌球蛋白重链基因的2.9kb的上游非编码DNA(MHC启动子/增强子),所述DNA已用于在小鼠心脏指导转基因的表达(Matsui,Li等,2002);1.6kb的成视网膜细胞瘤基因(RB)启动子,所述启动子已用于标记视网膜神经节细胞层、小脑神经元、丘脑的神经胶质细胞和腿部肌肉的肌细胞(Jiang,Guo等,2001);0.9kb的乳清酸性蛋白(WAP)启动子,所述启动子已用于靶向乳房上皮细胞(Ozturk-Winder,Renner等,2002);8.5kb的Ca2+-钙调蛋白依赖性蛋白激酶II亚基(CaMKII)启动子,所述启动子已用于在小鼠海马、皮层、小脑和嗅球中表达转基因(Jerecic,Schulze等,2001);胰高血糖素(Gcg)启动子,所述启动子已用于在胰岛中表达人生长激素(Yamaoka,Yoshino等,2002);胰岛素(Ins2)启动子,所述启动子已用于在胰β细胞中表达人生长激素(Herrera 2000);Myh6启动子,所述启动子对小鼠心细胞具有特异性(Lee,Morley等,1998);Lap启动子,所述启动子对小鼠肝细胞具有特异性(Lavon,Goldberg等,2000)以及Fabp启动子,所述启动子对小鼠小肠细胞具有特异性(Saam和Gordon 1999)。

    用于鉴定对特定细胞类型和/或双组分的基因表达系统具有特异性的启动子的其它启动子以及技术(包括例如转录反式激活或位点特异性DNA重组)公开于DeFalco等(DeFalco,Tomishima等,2001);Zemelman等(Zemelman和Miesenbck 2001);Sandberg等(Sandberg,Yasuda等,2000);Lewandoski(Lewandoski 2001)和Stanford等(Stanford,Cohn等2001)。

    使用细胞类型特异性启动子的替代方法是使用提供细胞类型特异性的多组分表达系统,例如Cre-lox系统。(Hoess和Abremski 1984;Hoess和Abremski 1985)。在Cre-lox系统中,使用一个通用启动子(支持所述动物中所有基因表达的启动子),但它是通过loxP-stop-loxP区、从编码例如异源刺激门控离子通道的遗传序列中分离出来的,致使表达通常不会发生。“终止”序列可以是转录“终止”序列或者是翻译“终止”序列。然后,导入与细胞特异性启动子或组织特异性启动子有效连接的含有编码细菌Cre蛋白的遗传序列的第二序列。当Cre蛋白在特定亚群的细胞中表达时,它的作用是切除loxP位点间的终止序列,因而在这些细胞中激活所述异源基因(例如刺激门控离子通道基因)的表达。可以用病毒或其它载体,瞬时将第二DNA序列和loxP-stop-loxP盒导入到转基因动物或敲入动物中并连接到通用启动子上。或者,两种转基因动物或敲入动物可以交配,使得其后代在所有细胞中都具有loxP-stop-loxP盒(来自亲代1)和Cre,以切除那些细胞(来自亲代2)亚群的终止序列,产生所述异源基因(例如刺激门控离子通道基因)的已知表达模式(该方法的实例参见Srinivas(Srinivas,Watanabe等2001))。

    所述异源刺激门控离子通道的表达也可以用诱导型启动子来时序控制,所述诱导型启动子即可以在选定时间响应外部信号而打开和关闭的启动子。所述启动子已知响应类固醇、抗生素、4-OH他莫昔芬和重金属(Hofmann,Russell等,1988;Lewandoski 2001;Vallier,Mancip等,2001;Bex,Vooijs等,2002;Gossen和Bujard 2002;Roscilli,Rinaudo等,2002)。

    为了用载体导入异源刺激门控离子通道,本发明提供有用的表达单元。本申请使用的术语“表达单元”是指能表达由所述表达单元编码的异源蛋白或肽的病毒载体、质粒等。当所述表达单元整合到靶细胞基因组中时可以发生所述表达,或者直接由表达单元进行表达。每个表达单元包含编码功能性刺激门控离子通道的序列;和有效导致所述离子通道在靶细胞内表达的启动子,以及细胞类型特异性和/或时序表达控制元件。所述表达控制元件可以就是所述启动子,或者是除所述启动子之外的元件,所述元件除在特定类型或特征的细胞内和/或在规定时间之外,能有效限制所述离子通道的表达。细胞类型特异性启动子和其它控制元件的实例论述如上。

    本发明的表达单元也可含有额外序列。例如,在以下论述的质粒中,所述质粒携带两个串联的基因:第一个基因编码刺激门控离子通道(TRPV1(Caterina和Julius 2001),TRPM8(McKemy,Neuhausser等,2002)或P2X2(Valera,Hussy等,1994)),并与启动子和合适的表达控制元件有效连接,而第二个基因编码GAP43-EGFP(膜相关增强型绿色荧光蛋白)(Moriyoshi,Richards等,1996),作为转染标记,其前面有IRES(内部核糖体进入位点)。所述转染标记(例如荧光蛋白,包括GFP、EGFP、DsRed、DsRed2;或酶,包括lacZ和β-内酰胺酶)在细胞的选择性激活中对于所述异源刺激门控离子通道的功能来说不是必要的,但是对于证实转染程度和异源蛋白表达和其它目的来说是方便的,所述其它目的包括通过FACS(荧光激活细胞分类)来寻找和分离致敏细胞,以便如下所述地用于体外应用。可以掺入的其它额外序列,如有必要,包括但不限于便于从转染和未转染细胞混合群体中选择出转染细胞的选择标记,例如谷氨酰胺合成酶、氨基糖苷磷酸转移酶或二氢叶酸还原酶以及自杀基因,所述自杀基因赋予细胞对特异性试剂攻击的敏感性,因而允许转染细胞可控制的消除。细胞活性的遗传编码的报道基因也可包括在所述表达单元中。例如,编码蛋白的遗传序列适于包括在表达单元中,所述蛋白允许细胞激活可用光学方法检测出来。实例包括synapto-pHluorin、cameleon、camgaroo、pericam、G-CaMP和clomeleon(Miyawaki,Llopis等,1997;Miesenbck,De Angelis等,1998;Miyawaki,Griesbeck等,1999;Kuner和Augustine 2000;Nagai,Sawano等,2001;Nakai,Ohkura等,2001;Sankaranarayanan和Ryan 2001;Zemelman和Miesenbck 2001;Shimozono,Fukano等,2002)。

    导入异源遗传序列以形成敲入动物或转基因动物(最好是小鼠)的通用方法是众所周知的,容易用于产生本发明的细胞/动物(有关转基因方法的综述参见Houdebine(Houdebine 2002)和Hogan等(Hogan,Beddington等,1994))。这些技术包括但不限于任何导致至少瞬时表达的方法,包括但不限于转染、病毒感染和微注射。给小鼠注射病毒载体,以获得局部基因表达,描述见Watson等(Watson,Kobinger等2002)、Bainbridge(Bainbridge,Stephens等,2001)、Gusella(Gusella,Fedorova等2002)和Follenzi等(Follenzi,Sabatino等,2002)。小鼠的收集是已知的(http://www.mshri.on.ca/nagy/Cre-pub.html)并且是市售的,其中蛋白标记或Cre蛋白通过使用细胞类型特异性启动子而在不同类型的细胞中选择性表达。所缺少的是使用该选择性表达用于激活特定细胞类型的方法。本发明通过将现有的细胞类型特异性表达技术用于将异源刺激门控离子通道放置在已经识别的细胞群体中,扩展了该用途。本发明的另一个好处是提供了病毒载体,最好是带有疱疹性口腔炎病毒包膜蛋白(VSV-G)的假型慢病毒载体(Naldini,Blomer等,1996;Zufferey,Nagy等,1997)。这些慢病毒自由地感染多数哺乳动物细胞。VSV的宽宿主范围使它能产生不同物种的转基因动物,不限于以前在此情况下曾用过的小鼠。此外,VSV外壳蛋白赋予所述病毒粒子足够的机械稳定性,允许它们在超速离心中浓缩。对于慢病毒载体来说,替代的假型方案包括来自以下病毒的包膜糖蛋白:埃博拉病毒(Ebola virus)(Wool-Lewis和Bates1998)、莫科拉病毒(Mokola virus)(Mochizuki,Schwartz等1998)、淋巴细胞性脉络丛脑膜炎病毒(LCMV)(Beyer,Westphal等,2002)、鼠白血病病毒(MuLV)(Kobinger,Weiner等,2001)和罗斯河病毒(Ross Rivervirus)(RRV)(Kang,Stein等,2002)。包膜蛋白的选择影响所得病毒将感染的细胞和组织类型。

    对于动物模型来说,编码所述异源刺激门控离子通道的遗传序列的导入可以在祖细胞中完成,使得所述动物中来自这些祖细胞的每个细胞都将表达所述刺激门控离子通道。神经元细胞也可通过突触接触而转染。当合适的病毒(例如单纯疱疹病毒I型或假狂犬病病毒(pseudorabies virus))用于感染一个神经元时,所述病毒通过突触扩散到它的邻居,以使这些神经元也开始表达所述刺激门控离子通道(Lowenstein和Enquist 1996)。当所述细胞特异性控制元件在补充所述遗传序列的启动子中时,所述离子通道仅在有限的细胞群体中表达。然而,可以在同一动物中制备多个细胞群体以表达不同的刺激门控离子通道,这可以通过在不同细胞群体中表达不同通道的转基因动物或敲入动物的交配,或者通过在已经表达一种或多种通道的动物中使用病毒载体或其它载体来瞬时表达额外的刺激门控离子通道,来独立激活所述通道。

    使用以上列举的方法之一,在动物中建立刺激门控离子通道的异源表达后,可以收获表达所述刺激门控离子通道的该动物的细胞,然后通过将所述细胞注射到动物子宫的胚胎中而移植到转基因动物、“敲入”动物或非转基因动物中(Nery,Fishell等,2002)。为了这一目的,含有所述刺激门控离子通道的表达单元也包括第二基因,例如编码增强型绿色荧光蛋白(EGFP)的基因,所述基因对所述刺激门控通道的功能是不需要的,但是便于分离和示踪表达所述异源刺激门控离子通道的细胞。根据EGFP或另一种表达标记蛋白的检测,将从供体动物中分离的细胞,通过超声定向(ultrasound-guided)注射器或另一种用于鉴定注射部位的简便方法,注射到宿主动物子宫的胚胎的选定部位。当所述宿主动物发育时,来自所述供体动物的细胞整合到所述宿主组织中,导致在所述宿主动物的特定细胞和组织中刺激门控离子通道的表达。

    根据本发明表达所述异源刺激门控离子通道的细胞和动物可用于包括以下的各种目的:(1)用于研究活性依赖性形态学变化、生理学变化、生物化学和遗传变化,例如,基因表达的变化,(2)用于神经元通路作图,(3)用于研究细胞类型在不同疾病和病症中的意义;(4)在筛选组合物的方法中作为额外或替代疗法用于治疗所述疾病或病症;和(5)作为所述疾病或病症的治疗性治疗的一部分。

    在本发明的第一个实施方案中,所述致敏细胞是“正常”细胞,监控了由这些细胞在体内或体外激活而导致的形态学、生理学、生物化学和基因表达的变化。所述变化的鉴定将提供对活性依赖性细胞过程机制的理解,其实例列举如下。

    本申请所用的术语“疾病或病症”是指与公认标准不同(不考虑原因)的生理状态。一般而言,所考虑的疾病或病症对患有所述疾病或病症的个体具有有害影响。

    在很多情况下,识别了与疾病或病症相关的特定表型,但是导致所述疾病或病症的特定缺陷却不知道。所述表型包括不适当的极化或去极化、尤其是在神经元细胞中;尤其是生理学的、行为的或疾病状态或应答的表型。所述状态或应答可包括外分泌、内分泌和旁分泌;骨骼肌、心肌、平滑肌的收缩;胰β细胞的葡萄糖敏感、细胞死亡和T细胞激活;疼痛、运动、性行为、奖赏期望和成瘾、注意力、攻击性、抑郁、睡眠、进食、厌食、认知、情感、学习、记忆、自体调节及其它的感觉和感受。本发明提供评价涉及疾病或病症的细胞类型的方法,所述方法包括如下步骤:(a)在动物的细胞中(体内)或在来自所述动物的移植组织或细胞中(体外)表达异源刺激门控离子通道;(b)用特定刺激触发所述离子通道;和(c)观察所述离子通道触发的效应,如果有的话,从而激活表达所述离子通道的细胞。以上论述的动物模型(其中单独细胞群体可以被独立地致敏或按类型来致敏)允许更大的灵活性,因为在同一动物中不同细胞群体可以在不同时间、以不同程度或以不同组合被激活。也可以在同一动物的细胞激活之前或之后进行观察,以便清楚地观察到每种效应。

    在该方法的第二个实施方案中,涉及的细胞是“正常”细胞,尤其是“正常”动物,所述细胞和动物不表现目标表型。这些细胞通过接触物理或化学刺激而被选择性激活,观察到的效应是产生与疾病或病症相关的表型。当产生所述表型时,表明表达所述异源刺激门控离子通道的细胞在疾病或病症中是重要的,因此它们是合适的治疗目标。治疗可通过使用如下所述的刺激门控离子通道,但最好是通过特异性小分子激动剂的开发,所述激动剂按其对已鉴定细胞类型的选择性活性来选定。

    在第三个实施方案中,涉及的细胞或动物表现出与所述疾病或病症相关的表型。在此情况下,在一组表达异源刺激门控离子通道的细胞激活后观察表型特征的减少或消除。所述减少或消除表明,表达所述异源刺激门控离子通道的细胞在疾病或病症中是重要的,因而它们是合适的治疗目标。此外,治疗可通过使用如下所述的刺激门控离子通道,但最好是通过特异性小分子激动剂的开发,所述激动剂按其对已鉴定细胞类型的选择性活性来选定。

    以下实施例用于举例说明本发明可能的应用,但不应认为是用来限制本发明。

    在第一个实施方案的一个具体实施例中,本发明的用途来自神经生物学领域,在移植神经组织或完整神经系统中经遗传操作的特定神经元(或一组神经元)的人工激活,导致受刺激的细胞或它们的突触靶中新的树突棘或突触的形成(活性依赖性形态学变化)、已有突触的强化(活性依赖性生理学变化)或神经递质受体磷酸化(活性依赖性生物化学变化)。形态学变化、生理学变化和生物化学变化预期与基因表达的变化相关(活性依赖性遗传变化)。用DNA微阵列的基因表达分布型可以鉴定调节活性基因,并提供对神经元生长和分枝(对修复和再生重要)、突触发生和可塑性(对学习和记忆重要)的机制的理解。这表明这些基因以及它们的产物是潜在的药物靶。

    在第二个实施方案的一个具体实施例中,本发明的用途来自神经生物学领域,在移植神经组织或完整神经系统中经遗传操作的特定神经元(或一组神经元)的人工激活,传导给其所有下游突触靶。因此,本发明的致敏方法可以用来进行神经元通路作图。所述方法包括下述步骤:(a)在神经元通路中致敏一个细胞群体,其中所述细胞群体表达异源刺激门控离子通道;和(b)监测推定的下游细胞对所述细胞群体致敏的反应,其中对下游细胞反应的观察,说明所述细胞实际上是神经元通路的下游。神经元细胞的致敏可以通过本文所述的任何方法来完成。对推定的下游细胞的监测可采用依据预期反应的方法来完成。下游靶的活性变化可以借助本领域众所周知的方法(电生理学或光学记录)来检测。然而,当预期反应受激素分泌调节(上调或下调)时,监测最好也包括激素水平的检测。因此,本发明提供用于功能性神经回路鉴定和作图的方法,这是理解(和干预)神经系统功能和行为的先决条件。

    更具体地讲,本发明可用于参与瘦蛋白(leptin)神经元回路、引起肥胖症和厌食症的神经元的鉴定和作图。瘦蛋白激素将机体代谢状态传达给脑(Friedman和Halaas 1998;Schwartz,Woods等,2000)。瘦蛋白从脂肪细胞分泌到血流中,与下丘脑弓状核内神经元表达的受体结合,这是代谢和能量平衡相关信号的主要整合位点。瘦蛋白水平的变化通过所有哺乳动物都具有的通路而改变食物摄入、代谢、体温、能量消耗、活性水平、骨形成速率和生育。瘦蛋白敏感性神经元信号通过各种神经肽(包括神经肽Y和黑皮素(melanocortins))传导给下游靶。这些肽作用于合成代谢途径和分解代谢途径,它们的输出神经元目前仍未知。为了鉴定形成瘦蛋白回路的神经元,用外源添加的瘦蛋白刺激移植脑组织,激活瘦蛋白反应性神经元。或者,通过刺激门控离子通道的表达和加入所述配体或采用能控制所述通道开启的物理刺激,来激活瘦蛋白反应性神经元。在此情况下,所述移植组织可来自在瘦蛋白反应性细胞中表达刺激门控离子通道的转基因动物或敲入动物,或者来自用病毒载体或其它载体处理的、引起刺激门控离子通道在瘦蛋白反应性神经元中表达的非转基因动物,或者来自用病毒载体或其它载体处理的、引起刺激门控离子通道在瘦蛋白反应性神经元中表达的移植组织。当刺激瘦蛋白反应性神经元时,在所述移植组织中监测其它神经元的活性,以鉴定这些活性被瘦蛋白反应性神经元改变的神经元(这些神经元已知是瘦蛋白反应性神经元的下游突触靶)。瘦蛋白反应性神经元的下游突触靶的活性可以用电生理学记录(Nicolelis和Ribeiro 2002)或光学成象(Peterlin,Kozloski等,2000;Kozloski,Hamzei-Sichani等,2001)来监测。或者,可以采用上述技术,在所述移植组织中的一些或所有神经元中表达以上列举的神经元活性的遗传可编码的光学传感蛋白(也参见Zemelman等(Zemelman和Miesenbck 2001))。一个这样的传感蛋白称为synapto-pHluorin(Miesenbck,De Angelis等,1998)。Synapto-pHluorins是绿色荧光蛋白的pH敏感性突变体(′pHluorins′),经结构定向组合诱变发展而来,连接囊泡膜蛋白VAMP的内腔末端(lumenal end),在神经递质释放之前它们在所述神经元的突触泡内,当囊泡脱颗粒和神经递质释放后它们在所述细胞之外。在囊泡的低pH下,pHluorins不发荧光。然而,当囊泡与神经元质膜融合后,pHluorins接触到中性的胞外介质,开始发荧光。在显微镜下观察该荧光,指示出活性已发生改变的神经元。然后,对已鉴定的神经元进行遗传分布型研究。该技术有时称为SAGE(基因表达系列分析),提供目标神经元中所述基因活性的快速检测结果(Eberwine,Kacharmina等,2001)。所述信息用于选择仅在已鉴定神经元中有活性的启动子,以确定所述神经元在脑中所起的作用(Cao和Dulac 2001)。当所述启动子信息可用时,使用刚描述过的方法,发现在新鉴定的神经元和它们的下游神经元靶中表达了刺激门控离子通道。

    在第二个实施方案的第二个实施例中,也来自神经生物学领域,在行为动物(最好是小鼠)中经遗传操作的特定神经元(或一组神经元)的人工激活,导致以下感觉和感受的改变:疼痛、运动、性行为、奖赏期望和成瘾、注意力、攻击性、抑郁、睡眠、进食、厌食、认知、情感、学习、记忆、自体调节及其它。这些改变可产生模拟神经学障碍、精神病学障碍或行为障碍的特征表型(Crawley和Paylor1997;Crawley 1999)。因此,在所述致敏细胞的人工激活后这些表型的诱导,意味着这些细胞作为行为相关信息的载体和潜在治疗目标。所述方法不仅允许这些潜在目标的鉴定,而且同时产生一个研究平台,用所述平台可以在体内或体外(如下所述用来自这些动物的细胞或组织培养)筛选能够调节细胞激活或所导致的行为表型的小分子。通用方法在表1和表2中概述。

    具体地说,本发明可用于例如寻找肥胖症和厌食症的新疗法。如上所述,使用例如与所述神经元驱动POMC受体表达相同的启动子来驱动所述刺激门控离子通道的表达,在瘦蛋白敏感性神经元的下游靶神经元中体内表达刺激门控离子通道,例如阿黑皮素原(POMC)敏感性神经元(Campfield,Smith等,1998)。然后,在体内用合适的物理刺激或配体、以任何简便方法(例如注射或用光解除笼蔽、局部加热或通过用前药制剂喂养动物)来刺激所选神经元。在使用配体或其它刺激后,将所述动物的表型与起始表型进行比较。然后,收获用配体刺激而引起所述动物体重下降或上升的神经元。因为,如上所述,编码所述刺激门控离子通道的DNA载体也编码荧光蛋白,所以致敏神经元也被荧光标记。为了收获所述神经元,将动物脑解离成单个细胞,所述细胞悬液通过荧光激活细胞分选仪(FACS),以使所述荧光标记的神经元可以从其它细胞中分离出来(St John,Kell等,1986;Tomomura,Rice等,2001)。然后将这些神经元在体外接触化合物,同时按照如上所述用于移植组织中神经元的方法来监测它们的活性。体外激活所述神经元或使所述神经元沉默的化合物,在健康动物中进行试验,以确定所述动物是否体重上升或下降。所述化合物也在肥胖和厌食动物中进行试验。然后,将显示出影响体重调节的化合物进行人体试验。或者,可以用基因治疗(例如,用病毒载体和合适启动子)以及用特异性通道的配体或物理方法刺激它们,通过表达刺激门控离子通道,对确定具有影响体重调节活性的神经元直接在动物和人体内进行刺激。

    本发明也提供用于指示调节体重的新神经元通路的方法,例如通过用基因诱捕体内随机致敏神经元(Leighton,Mitchell等,2001)。这时,将缺乏启动子的刺激门控离子通道的DNA序列通过非同源重组随机插入到干细胞基因组DNA中。在少数这些细胞中,所述刺激门控离子通道偶然地插入到内源神经元启动子附近。当所述转染干细胞用于产生转基因动物时,在每个动物脑神经元亚群中所述刺激门控离子通道的表达就象由每个启动子确定一样。因为起始基因组的插入是随机的,所以表达所述刺激门控离子通道的神经元细胞的特性预先是未知的。所述基因组和所述启动子中的插入位点用互补DNA5′端快速扩增(5′RACE)和测序来鉴定(Frohman,Dush等,1988;Townley,Avery等,1997)。然后如先前所述,体内刺激所述神经元,观察产生的表型。如上所述,用FACS和遗传分布型分析,来收获在刺激后引起动物减重或增重的神经元。然后试验化合物在体外、然后在健康动物和肥胖和厌食动物体内对所述神经元的功效。然后,将显示出影响体重调节的化合物进行人体试验。或者,可以用基因治疗(例如,用病毒载体和合适启动子)以及用特异性通道的配体或物理方法刺激感染神经元,通过表达刺激门控离子通道,对确定具有影响体重调节活性的神经元直接在动物和人体内进行刺激。

    因此,本发明的致敏方法也可用于筛选用作治疗疾病和病症的疗法的组合物的方法。当一组细胞涉及疾病或病症时,或者是作为上述方法或者是其它方法的应用结果,产生细胞系和动物模型(其中这些细胞表达所述异源刺激门控离子通道),这样以合适方法对所述离子通道的触发诱导所述疾病表型。筛选潜在疗法以评价它们治疗所述表型的能力。该方法提供在多次试验重复使用同一动物的优点。通过将可独立控制的异源刺激门控离子通道导入到多种细胞类型中并独立或联合触发它们,多种细胞类型的参与和联合疗法的效果可以在同一动物中进行评价,因此降低了由试验不同动物引起的实验变异。

    异源刺激门控离子通道也可用于治疗性方法。因为表达可以如上所述地限制在所需细胞中,而且因为所述通道的触发或者可以用来模拟疾病或者可以缓解疾病表型,所以可以通过激活或抑制疾病或病症相关细胞或者激活或抑制可以影响疾病或病症相关细胞行为的细胞,来获得治疗的益处。此外,表达所述异源刺激门控离子通道的细胞可以限制在植入物内以分泌治疗药,例如肽或蛋白,以响应所用激动剂(化学或物理)刺激。该刺激可以用来响应来自体内监测系统的信号,例如胰岛素分泌中的葡萄糖监测系统,以控制所述激动剂的利用度。所述配体,无论是否是笼蔽配体或其前药制剂,也都可以口服或胃肠外形式提供。物理刺激,例如局部加热、冷却或光照也都可以用于植入装置。

    治疗方法的一个实例涉及赋予胰岛细胞对刺激的敏感性。表达刺激门控离子通道的胰岛细胞例如植入到糖尿病患者体内,通过在餐前或当用传感器测定血糖水平升得太高时用合适刺激来激活,因而引起所述胰岛细胞分泌胰岛素。该方案使得再也无须经胃肠外给予胰岛素。

    治疗方法的另一个实例涉及赋予产生天然阿片的神经细胞对刺激的敏感性。在患者中,所述细胞被含有如上所述的有效连接合适启动子的刺激门控离子通道的病毒载体所感染。由所述患者手动控制所述刺激的给予。以此方式,当患者需要减轻痛苦时,使用化学或物理刺激,引起所述细胞分泌内源性阿片。预期这样的减轻痛苦的治疗比起目前使用的止痛药的成瘾性要低得多。

    在使用本发明治疗方法的再一个实施例中,提供治疗失禁的方法。该方法包括用含有有效连接合适启动子的刺激门控离子通道的病毒载体致敏参与膀胱控制的肌细胞,以赋予它们对外源性刺激的敏感性。然后,通过刺激方案强化这些肌细胞。

    在使用本发明治疗方法的再一个实施例中,提供治疗帕金森病的方法。该方法包括致敏涉及肌肉震颤的神经元细胞,以赋予它们对所用的外源性刺激的激活或失活的敏感性。然后,通过刺激方案控制这些神经元细胞的触发(Birder,Nakamura等,2002;Carbon和Eidelberg 2002)。

    在上述每个应用中,通过使表达所述异源刺激门控离子通道的细胞与合适配体接触、或者通过应用物理刺激(例如光或温度)可以达到局部效应的某些情况下,达到细胞激活。该接触可以通过配体的系统导入而发生(虽然这限制了达到按激活的时间进程精细控制的能力),或者通过配体的局部递送而发生。可以以几种方式进行配体的局部递送。对于未修饰配体来说,局部注射或从植入物导入可用来提供时序控制措施。然而,所述配体最好以无活性形式提供,其中可以在选定时间和部位提供活化信号。作为可以口服或胃肠外给药的所述配体的前药制剂的形式,光活化的笼蔽配体特别适于该目的。

    光活化笼蔽配体在响应光作为第二种刺激时可释放所述配体。笼蔽配体的具体实例包括但不限于DMNB-衍生物,例如DMNB-辣椒素、DMNB-薄荷醇和其它生色团的配体衍生物,例如甲氧基-硝基二氢吲哚衍生物,所述衍生物具有大的双光子截面。这些笼蔽物质的合成途径示于以下实施例。一种笼蔽的光不稳定ATP即ATP的P3-(1-(4,5-二甲氧基-2-硝基苯基-乙基)(DMNPE)酯(Kaplan,Forbush等,1978;Ding和Sachs 2000)是市售的,得自Molecular Probes,可用于实验,无需进一步纯化。

    与本发明人在Zemelman等(Zemelman,Lee等,2002)中描述的所谓的chARGe系统相比,本发明提供用于致敏细胞、尤其是特定细胞群体的大量有益的特征。首先,单个异源基因的表达(例如,与在chARGe的情况下的三个基因相比)足以使细胞对刺激敏感。仅对一个转基因的依赖不需要平衡相对表达水平,而且当遗传操作的复杂性随涉及的基因数量增多而急剧上升时,简化了遗传修饰细胞、组织和生物体的产生。

    第二,已证明细胞应答的“开”和“关”动力学与刺激具有密切而可重现的联系(参见实施例和图2和图4)。这进一步通过控制光刺激而增强,例如对DMNB-辣椒素或DMNPE-ATP使用高强度闪光光解(Rapp 1998)以提供对峰时间的毫秒控制。

    第三,反应强度—在以下实施例中,在神经元细胞内定量测定为注入的去极化电流的流量或达到的发放速率—可用不同激动剂浓度来评价。虽然在chARGed神经元上的光子剂量可以控制所述电反应的强度,但是剂量-反应关系相当松散:在相同发光强度上chARGed神经元的发放模式和发放频率变化很大(Zemelman,Lee等,2002)。

    第四,所述实施例中使用的三个受体-配体对提供不同的致敏,没有干扰。(图2)这些受体-配体对,单独使用或与第二选择组分(例如Cre-lox系统)联用以及与额外的天然或工程受体-配体组合(这些无疑在将来是可用的)一起,允许多种不同神经元群体同时和独立进行。

    第五,多种触发模式都可用于门控所述异源表达通道。可以使用药理学或光学激动剂;TRPV1和TRPM8也可受温度变动控制(Caterina,Schumacher等1997;McKemy,Neuhausser等,2002;Peier,Moqrich等,2002)。对于大多数体外实验和许多体内应用来说,当光解解除笼蔽的速度、更大的空间分辨率和“远距离动作”使得选择的光触发发生时,在这样的情况下,将光束或光波定向到靶区域是不切实际的或是不必要的。在这些情况下—在行为动物中,或者如果对反应的精确而时序控制是不必要的话—药理学刺激提供有力的替代方法。与秀丽新小杆线虫伤害感受器神经元中异位表达的TRPV1作用的辣椒素,例如,具有诱导野生型动物所缺乏的“合成”回避行为(Tobin,Madsen等,2002)。因为激动剂在其药理学分布体积中是有效的,其有效的解剖部位预先不必知道。这使得对行为的细胞底物的遗传鸟枪搜索成为可能:神经元组在它们正常操作范围中可以经遗传致敏而刺激,而且可以作为行为相关信息的载体,如果它们的激活产生特征表型的话。

    在以下非限制性实施例中将进一步描述本发明。

                        实施例1

    制备三种质粒,每种含有在pCI-fluor(一种哺乳动物表达载体pCI-neo(Promega)的衍生物)的CMV启动子控制下的刺激门控离子通道(大鼠TRPV1、大鼠TRPM8或大鼠P2X2)。为了产生pCI-fluor,pCI-neo的氨基糖苷磷酸转移酶编码序列被带有20个氨基酸的N-端GAP43标志的EGFP取代(Zemelman,Lee等,2002)。大鼠TRPV1和大鼠TRPM8表达为单体;大鼠P2X2亚基通过三肽-Ser-Gly-Gly-的串联重复连接成共价三聚体。

                            实施例2

    得自E19大鼠并在分离培养中生长的海马神经元,如实施例1所述,接触4.2μg cm-2的磷酸钙沉淀的质粒DNA(pH 7.08)达20分钟,以摄入质粒。在接种后8天进行转染;在转染后6-10天进行免疫细胞化学分析和电生理学记录。如下所述用慢病毒注射感染小鼠脑神经元。

    培养物中的转染神经元和脑切片中的感染神经元通过GAP43-EGFP荧光进行鉴定,并记录全细胞膜片钳构象。膜片移液管(约2.5兆欧)含有120mM葡糖酸钾、10mM KCl、5mM ATP、0.3mM GTP和10mM K-HEPES(pH 7.2)。胞外记录溶液由119mM NaCl、2.5mMKCl、2mM CaCl2、1mM MgCl2、30mM葡萄糖、25mM Na-HEPES(pH7.4)、50μM D,L-2-氨基-5-膦酰戊酸(AP-5)和10μM 6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)组成。用Axoclamp-2B放大器(AxonInstruments)、分别以桥模式和连续单电极电压钳模式记录膜电位和跨膜电流,并且不经过滤,在5kHz记录数字(Digidata 1200,AxonInstruments)。插入后,在电流钳纪录中调整基线电流,设置膜电位为-65mV;在-65mV的钳制电位下进行电压钳记录。

    在培养的神经元中检查一种外源通道蛋白TRPV1亚细胞分布的形态学。TRPV1完整地修饰所述神经元质膜;在树突、somata和轴突上可以检测到它。该分布表明,激动剂诱导的电流至少可以部分地模拟树突和somata上兴奋性突触输入。另外,预期TRPV1通道在峰电位起始区的开放(例如起始轴突区段)将直接使所述神经元的峰电位发生器短路。

                            实施例3

    将培养神经元固定在4%低聚甲醛中,在0.1%Triton X-100中透化,暴露在含有5%牛血清和0.2%明胶的封闭溶液中,用抗GFP的兔多克隆亲和纯化抗体(1∶250)和抗TRPV1的豚鼠多克隆抗体(1∶1,000;Chemicon)染色。结合抗体用AlexaFluor-488和AlexaFluor-594缀合物(1∶500;Molecular Probes)检测,然后用宽视野的表面荧光显微镜术观察。

                            实施例4

    为了制备光致释放的笼蔽激动剂,根据图1的反应流程,使辣椒素(Fluka)与4,5-二甲氧基-2-硝基苄基氯甲酸酯(Aldrich)反应。在0℃下,向辣椒素(10.7mg,0.035mmol)的二氯甲烷(CH2Cl2;2ml)溶液中加入约5当量4,5-二甲氧基-2-硝基苄基氯甲酸酯(46.9mg,0.170mmol),然后加入约2当量三乙胺(10μl,0.072mmol)。将反应混合物在室温下避光搅拌2小时,足以使辣椒素定量转化为笼蔽产物。反应用硅胶薄层色谱进行监测,用50%乙酸乙酯/己烷作为流动相。在该系统中,DMNB-辣椒素以Rf为0.10进行迁移。反应混合物在氩气流中避光浓缩到约100μl,用1ml 50%乙酸乙酯/己烷稀释,在硅胶柱(E.Merck,230-400目)上进行色谱纯化。该柱用50-70%乙酸乙酯/己烷梯度展层,然后合并Rf 0.10的流分,在旋转蒸发器上浓缩,定量得到DMNB-辣椒素(18.9mg,99%)。将100mM的所述化合物溶于无水二甲基亚砜(DMSO)中,在氩气中储存于-80℃。对于光刺激实验来说,5mM DMNB-辣椒素的DMSO的工作储液在胞外记录溶液中新鲜稀释到5μM。DMNB-辣椒素通过1H NMR和质谱仪表征,结果,与预期结构一致。

                            实施例5

    为了评价激动剂给表达异源刺激门控离子通道的细胞提供药理学刺激的能力,以约6ml min-1的层流速率,将1ml大剂量激动剂灌注到含有转染细胞或病毒感染脑切片的RC-26G记录室(WarnerInstruments)中。 

    不考虑存在的异源通道类型,在谷氨酸受体拮抗剂(50μM AP-5加10μM CNQX)的存在下,全细胞电流钳记录的神经元膜电位在不存在配体时稳定保持在静息水平。

    转染神经元的静息电位(-50.6±9.6mV;平均值±s.d.,n=30)比未转染细胞(-59.7±2.9mV;平均值±s.d.,n=4)更趋近阳性,这表明所述异源通道的存在产生小的去极化漏电流。大剂量激动剂(50nM辣椒素,100μM薄荷醇,50μM ATP)的应用导致去极化、峰电位和复极化的特征性顺序(图2),这样的时程反映出激动剂传递的“药代动力学”—灌注仪器的死体积、所述激动剂(含有大剂量)的体积—以及记录室的交换时间。刺激的药理学特异性是绝对的:所试验的9个可能的受体-激动剂组合中,只有3个关连体匹配,导致应答,描述于图2的对角线上。这3个激动剂,包括ATP,都不能刺激缺乏关连外源受体的海马神经元(参见图2对角线外部分):正如所预料的,对广泛应用药理学刺激的响应仅局限于经遗传操作的特定靶群体。

    为了确定剂量-反应关系,在全细胞电压钳下,以-65mV的恒定钳制电位,测定了不同激动剂浓度下去极化电流携带的峰振幅和总电荷。如图3A所示的TRPV1,电流振幅和饱和电荷转移:在~150nM辣椒素观察到半最大反应;假线性反应范围从70nM延伸至200nM。TRPM8显示出性质上类似的剂量-反应曲线,半最大反应在150μM薄荷醇(结果未显示)。不同神经元中激动剂诱导的最大电流变化相当大(范围:360-2457nA,n=8),推测是因为神经元表面积的差异以及因转染质粒的不同拷贝数引起的通道密度的差异而引起。假定在35-pS单通道电导在-65mV(Caterina,Schumacher等,1997)和线性总电流下,我们估计转染神经元表达160,000和1,000,000之间的功能性TRPV1通道。因为注入神经元的去极化电流的流量可以用激动剂浓度滴定来控制(图3A),所以动作电位频率也是可调节的。电流钳记录示于图3B中,证明情况确实如此。在滑动200-ms窗口中评价的峰速率随激动剂浓度增加而上升时,在我们的数据组(382个激动剂用于60个神经元)中峰值在40Hz的频率。与简单的S型剂量-反应关系相比,特征峰和总通道电流(图3A)、激动剂浓度和发放频率之间的关系因峰产生机制的非线性特性而复杂化。尤其在升高的激动剂浓度中,会违背S型规律(图3B,500nM和5,000nM辣椒素)。快速去极化速率导致高频峰电位的短暂脉冲,接着是长持续期的平台期,在此期间所述膜保持去极化,但是没有动作电位(图3B底部)。在所有的可能性中,平台期兴奋性的缺乏反映出处于失活状态的电压门控钠通道的累积,其中它们保持被诱捕直到所述膜复极化。间歇传递激动剂可有助于去除失活并在延长的时间周期中维持高发放速率。

                        实施例6

    给予激动剂脉冲的一个特别诱人的方法是从无活性的、光不稳定前体经光致释放而变成活性化合物(Kaplan,Forbush等,1978;Walker,McCray等,1986;McCray和Trentham 1989;Wilcox,Viola等,1990;Callaway和Katz 1993)。一个这样的前体即ATP的P3-(1-(4,5-二甲氧基-2-硝基苯基)乙基)(DMNPE)酯(Kaplan,Forbush等1978;Ding和Sachs 2000)是市售的(Molecular Probes);通过使辣椒素与4,5-二甲氧基-2-硝基苄基(DMNB)氯甲酸酯反应,将碳酸酯键中的DMNB保护基团连接到辣椒素的酚羟基官能团上,而合成另一个前体(图1和实施例3),这对激动剂活性是重要的分子特征(Walpole,Wrigglesworth等,1993;Walpole,Bevan等,1996)。预期DMNB和DMNPE生色团的近紫外波长范围的光子吸收(最大吸收约355nm)产生活性酸式硝基中间产物,所述产物在一系列限速暗反应中释放游离激动剂(McCray和Trentham 1989)。

    DMNB或DMNPE保护基团的存在赋予辣椒素和ATP生物学无反应性,推测在空间上阻止了所述笼蔽配体与它们各自受体的结合。分别用全细胞电流钳或电压钳模式记录,表达TRPV1或P2X2的神经元的膜电位和跨膜电导不受存在的5μM DMNB-辣椒素和1mMDMNPE-ATP的影响,所述DMNB-辣椒素和DMNPE-ATP的浓度超过游离激动剂饱和水平的10-20倍,如图3A所测定。持续记录超过30分钟,未检测到因所述笼蔽化合物的化学或酶促分解所导致的生物学活性。

    用汞弧光灯平行的、未经过滤输出的全场照明以小于400nm的波长发送26mW mm-2的光能。在5μM DMNB-辣椒素的存在下,在照明场中的TRPV1阳性神经元—而不是未转染的神经元—响应光刺激而突然产生活性(图4A)。在单一光脉冲持续1秒钟之后,以15-40Hz的频率发放动作电位。在光刺激后可预料的时间间隔(5,035±2,061ms;平均值±s.d.,n=10)后产生的活性局限在一个狭窄受限的窗口,其持续时间(2,651±383ms;平均值±s.d.,n=10)略超过光暴露时间。接着对相同神经元进行重复光刺激,得到相同的反应,没有衰减(图4A)。

    在1mM DMNPE-ATP存在下,暴露在1秒钟光脉冲的P2X2阳性神经元表现出光引发的反应,在性质上与在DMNB-辣椒素存在下的TRPV1阳性神经元类似,但显示出不同的时序特征(图4B)。光刺激后的活性窗口在短暂的延迟期之后(1,136±96ms;平均值±s.d.,n=16),持续略短的时间周期(2,456±1,273ms;平均值±s.d.,n=16),然后比TRPV1反应更缓慢地回落到基线。不同的解除笼蔽和通道门控动力学可能是特征性时序反应模式的基础。所观察的反应潜伏期的机制基础目前尚不清楚,但是相当低的照度可发挥作用。我们的实验中使用的光脉冲在<400nm的光谱带、在1秒钟暴露的周期中,携带的光能为26mJ mm-2;高强度闪光灯或紫外激光将能量压缩到几百微秒(Callaway和Katz 1993;Rapp 1998),因而引发瞬时精确的同步反应。

    对于体内光刺激来说,采用连续波二极管激光器的紫外(波长:355nm)输出、通过多模光纤致敏靶细胞。发射到光纤的低能量激光脉冲在小体积的组织中产生一个从所述笼蔽配体到其活性配体的突然的浓度跃迁。

                          实施例7

    为了产生用于转基因和瞬时离子通道表达的慢病毒载体,将双链克隆盒GGATCCCGTACGATAACTTCGTATAGCATACATTATACGAAGTTATCGTACGGGCGCGCCCGGACCGGAATTC(Seq ID No:4)用BamHI和EcoRI消化,并插入到现有的慢病毒主链pFUGW的相同限制位点上,其包含5′LTR和3′LTR序列、遍在蛋白启动子序列、flap和WRE序列(Lois,Hong等,2002)。用PCR将GAP43-EGFP序列(Zemelman,Lee等,2002)和DsRed2序列(Clontech)扩增,与ECMVIRS序列(Clontech)融合。用PCR引物,将EcoRI和PacI限制位点分别引入到其5′端和3′端。离子通道cDNA也用PCR扩增,然后将AscI限制位点加入到所述基因两端。P2X2共价三聚体的构建先前已有描述(Zemelman,Nesnas等,2003)。将荧光蛋白基因插入到慢病毒克隆盒的EcoRI-PacI位点。然后将每个离子通道基因插入到AscI位点,产生瞬时表达慢病毒载体(图5A-D)。

    为了产生用于转基因的慢病毒载体,将5′loxP克隆盒AAGCTTCGTACGATAACTTCGTATAGCATACATTATACGAAGTTATAGAAACAGGGATCCTCTAGAGCCACCATGG(Seq.ID No:5)插入到pEGFP载体(Clontech)的HindIII-NcoI限制位点。将三个读框中每个都含有翻译终止密码子的3′loxP克隆盒GCGGCCGCTAATTAGTTGAATAACTTCGTATAGCATACATTATACGAAGTTATCGTACGGAATTC(Seq.ID No:6)插入到同一载体的NotI-EcoRI中。所获得的构建体用BsiWI消化,插入到慢病毒载体相同的限制位点中,在启动子和离子通道基因之间引入一个loxP-stop-loxP盒(图6A)。

    为了用β-肌动蛋白启动子取代遍在蛋白启动子(Miyazaki,Takaki等,1989),将后者用PCR扩增,分别在所述启动子的5′端和3′端产生PacI和SpeI位点。遍在蛋白启动子用相同的限制酶去除。将其它序列插入到所述慢病毒载体主链中,再进行启动子取代(图6B)。

    在某些情况下,IRES和尾随荧光蛋白基因不掺入到慢病毒载体中(图6C,图6D)。

    如前所述,制备感染性病毒粒子的浓缩储液(Naldini,Blomer等,1996;Zufferey,Nagy等,1997)。简而言之,293T细胞用以下三种质粒同时转染:一种衍生自含有所述刺激门控离子通道基因的pFUGW的质粒(参见图6)、包装质粒pCMVΔR8.2(Naldini,Blomer等,1996)和一种编码包膜糖蛋白的质粒。包膜糖蛋白的实例包括例如以下病毒的包膜糖蛋白:疱疹性口腔炎病毒(VSV)(Naldini,Blomer等,1996)、埃博拉病毒(Wool-Lewis和Bates 1998)、莫科拉病毒(Mochizuki,Schwartz等,1998)、淋巴细胞性脉络丛脑膜炎病毒(LCMV)(Beyer,Westphal等,2002)、鼠白血病病毒(MuLV)(Kobinger,Weiner等,2001)、罗斯河病毒(RRV)(Kang,Stein等2002)。用Fugene(Roche)进行转染。转染后48-60小时收集细胞上清液,用0.45μm低蛋白结合膜(Nalgene)过滤,以25,000rpm离心90分钟,沉淀病毒粒子。通过在HeLa细胞上连续稀释来测定滴度,然后通过免疫荧光显微镜术检测所述异源刺激门控离子通道或荧光标记蛋白的表达。

                          实施例8

    用所述基因组离子通道基因产生基因组打靶构建体。为了寻找含有TRPV1的基因组区,用DNA探针ATGGAGCAACGGGCTAGCTTAGACTCAGAGGAGTCTGAGTCCCCACCCCAAGAGAACTCCTGCCTGGACCCTCCAGACAGAGACCCTAACTGCAAGCCACCTCCAGTCAAGCCCCACATCTTCACTACCAGGAGTCGTACCCGGCTTTTTGGGAAGGGTGACTCGGAGGAGGCCTCTCCCCTGGACTGCCCTTATGAGGAAGGCGGGCTGGCTTCCTGCCCTATCATCACTGTCAGCTCTGTTCTAACTATCCAGAGGCCTGGGGATGGACCTGCCAGTGTCA(Sep.ID No:7)筛选大鼠基因组BAC文库RPCI23(BACPAC Resource Center,Children′s Hospital Oakland Research Institute,Oakland,California),所述探针代表所述基因的第一个外显子。在筛选中鉴定的BAC克隆用BsiWI消化,用相同探针进行DNA印迹,以确保它含有所需基因组区。为了降低最终基因组打靶载体的大小,用所述基因的外显子7的SacII限制位点构建杂种基因组-cDNA TRPV1基因。结果杂种TRPV1基因插入到基因组的外显子7和外显子7的cDNA直到终止密码子。采用PCR法,将杂种TRPV1与ECMV IRES和荧光蛋白cDNA融合。同时,将SalI和NotI位点分别加入到所得DNA分子的5′端和3′端。将该DNA片段插入到转移质粒pBigT(Srinivas,Watanabe等,2001)中的SalI-NotI位点。所得载体用PacI和AscI限制酶消化,插入到pROSA26PA基因组打靶载体(Srinivas,Watanabe等,2001)中。当ROSA26基因组区含有足以遍在表达所掺入的基因的内源启动子时,对于某些构建体,用PCR法扩增额外的CAG启动子(Miyazaki,Takaki等,1989),在所述序列两端产生PacI限制位点,插入到pROSA26PA的PacI位点。用G418选择,所得载体(图7A)用于产生带有稳定整合的离子通道基因、其后是IRES和荧光蛋白序列的ES细胞(Hogan,Beddington等,1994;Ausubel,Brent等,2003)。为了确保只选择同源重组,所述载体含有白喉毒素基因(DTA),所述载体丢失了所述载体随后的同源基因组整合部分(Soriano 1999)。所得ES细胞如文献(Ausubel,Brent等,2003)所述进行处理。

    为了鉴定含有P2X2基因的基因组区,用DNA探针GGTGAAGGACCAACTTTGGGAGAAGGGGCAGAGCTACCACTGGCTGTCCAGTCTCCTCGGCCTTGCTCCATCTCTGCTCTGACTGAGCAGGTGGTGGACACACTTGGCCAGCATATGGGACAAAGACCTCCTGTCCCTGAGCCTTCCCAACAGGACTCCACATCCACGGACCCCAAAGGTTTGGCCCAACTTTGA(Seq ID No:8)筛选大鼠基因组BAC文库RPCI23,所述探针代表所述基因的最后一个外显子。在筛选中发现的BAC克隆用ApaI限制酶消化,用相同探针进行DNA印迹,以确保它含有所需基因组区。用PCR法将基因组P2X2扩增,并与ECMV IRES和荧光蛋白融合,在所述分子的5′端和3′端分别产生SalI和NotI位点,如上对TRPV1所述。然而,在PCR中紧接P2X2终止密码子的5′也引入额外XhoI限制位点。将含有P2X2、IRES和荧光蛋白的扩增DNA片段插入到转移质粒pBigT的SalI-NotI位点(Srinivas,Watanabe等,2001)。所得载体用PacI和AscI限制酶消化,插入到pROSA26PA基因组打靶载体中(Srinivas,Watanabe等,2001)。对于某些构建体来说,用PCR法扩增一个额外的CAG启动子(Miyazaki,Takaki等1989),在所述序列两端都产生PacI限制位点,然后插入到pROSA26PA的PacI位点。用G418选择,P2X2基因组打靶载体(图7B),产生带有稳定整合的离子通道基因、其后是IRES和荧光蛋白序列的ES细胞(Hogan,Beddington等1994;Ausubel,Brent等,2003)。为了确保只选择同源重组,所述载体含有白喉毒素基因(DTA),所述载体丢失了所述载体随后的同源基因组整合部分(Soriano 1999)。所得ES细胞如文献(Ausubel,Brent等,2003)所述进行处理。

    为了产生三聚体基因组P2X2(图7C),pBluescriptII(Stratagene)用BamHI消化,所述位点用T4 DNA聚合酶补平,然后将所述载体重新环化。然后将所述载体用XhoI消化,并插入一个含有BamHI限制位点的克隆盒。三聚体cDNA P2X2的第二和第三亚基(Zemelman,Nesnas等,2003)用BamHI酶切并插入到该载体中。然后将这两个亚基用XhoI酶切并插入到含有基因组P2X2、IRES和荧光蛋白序列的pBigT转移载体的XhoI克隆位点(Srinivas,Watanabe等,2001)。所得构建体用PacI和AscI限制酶消化,并插入到pROSA26PA基因组打靶载体中(Srinivas,Watanabe等,2001),然后如上所述进行处理。

                         实施例9

    用于单光子解除笼蔽的最常见生色团是硝基苄基衍生物,例如4,5-二甲氧基-2-硝基苄基(DMNB)基团或P3-(1-(4,5-二甲氧基-2-硝基苯基)乙基)(DMNPE)基团,所述基团实际上可以与任何化学官能团(羧酸酯基、胺基、苯基、羟基、巯基、氨基甲酸酯基、酰胺基、磷酸酯基等)连接(Walker,McCray等,1986;Walker,Reid等,1989)。这些光子生色团在近紫外波长范围的吸收(峰值约355nm)产生活性酸式硝基中间产物,所述产物在一系列限速暗反应中释放游离激动剂(McCray和Trentham 1989)。

    未笼蔽前体即(-)-薄荷醇([1R,2S,5R]-5-甲基-2-[1-甲基乙基]环己醇;Sigma)和icilin(1-[2-羟基苯基]-4-[3-硝基苯基]-1,2,3,6-四氢嘧啶-2-酮;Phoenix Pharmaceuticals)是市售的。这两种分子都含有羟基,所述羟基可以在与我们较早进行的DMNB-辣椒素合成(Zemelman,Nesnas等,2003)同样的反应流程中用4,5-二甲氧基-2-硝基苄基氯甲酸酯(Aldrich)衍生。产物在硅胶上纯化,对于笼蔽icilin采用5%甲醇/二氯甲烷,而对于笼蔽薄荷醇采用10%乙酸乙酯/己烷。纯化化合物在旋转蒸发器上浓缩,在氩气中储存于-80℃。所有步骤在安全灯条件下进行;DMNB衍生物通过1H NMR(Bruker 500MHz)和质谱仪(JEOL LCmate)表征。笼蔽基团阻断生物学活性的能力、以及光解解除笼蔽的物理参数如下进行测定。

    为了监测解除笼蔽反应,我们修改了简单的光谱法(Walker,Reid等,1989;Marriott 1994),所述方法记录4,5-二甲氧基-(2-硝基苯基)-乙基或4,5-二甲氧基-(2-硝基苄基)笼蔽基团经光解分别生成亚硝基光化产物即4,5-二甲氧基-(2-亚硝基苯乙酮)和4,5-二甲氧基-(2-亚硝基苯甲醛)以及它们与DTT的加合物后,在约360nm吸收带强度的下降(图8)。使用该方法,并结合使用单色器(Jovin-SPEX)和光学功率表(Newport 1930-C),测定我们所有笼蔽激动剂解除笼蔽所需的作用光谱和能量。

                           实施例10

    脑切片得自P15-P20的小鼠。小鼠腹膜内注射120mg/kg氯胺酮(Sigma)和10mg/kg赛拉嗪(Sigma)盐水的混合物,进行麻醉。当所述动物对疼痛(夹趾))不再有反应时,用剪刀剪去它们的头。用解剖刀沿中线切开,暴露颅骨。用中号剪刀,沿中线小心剪开颅骨和侧面包合的两瓣,剥离皮质。用弯刀小心切断颅神经和脑干后,将脑转移到盛有冰冷的碳酸氢盐-ACSF、用95%O2和5%CO2鼓泡的烧杯中;所述溶液含有124mM NaCl、3mM KCl、1mM CaCl2、3mM MgSO4、1.25mM NaH2PO4、26mM NaHCO3和10mM葡萄糖。让脑冷却至少2分钟,然后用剃刀片进行修剪。这两个冠状切片切除小脑和额叶;一个水平切片切除前侧结构,包括中脑和大部分间脑。

    为了安放经修剪的脑供切片用,将一个琼脂块(5%的ACSF)粘在振动切片机的金属底座上。然后将所述组织块以垂直方向(额面向上)嵌入,且后(枕部)面用氰基丙烯酸酯(Superglue)粘到所述金属底座上。腹(水平)面朝向琼脂块。小室中充满冰冷的ACSF,用振动切片机(CarlZeiss)将脑切成300μm厚的冠状切片。单个切片小心地用巴氏移液管的钝端取下,放置在温室中并在室温下保持,所述温室由盛装碳酸氢盐-ACSF并用95%O2和5%CO2鼓泡的塑料烧杯内支撑的尼龙网组成。切片后1-11小时内进行实验。

                          实施例11

    为了用温度刺激培养的神经元或移植神经组织,用于灌注记录室的胞外记录溶液(参见上文)通过连接温度控制器(Melcor;AlphaOmega Series 800 controller)的定做的Peltier加热/冷却元件导入,并且被内嵌热电元件(CSC32,Omega)反馈控制。如上所述,被恒温(即加热或冷却)记录液倾注的培养物或移植组织中神经元的活性进行电监测。

    为了在体内应用温度刺激,将所述致敏靶细胞与热信号发生器探头接触,所述探头在小体积组织中能产生任意形状双极(加热或冷却)温度变化。用Peltier温差电敏器件的方法,加热或冷却探头。用热电元件在接触点直接测定的探头温度,是用闭环电路控制的。或者,所述致敏靶细胞用连续波二极管激光器通过多模光纤的红外(波长范围:808-1064nm)输出进行照射。低能量激光脉冲发射到光纤,在小体积组织中使温度突然上升,这可以通过热电元件在照射点直接测量。

                        实施例12

    为了用慢病毒载体在小鼠脑特定区域诱导瞬时离子通道表达,采用以下方案。小鼠用氯胺酮-赛拉嗪(100mg/kg氯胺酮;10mg/kg赛拉嗪)麻醉。将头颈背面剃毛并用无菌方式备皮。在所述过程中给动物保暖。对于软组织内或脑室内注射,在颅骨外沿中线切开,露出冠状缝、矢状缝和人字缝。然后将所述小鼠置于立体定位装置(DavidKopf Instruments)中,保持所述缝在水平面上。确定前囟点并以此作为坐标零点。对于软组织内注射,在前囟点坐标侧+2.0mm和后-0.3mm钻一个1mm小孔。其它坐标来源于Atlas of the Mouse Brain(第2版,Academic Press)。然后将10ml Hamilton注射器上的26号针头通过所述孔定向插入到右纹状体,深度为硬膜下3mm。在10分钟(0.5μl/分钟)内,用精密泵注入悬浮在20%蔗糖中的5微升病毒(终浓度2×109IU/ml)。针头留在原位5分钟,然后慢慢抽出针头。所述孔用骨蜡封口,伤口用4-0尼龙缝线缝合。让所述动物在加热灯下恢复。外科手术后7-10天拆线。注射后2周处死动物,如实施例10所述提取它的脑并立即用切片机切片。

                        实施例13

    为了用慢病毒载体产生转基因小鼠,采用以下方案。让雌性小鼠排卵并与能育雄性交配,产生胚胎。为此,在前2天下午1-3点之间,给约25日龄、体重在12.5克和14克间的青春前期雌性小鼠腹膜内注射5IU的PMS(Sigma G 4527,25IU/ml,溶于0.9%NaCl),接着在48小时后的第0天注射5IU的HCG(Sigma C 8554,25IU/ml,溶于0.9%NaCl)。经激素处理的雌性与能育雄性一起在笼中关养,交配过夜。在第1天早晨,检查雌性的交配塞。在第2天处死雌鼠。收集4-6个细胞期的胚胎,供病毒感染用。

    通过在室温下在酸性蒂罗德液中孵育,除去所述受精卵上的透明带。当透明带看来已溶解时,胚胎在培养基中洗涤,然后在培养皿中在矿物油下转移到50μl病毒悬液微滴中。为了防止胚胎因粘在玻璃壁上而损失,转移移液管用1%白蛋白的PBS液预包被,或者,使用塑料转移移液管。5-10个胚胎单独培养在分离的微滴中,以防它们彼此粘附。所述病毒悬液可以稀释成不同浓度,以粗略控制预期的每个转基因基因组的原病毒整合平均数量。合子在病毒悬液中孵育12-24小时,然后用一次性转移移液管转移到培养基平皿中进行洗涤。在所述胚胎培养2天时最好检查基因表达与导入的携带颜色标记的病毒基因组的存在的一致性。在培养基中彻底洗涤后,感染的胚胎转移到假孕雌鼠中。

    基于前述,人们知道,本发明提供本领域的大量的发明创造性进展,包括但不限于:

    (1)包含新的表达单元的化学组合物,每个表达单元包括一个编码功能性刺激门控离子通道的序列;一个导致所述离子通道在哺乳细胞中有效表达的启动子,和细胞类型特异性控制元件,所述元件限制所述离子通道除在特定类型或特征的细胞之外的表达;以及门控所述刺激门控离子通道的物理或化学配体,无论是否是笼蔽配体。

    (2)用于研究特定细胞类型在疾病或病症中的作用的方法,所述方法包括下述步骤:(a)得到一个包括以下序列的表达单元:一个编码功能性刺激门控离子通道的序列;一个导致所述离子通道在哺乳细胞中有效表达的启动子,和细胞类型特异性控制元件,所述元件限制所述离子通道除在特定类型或特征的细胞之外的表达,(b)将所述表达单元导入所述细胞(最好在体内)并表达所述离子通道;(c)用特异性刺激触发所述离子通道;和(d)观察所述离子通道触发的效应,如果有的话。

    (3)用于研究特定细胞类型在缓解疾病或病症的作用中的方法,所述方法包括下述步骤:(a)得到一个包括以下序列的表达单元:一个编码功能性刺激门控离子通道的序列;一个导致所述离子通道在哺乳细胞中有效表达的启动子,和细胞类型特异性控制元件,所述元件限制所述离子通道除在特定类型细胞之外的表达,(b)将所述表达单元体内导入表现出疾病或病症的细胞并表达所述离子通道;(c)用特异性刺激触发所述离子通道;和(d)观察所述离子通道触发对表现的疾病或病症的效应。

    (4)用于治疗特定细胞类型的不适当活性相关的疾病或病症的方法。当如以上(2)所述,确定了特定细胞类型在疾病或病症中起作用后,将异源刺激门控离子通道导入到患有所述疾病或病症的个体表达所述特定细胞类型的表达单元中。选择性触发这些离子通道以给所述个体提供治疗益处。

    (5)用于评价组合物用于治疗特定细胞类型的不适当活性相关的疾病或病症的方法。当如以上(2)所述,确定了特定细胞类型在疾病或病症中起作用后,可将所述细胞类型用于筛选方法,以选择适于化学合成的其它分子、最好是小分子,所述分子导致与所述异源刺激门控离子通道所触发的反应相同或相反的反应。

    (6)基因工程细胞和生物体,包括表达异源刺激门控离子通道的非人类敲入哺乳动物和转基因哺乳动物。

    (7)门控所述刺激门控离子通道的化学配体,无论是否是笼蔽配体。

    下列参考文献是本文引用的,每个参考文献都通过引用结合到本文中,其程度就如同全文引用一样。

    Arnold,D.B.和N.Heintz(1997).″A calcium responsive elementthat regulates expression of two calcium binding proteins in Purkinje cells(一种在浦肯野细胞中调节两种钙结合蛋白表达的钙效应元件).″ProcNatl Acad Sci USA94(16):8842-7。

    Ausubel,F.M.,R.Brent等(编著),(2003).Current Protocols inMolecular Biology.New York,John Wiley&Sons。

    Awatramani,R.,P.Soriano等,(2001).″An Flp indicator mouseexpressing alkaline phosphatase from the ROSA26 locus(一种从ROSA26基因座表达碱性磷酸酶的Flp指示小鼠).″Nat Genet 29(3):257-9。

    Bainbridge,J.W.,C.Stephens等,(2001).″In vivo gene transfer tothe mouse eye using an HIV-based lentiviral vector;efficient long-termtransduction of corneal endothelium and retinal pigment epithelium(用基于HIV的慢病毒载体的体内基因转移到小鼠眼;角膜内皮和视网膜色素上皮的有效长期转导).″Gene Ther8(21):1665-8。

    Bex,A.,M.Vooijs等,(2002).″Controlling gene expression in theurothelium using transgenic mice with inducible bladder specific Cre-loxrecombination(用转基因小鼠和诱导型膀胱特异性Cre-lox重组控制膀胱上皮中的基因表达).″J Virol 168(6):2641-4。

    Beyer,W.R.,M.Westphal等,(2002).″Oncoretrovirus andlentivirus vectors pseudotyped with lymphocytic choriomeningitis virusglycoprotein:generation,concentration,and broad host range(具有淋巴细胞性脉络丛脑膜炎病毒糖蛋白的假型致癌逆转录病毒和慢病毒载体:产生、浓度和广宿主范围).″J Virol76(3):1488-95。

    Birder,L.A.,Y.Nakamura等,(2002).″Altered urinary bladderfunction in mice lacking the vanilloid receptor TRPV1(在缺乏香草素受体TRPV1的小鼠中改变的膀胱功能).″Nat Neurosci 5(9):856-60。

    Bishop,A.,O.Buzko等,(2000).″Unnatural ligands for engineeredproteins:new tools for chemical genetics(用于工程蛋白的非天然配体:化学遗传学的新工具).″Annu Rev Biophys Biomol Struct 29:577-606。

    Brake,A.J.和D.Julius(1996).″Signaling by extracellularnucleotides(胞外核苷酸信号转导).″Annu Rev Cell Dev Biol12:519-41。

    Brake,A.J.,M.J.Wagenbach等,(1994).″New structural motif forligand-gated ion channels defined by an ionotropic ATP receptor(用于由离子型ATP受体限定的配体门控离子通道的新结构基序).″Nature371(6497):519-23。

    Callaway,E.M.和L. C.Katz(1993).″Photostimulation using cagedglutamate reveals functional circuitry in living brain slices(用笼蔽谷氨酸的光刺激揭示活体脑切片中功能性回路).″Proc Natl Acad Sci USA90(16):7661-5。

    Campfield,L.A.,F.J.Smith等,(1998).″Strategies and potentialmolecular targets for obesity treatment(用于肥胖症治疗的策略和潜在的分子靶).″Science 280(5368):1383-7。

    Cao,Y.和C.Dulac(2001).″Profiling brain transcription:neuronslearn a lesson from yeast(分布型分析脑转录:神经元向酵母学习).″Curr Opin Neurobiol 11(5):615-20。

    Carbon,M.和D.Eidelberg(2002).″Modulation of regional brainfunction by deep brain stimulation:studies with positron emissiontomography(通过深部脑刺激调节局部脑功能:正电子发射断层扫描的研究).″Curr Opin Neurol 15(4):451-5。

    Caterina,M.J.和D.Julius(2001).″The vanilloid receptor:amolecular gateway to the pain pathway(香草素受体:一种通向疼痛通路的分子通路).″Annu Rev Neurosci24:487-517。

    Caterina,M.J.,M.A.Schumacher等,(1997).″The capsaicinreceptor:a heat-activated ion channel in the pain pathway(辣椒素受体:一种疼痛通路的热激活离子通道).″Nature 389(6653):816-24。

    Clapham,D.E.,L. W.Runnels等,(2001).″The TRP ion channelfamily(TRP离子通道家族).″Nat Rev Neurosci 2(6):387-396。

    Crawley,J.N.(1999).″Behavioral phenotyping of transgenic andknockout mice:experimental design and evaluation of general health,sensory functions,motor abilities,and specific behavioral tests(转基因和敲除小鼠的行为表型分析:一般健康状况、感觉功能、运动能力和特定行为试验的实验设计和评价).″ Brain Res 835(1):18-26。

    Crawley,J.N.和R.Paylor(1997).″A proposed test battery andconstellations of specific behavioral paradigms to investigate thebehavioral phenotypes of transgenic and knockout mice(研究转基因和敲除小鼠行为表型的特定行为实例的一个建议性试验组和相互影响因素).″Horm Behav 31(3):197-211。

    DeFalco,J.,M.Tomishima等,(2001).″Virus-assisted mapping ofneural inputs to a feeding center in the hypothalamus(下丘脑进食中心神经输入的病毒辅助作图).″Science 291(5513):2608-13。

    Ding,S.和F.Sachs(2000).″Inactivation of P2X2 purinoceptors bydivalent cations(二价阳离子使P2X2嘌呤受体失活).″J Physiol 522 Pt 2:199-214。

    Eberwine,J.,J.E.Kacharmina等,(2001).″mRNA ExpressionAnalysis of Tissue Sections and Single Cells(组织切片和单细胞的mRNA表达分析).″J.Neurosci 21:8310-8314。

    Follenzi,A.,G.Sabatino等,(2002).″Efficient gene delivery andtargeted expression to hepatocytes in vivo by improved lentiviral vectors(通过改进的慢病毒载体的有效基因传递和在体内肝细胞的定向表达).″ Hum Gene Ther 13(2):243-60。

    Friedman,J.M.和J.L. Halaas(1998).″Leptin and the regulation ofbody weight in mammals(瘦蛋白和哺乳动物的体重调节).″Nature395(6704):763-70。

    Frohman,M.A.,M.K.Dush等,(1988).″Rapid production of full-length cDNAs from rare transcripts:amplification using a single gene-specific oligonucleotide primer(从稀少转录物快速产生全长cDNA:用单基因特异性寡核苷酸引物进行的扩增).″Proc Natl Acad Sci USA85(23):8998-9002。

    Georgopoulos,S.,A.McKee 等,(2002).″Generation andcharacterization of two transgenic mouse lines expressing human ApoE2in neurons and glial cells(两种在神经元和神经胶质细胞中表达人ApoE2的转基因小鼠系的产生和表征).″Biochemistry 41(30):9293-301。

    Gossen,M.和H.Bujard(2002).″Studying gene function ineukaryotes by conditional gene inactivation(通过条件性基因失活研究真核细胞中的基因功能).″Annu Rev Genet 36:153-73。

    Guler,A.D.,H.Lee等,(2002).″Heat-evoked activation of the ionchannel,TRPV4(离子通道TRPV4的热诱导激活).″J Neurosci 22(15):6408-14。

    Gusella,G.L.,E.Fedorova等,(2002).″Lentiviral gene transductionof kidney(肾脏的慢病毒基因转导).″Hum Gene Ther 13(3):407-14.

    Herrera,P.L.(2000).″Adult insulin-and glucagon-producing cellsdifferentiate from two independent cell lineages(从两个独立细胞谱系分化的成体胰岛素和胰高血糖素生产细胞).″Development 127(11):2317-22。

    Hille,B.(2001).Ion channels of excitable membranes.Sunderland,Sinauer。

    Hoess,R.H.和K. Abremski(1984).″Interaction of thebacteriophage P1 recombinase Cre with the recombining site loxP(噬菌体P1重组酶Cre与重组位点loxP的相互作用).″Proc Natl Acad SciUSA 81(4):1026-9。

    Hoess,R.H.和K.Abremski(1985).″Mechanism of strand cleavageand exchange in the Cre-lox site-specific recombination system(Cre-lox位点特异性重组系统中链切割和交换的机制).″J Mol Biol 181(3):351-62。    

    Hofmann,S.L.,D.W.Russell等,(1988).″Overexpression of lowdensity lipoprotein(LDL)receptor eliminates LDL from plasma intransgenic mice(在转基因小鼠中低密度脂蛋白(LDL)受体的过量表达清除血浆的LDL).″Science 239(4845):1277-81。

    Hogan,B.,R.Beddington等,(1994).Manipulating the MouseEmbryo.New York,Cold Spring Harbor Laboratory Press。

    Houdebine,L. M.(2002).″The methods to generate transgenicanimals and to control transgene expression(产生转基因动物和控制转基因表达的方法).″J Biotechnol 98(2-3):145-60。

    Jackson,R.J.,M.T.Howell等,(1990).″The novel mechanism ofinitiation of picornavirus RNA translation(细小核糖核酸病毒RNA翻译起始的新机制).″Trends Biochem Sci 15(12):477-83。

    Jang,S.K.,H.G.Krausslich等,(1988).″A segment of the 5′nontranslated region of encephalomyocarditis virus RNA directs internalentry of ribosomes during in vitro translation(脑心肌炎病毒RNA的5′非翻译区区段在体外翻译期间指导内部核糖体进入).″J Virol 62(8):2636-43。

    Jerecic,J.,C.H.Schulze等,(2001).″Impaired NMDA receptorfunction in mouse olfactory bulb neurons by tetracycline-sensitive NR1(N598R)expression(在小鼠嗅球神经元中四环素敏感性NR1(N598R)表达损伤NMDA受体功能).″Brain Res Mol Brain Res 94(1-2):96-104。

    Jiang,X.,D.H.Rowitch等,(2000).″Fate of the mammalian cardiacneural crest(哺乳动物心神经嵴的命运).″Development127(8):1607-16。

    Jiang,Z.,Z.Guo等,(2001).″Retinoblastoma gene promoter directstransgene expression exclusively to the nervous system(成视网膜细胞瘤基因启动子专门指导神经系统的转基因表达).″J Biol Chem 276(1):593-600。

    Kang,Y.,C.S.Stein等,(2002).″In vivo gene transfer using anonprimate lentiviral vector pseudotyped with Ross River Virusglycoproteins(用罗斯河病毒糖蛋白的假型非灵长类慢病毒载体进行的体内基因转移).″J Virol 76(18):9378-88。

    Kaplan,J.H.,B.Forbush,3rd等,(1978).″Rapid photolytic releaseof adenosine 5′-triphosphate from a protected analogue:utilization by theNa:K pump of human red blood cell ghosts(从受保护的类似物中快速光解释放腺苷5′-三磷酸:人红细胞影的Na:K泵的利用).″Biochemistry17(10):1929-35。

    Kobinger,G.P.,D.J.Weiner等,(2001).″Filovirus-pseudotypedlentiviral vector can efficiently and stably transduce airway epithelia invivo(线状病毒-假型慢病毒载体可在体内有效而稳定地转导气道上皮).″Nat Biotechnol 19(3):225-30。

    Kozloski,J.,F.Hamzei-Sichani等,(2001).″Stereotyped position oflocal synaptic targets in neocortex(新皮层中局部突触靶的固定位置).″Science 293(5531):868-72。

    Kugler,S.,L.Meyn等,(2001).″Neuron-specific expression oftherapeutic proteins:evaluation of different cellular promoters inrecombinant adenoviral vectors(治疗性蛋白的神经元特异性表达:对重组腺病毒载体中不同细胞启动子的评价).″Mol Cell Neurosci 17(1):78-96。

    Kuner,T.和G.J.Augustine(2000).″A genetically encodedratiometric indicator for chloride:capturing chloride transients in culturedhippocampal neurons(一种遗传编码的氯化物的比值指示剂:在培养的海马神经元中瞬时捕获氯化物).″Neuron 27(3):447-59。

    Lavon,I.,I.Goldberg等,(2000).″High susceptibility to bacterialinfection,but no liver dysfunction,in mice compromised for hepatocyteNF-kappaB activation(在肝细胞NF-κB激活妥协的小鼠中,对细菌感染的高易感性,但没有肝功能紊乱).″Nat Med 6(5):573-7。

    Lee,P.,G.Morley等,(1998).″Conditional lineage ablation to modelhuman diseases(对模型人类疾病的条件性谱系去除).″Proc Natl AcadSci USA 95(19):11371-6。

    Leighton,P.A.,K.J.Mitchell等,(2001).″Defining brain wiringpatterns and mechanisms through gene trapping in mice(通过在小鼠中的基因诱捕的特定脑布线模式和机制).″Nature 410(6825):174-9。

    Lewandoski,M.(2001).″Conditional Control of Gene Expression inthe Mouse(小鼠基因表达的条件控制).″Nature Review Genetics 2(10):743-755。

    Liu,M.,M.C.Liu等,(2003).″Versatile regulation of cytosolicCa2+by vanilloid receptor I in rat dorsal root ganglion neurons(大鼠背根神经节神经元中香草素受体I对胞质Ca2+的多种调节).″J BiolChem 278(7):5462-72。

    Lois,C.,E.J.Hong等,(2002).″Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors(慢病毒载体递送的转基因的种系遗传和组织特异性表达).″Science295(5556):868-72。

    Lowenstein,P.R.和L. W.Enquist编著,(1996).Protocols for genetransfer in neuroscience.Chichester-New York,John Wiley。

    Makinae,K.,T.Kobayashi等,(2000).″Structure of the mouseglutamate decarboxylase 65 gene and its promoter:preferential expressionof its promoter in the GABAergic neurons of transgenic mice(小鼠谷氨酸脱羧酶65基因及其启动子的结构:其启动子在转基因小鼠的GABA能神经原中优先表达).″J Neurochem 75(4):1429-37。

    Marriott,G.(1994).″Caged protein conjugates and light-directedgeneration of protein activity:preparation,photoactivation,andspectroscopic characterization of caged G-actin conjugates(笼蔽蛋白缀合物和蛋白活性的光指导产生:笼蔽G-肌动蛋白缀合物的制备、光激活和光谱学特征).″Biochemistry33(31):9092-7。

    Marshall,I.C.,D.E.Owen等,(2003).″Activation of vanilloidreceptor 1 by resiniferatoxin mobilizes calcium from inositol 1,4,5-trisphosphate-sensitive stores(由仙人掌毒素对香草素受体1的激活带动转移肌醇1,4,5-三磷酸敏感性储备的钙).″Br J Pharmacol 138(1):172-6。

    Matsui,T.,L. Li等,(2002).″Phenotypic spectrum caused bytransgenic overexpression of activated Akt in the heart(在心脏中由转基因过量表达激活的Akt引起的表型谱).″J Biol Chem 277(25):22896-901.

    McCray,J.A.和D.R.Trentham(1989).″Properties and uses ofphotoreactive caged compounds(光反应性笼蔽化合物的特性及应用).″Annu Rev Biophys Biophys Chem 18:239-70。

    McKemy,D.D.,W.M.Neuhausser等,(2002).″Identification of acold receptor reveals a general role for TRP channels in thermosensation(冷受体的鉴定揭示TRP通道在热感觉中的一般作用).″Nature416(6876):52-8。

    Mezey,E.,Z.E.Toth等,(2000).″Distribution of mRNA forvanilloid receptor subtype 1(VR1),and VR1-like immunoreactivity,inthe central nervous system of the rat and human(在大鼠和人中枢神经系统中,香草素受体亚型1(VR1)的mRNA分布和VR1样免疫反应性).″Proc Natl Acad Sci USA 97(7):3655-60。

    Miesenbck,G.,D.A.De Angelis等,(1998).″Visualizing secretionand synaptic transmission with pH-sensitive green fluorescent proteins(用pH敏感性绿色荧光蛋白显现分泌和突触传播).″Nature 394(6689):192-5。

    Miyawaki,A.,O.Griesbeck等,(1999).″Dynamic and quantitativeCa2+measurements using improved cameleons(用改进变色进行的动态定量Ca2+测量).″Proc Natl Acad Sci USA96(5):2135-40。

    Miyawaki,A.,J.Llopis等,(1997).″Fluorescent indicators for Ca2+based on green fluorescent protein and calmodulin(基于绿色荧光蛋白和钙调蛋白的Ca2+荧光指示剂).″Nature 388(6645):882-7。

    Miyawaki,J.,S.Takaki等,(1989).″Expression vector system basedon the chicken beta-actin promoter directs  efficient production ofinterleukin-5(基于鸡β-肌动蛋白启动子的表达载体系统指导白介素-5的有效产生).″Gene 79(2):269-77。

    Mochizuki,H.,J.P.Schwartz等,(1998).″High-titer humanimmunodeficiency virus type 1-based vector systems for gene deliveryinto nondividing cells(用于基因传递到非分裂细胞中的基于高滴度人免疫缺陷病毒1型的载体系统).″J.Virol 72(11):8873-83。

    Montell,C.,L. Birnbaumer等,(2002).″The TRP channels,aremarkably functional family(TRP通道—一种引人注目的功能性家族).″Cell 108(5):595-8。

    Moriylshi,K.,L. J.Richards等,(1996).″Labeling neural cells usingadenoviral gene transfer of membrane-targeted GFP(使用腺病毒基因转移膜定向GFP的标记神经细胞).″Neuron 16(2):255-60。

    Nagai,T.,A.Sawano等,(2001).″Circularly permuted greenfluorescent proteins engineered to sense Ca2+(对Ca2+敏感的工程循环交替变换的绿色荧光蛋白).″Proc Natl Acad Sci USA98(6):3197-202。

    Nakai,J.,M.Ohkura等,(2001).″A high signal-to-noise Ca2+probecomposed of a single green fluorescent protein(由一种绿色荧光蛋白组成的高信噪比Ca2+探针).″Nat Biotechnol 19(2):137-141。

    Naldini,L.,U.Blomer等,(1996).″In vivo gene delivery and stabletransduction of nondividing cells by a lentiviral vector(慢病毒载体对非分裂细胞的体内基因传递和稳定转导).″Science 272(5259):263-7。

    Nery,S.,G.Fishell等,(2002).″The caudal ganglionic eminence is asource of distinct cortical and subcortical cell populations(尾神经节隆起是不同皮层和亚皮层细胞群体的来源).″Nat Neurosci 5(12):1279-87.

    Newbolt,A.,R.Stoop等,(1998).″Membrane topology of an ATP-gated ion channel(P2X receptor)(ATP门控离子通道(P2X受体)的膜拓扑学).″J Biol Chem 273(24):15177-82。

    Nicolelis,M.A.和S.Ribeiro(2002).″Multielectrode recordings:thenext steps(多电极记录:下面的步骤).″Curr Opin Neurobiol 12(5):602-6。

    North,R.A.(2002).″Molecular physiology of P2X receptors(P2X受体的分子生理学).″Physiol Rey82(4):1013-67。

    Ozturk-Winder,F.,M.Renner等,(2002).″The murine whey acidicprotein promoter directs expression to human mammary tumors afterretroviral transduction(鼠乳清酸性蛋白启动子在逆转录病毒转导后指导人乳腺瘤的表达).″Cancer Gene Ther 9(5):421-31。

    Peier,A.M.,A.Moqrich等,(2002).″A TRP channel that sensescold stimuli and menthol(一种对冷刺激和薄荷醇敏感的TRP通道).″Cell 108(5):705-15。

    Peterlin,Z.A.,J.Kozloski等,(2000).″Optical probing of neuronalcircuits with calcium indicators(用钙指示剂光学探测神经元回路).″Proc Natl Acad Sci USA 97(7):3619-24。

    Rapp,G.(1998).″Flash lamp-based irradiation of caged compounds(对笼蔽化合物的基于闪光灯的辐射).″Methods Enzymol 291:202-22。

    Rockenstein,E.,M.Mallory等,(2002).″Differentialneuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters(从血小板衍生生长因子和Thy-1启动子表达α-突触核蛋白的转基因小鼠中的分化神经病理学改变).″J Neurosci Res68(5):568-78。

    Roscilli,G.,C.D.Rinaudo等,(2002).″Long-term and tight controlof gene expression in mouse skeletal muscle by a new hybrid humantranscription factor(新的杂种人转录因子对小鼠骨骼肌中基因表达的长时程和紧密控制).″Mol Ther 6(5):653-63。

    Saam,J.R.和J.I.Gordon(1999).″Inducible gene knockouts in thesmall intestinal and colonic epithelium(小肠和结肠上皮中的诱导型基因敲除).″J Biol Chem 274(53):38071-82。

    Sakai,N.,J.Thome等,(2002).″Inducible and brain region-specificCREB transgenic mice(诱导型和脑区特异性CREB转基因小鼠).″MolPharmacol 61(6):1453-64。

    Sandberg,R.,R.Yasuda等,(2000).″Regional and strain-specificgene expression mapping in the adult mouse brain(在成体小鼠脑中区域和品系特异性基因表达作图).″Proc Natl Acad Sci USA 97(20):11038-11043。

    Sankaranarayanan,S.和T.A.Ryan(2001).″Calcium acceleratesendocytosis of vSNAREs at hippocampal synapses(钙加速vSNARE在海马突触中的胞吞作用).″Nature Neurosci。

    Schwartz,M.W.,S.C.Woods等,(2000).″Central nervous systemcontrol of food intake(食物摄入的中枢神经系统控制).″Nature404(6778):661-71。

    Shah,K.,Y.Liu等,(1997).″Engineering unnatural nucleotidespecificity for Rous sarcoma virus tyrosine kinase to uniquely label itsdirect substrates(劳斯肉瘤病毒酪氨酸激酶对独特标记它的定向底物的非天然核苷酸特异性工程改造).″Proc Natl Acad Sci USA 94(8):3565-70。

    Shimozono,S.,T.Fukano等,(2002).″Confocal imaging ofsubcellular  Ca2+ concentrations using a dual-excitation ratiometricindicator based on green fluorescent protein(用基于绿色荧光蛋白的双刺激比值指示剂对亚细胞Ca2+浓度的共聚焦成象).″Sci STKE2002(125):PL4。

    Soriano,P.(1999).″Generalized lacZ expression with the ROSA26Cre reporter strain(用ROSA26 Cre报道蛋白株的普遍性lacZ表达).″Nat Genet 21(1):70-1。

    Srinivas,S.,T.Watanabe等,(2001).″Cre reporter strains producedby targeted insertion of EYFP and ECFP into the ROSA26 locus(通过将EYFP和ECFP定向插入ROSA26基因座产生Cre报道蛋白株).″BMCDev Biol 1(1):4。

    St John,P.A.,W.M.Kell等,(1986).″Analysis and isolation ofembryonic mammalian neurons by fluorescence-activated cell sorting(通过荧光激活细胞分选来分析和分离胚胎哺乳动物神经元).″J Neurosci6(5):1492-512。

    Stanford,W.L.,J.B.Cohn等,(2001).″Gene-Trap Mutagenesis:Past,Present and Beyond(基因捕获诱变:过去、现在和将来).″NatureReview Genetics 2(10):756-768。

    Takamori,S.,J.S.Rhee等,(2001).″Identification of differentiation-associated  brain-specific  phosphate transporter as a second vesicularglutamate transporter(VGLUT2)(作为第二囊泡谷氨酸转运蛋白(VGLUT2)的分化相关脑特异性磷酸转运蛋白的鉴定).″J Neurosci21(22):RC182。

    Tobin,D.M.,D.M.Madsen等,(2002).″Combinatorial expressionof TRPV channel proteins defines their sensory functions and subcellularlocalization in C.elegans neurons(TRPV通道蛋白的组合表达限定它们在秀丽新小杆线虫中的感觉功能和亚细胞定位).″Neuron 35(2):307。

    Tomomura,M.,D.S.Rice等,(2001).″Purification of Purkinje cellsby fluorescence-activated cell sorting from transgenic mice that expressgreen fluorescent protein(通过荧光激活细胞分选术,从表达绿色荧光蛋白的转基因小鼠中纯化浦肯野细胞).″Eur J Neurosci14(1):57-63。

    Townley,D.J.,B.J.Avery等,(1997).″Rapid sequence analysis ofgene trap integrations to generate a resource of insertional mutations inmice(基因诱捕整合的快速序列分析,以在小鼠中产生插入突变资源).″Genome Res7(3):293-8。

    Valera,S.,N.Hussy等,(1994).″A new class of ligand-gated ionchannel defined by P2x receptor for extracellular ATP(一类新的由针对胞外ATP的P2x受体限定的配体门控离子通道).″Nature 371(6497):516-9。

    Vallier,L.,J.Mancip等,(2001).″An efficient system for conditionalgene expression in embryonic stem cells and in their in vitro and in vivodifferentiated derivatives(用于在胚胎干细胞中和它们在体外和体内分化衍生物中条件型基因表达的有效系统.″Proc Natl Acad Sci USA98(5):2467-72。

    Walker,J.W.,J.A.McCray等,(1986).″Photolabile protectinggroups for an acetylcholine receptor ligand.Synthesis and photochemistryof a new class of o-nitrobenzyl derivatives and their effects on receptorfunction(乙酰胆碱受体配体的光不稳定保护基团。一类新的邻硝基苄基衍生物的合成和光化学以及它们对受体功能的影响).″Biochemistry25(7):1799-805。

    Walker,J.W.,G.P.Reid等,(1989).″Synthesis and properties ofcaged nucleotides(笼蔽核苷酸的合成和特性).″Methods Enzymol 172:288-301。

    Walpole,C.S.,S.Bevan等,(1996).″Similarities and differences inthe structure-activity relationships  of capsaicin and resiniferatoxinanalogues(辣椒素和仙人掌毒素类似物的结构-活性关系中的相似性和差异).″J Med Chem 39(15):2939-52。

    Walpole,C.S.,R.Wrigglesworth等,(1993).″Analogues ofcapsaicin with agonist activity as novel analgesic agents;structure-activitystudies.l.The aromatic″A-region″(作为新的镇痛药的具有激动剂活性的辣椒素类似物;结构-活性研究。1.芳族“A区”).″J Med Chem 36(16):2362-72。

    Watson,D.J.,G.P.Kobinger等,(2002).″Targeted transductionpatterns in the mouse brain by lentivirus vectors pseudotyped with VSV,Ebola,Mokola,LCMV,or MuLV envelope proteins(带有VSV、埃博拉病毒、莫科拉病毒、LCMV或MuLV包膜蛋白的假型慢病毒载体在小鼠脑中定向转导模式).″Mol Ther 5(5 Pt1):528-37。

    Wilcox,M.,R.W.Viola等,(1990).″Synthesis of photolabile″precursors″of amino acid neurotransmitters(氨基酸神经递质的对光不稳定“前体”的合成).″J.Org.Chem. 55:1585-1589。

    Wool-Lewis,R.J.和P.Bates(1998).″Characterization of Ebolavirus entry by using pseudotyped viruses:identification of receptor-deficient cell lines(通过使用假型病毒表征埃博拉病毒进入:受体缺陷型细胞系的鉴定).″J Virol 72(4):3155-60。

    Yamaoka,T.,K.Yoshino等,(2002).″Transgenic expression ofFGF8 and FGF 10 induces transdifferentiation of pancreatic islet cells intohepatocytes and exocrine cells(FGF8和FGF10的转基因表达诱导胰岛细胞转分化成肝细胞和外分泌细胞).″Biochem Biophys Res Commun292(1):138-43。

    Zambrowicz,B.P.,A.Imamoto等,(1997).″Disruption ofoverlapping transcripts in the ROSA beta geo 26 gene trap strain leads towidespread expression of beta-galactosidase in mouse embryos andhematopoietic cells(ROSA βgeo 26基因诱捕品系中的重叠转录物的破坏,导致β-半乳糖苷酶在小鼠胚胎细胞和造血细胞中的广泛表达).″Proc Natl Acad Sci USA94(8):3789-94。

    Zemelman,B.V.,G.A.Lee等,(2002).″Selective photostimulationof genetically chARGed neurons(经遗传操作的chARGed神经元的选择性光刺激).″Neuron 33(1):15-22。

    Zemelman,B.V.和G.Miesenbck(2001).″Genetic schemes andschemata in neurophysiology(遗传学方案和神经生理学图解).″CurrOpin Neurobiol 11:409-14。

    Zemelman,B.V.,N.Nesnas等,(2003).″Photochemical gating ofheterologous ion channels:remote control over genetically designatedpopulatiohs of neurons(异源离子通道的光化学门控:远距离控制经遗传操作的特定神经元群体).″Proc Natl Acad Sci USA 100(3):1352-7。

    Zinyk,D.L.,E.H.Mercer等,(1998).″Fate mapping of the mousemidbrain-hindbrain constriction using a site-specific recombinationsystem(用位点特异性重组系统对小鼠中脑-后脑缢缩的命运作图).″Curr Biol 8(11):665-8。

    Zufferey,R.,D.Nagy等,(1997).″Multiply attenuated lentiviralvector achieves efficient gene delivery in vivo(多种减毒慢病毒载体在体内实现有效的基因传递).″Nat Biotechnol 15(9):871-5。

                      表1

                已知神经元通路细胞                           组织                          动物                                    人                            刺激神经元通路                                ↓                                                       鉴定受刺激神经元              将配体门控离子通                           并进行分布型分析→             道导入神经元中                                                                ↓                                                                                                                        激活神经元                                                                ↓                                                                                                                        产生行为表型                                                                ↓    培养神经元                    ←                          收获神经元        ↓                                                      ↓鉴定选择性激活或沉                →                        对健康动物默神经元的化合物                                            测试化合物                                                                ↓                                                                                                                    药理学纠正行为                       在人体中的                                                          表型        →                       药物治疗                                                                ↓                                                                                                                    通过基因治疗                         在人体中的                                                          纠正行为表型→                       基因治疗

                表2

            未知神经元通路细胞                              组织                                动物                            人                                                               将配体门控离子通道                                                                  导入神经元中                                                                       ↓                                                                                                                                      激活神经元                                                                       ↓                                                                                                                                    产生行为表型                                                                       ↓                                                                                                                                 组织学方法鉴定                                                                  受刺激神经元                                                                       ↓  培养神经元                       ←                               收获神经元      ↓                                                               ↓鉴定选择性激活或沉                 →                              对健康动物默神经元的化合物                                                   测试化合物                                                                       ↓                                                                                                                                药理学纠正行为                      在人体中的                                                                表型        →                      药物治疗                                                                       ↓                                                                                                                                通过基因治疗                        在人体中的                                                                纠正行为表型→                      基因治疗

                    序列表

    <110>Sloan-Kettering Institute for Cancer Research

         Miesenbock,Gero

         Zemelman,Boris

    <120>异源刺激门控离子通道及其使用方法

    <130>MSK.P-063WO

    <150>60/384,670

    <151>2002-05-31

    <150>60/441,452

    <151>2003-01-21

    <160>8

    <170>PatentIn version 3.2

    <210>1

    <211>2847

    <212>DNA

    <213>褐鼠(rattus norvegicus)

    <400>1

    cagctccaag gcacttgctc catttggggt gtgcctgcac ctagctggtt gcaaattggg    60

    ccacagagga tctggaaagg atggaacaac gggctagctt agactcagag gagtctgagt    120

    ccccacccca agagaactcc tgcctggacc ctccagacag agaccctaac tgcaagccac    180

    ctccagtcaa gccccacatc ttcactacca ggagtcgtac ccggcttttt gggaagggtg    240

    actcggagga ggcctctccc ctggactgcc cttatgagga aggcgggctg gcttcctgcc    300

    ctatcatcac tgtcagctct gttctaacta tccagaggcc tggggatgga cctgccagtg    360

    tcaggccgtc atcccaggac tccgtctccg ctggtgagaa gcccccgagg ctctatgatc    420

    gcaggagcat cttcgatgct gtggctcaga gtaactgcca ggagctggag agcctgctgc    480

    ccttcctgca gaggagcaag aagcgcctga ctgacagcga gttcaaagac ccagagacag    540

    gaaagacctg tctgctaaaa gccatgctca atctgcacaa tgggcagaat gacaccatcg    600

    ctctgctcct ggacgttgcc cggaagacag acagcctgaa gcagtttgtc aatgccagct    660

    acacagacag ctactacaag ggccagacag cactgcacat tgccattgaa cggcggaaca    720

    tgacgctggt gaccctcttg gtggagaatg gagcagatgt ccaggctgcg gctaacgggg    780

    acttcttcaa gaaaaccaaag ggaggcctg gcttctactt tggtgagctg cccctgtccc    840

    tggctgcgtg caccaaccag ctggccattg tgaagttcct gctgcagaac tcctggcagc    900

    ctgcagacat cagcgcccgg gactcagtgg gcaacacggt gcttcatgcc ctggtggagg    960

    tggcagataa cacagttgac aacaccaagt tcgtgacaag catgtacaac gagatcttga    1020

    tcctgggggc caaactccac cccacgctga agctggaaga gatcaccaac aggaaggggc    1080

    tcacgccact ggctctggct gctagcagtg ggaagatcgg ggtcttggcc tacattctcc    1140

    agagggagat ccatgaaccc gagtgccgac acctatccag gaagttcacc gaatgggcct    1200

    atgggccagt gcactcctcc ctttatgacc tgtcctgcat tgacacctgt gaaaagaact    1260

    cggttctgga ggtgatcgct tacagcagca gtgagacccc taaccgtcat gacatgcttc    1320

    tcgtggaacc cttgaaccga ctcctacagg acaagtggga cagatttgtc aagcgcatct    1380

    tctacttcaa cttcttcgtc tactgcttgt atatgatcat cttcaccgcg gctgcctact    1440

    atcggcctgt ggaaggcttg cccccctata agctgaaaaa caccgttggg gactatttcc    1500

    gagtcaccgg agagatcttg tctgtgtcag gaggagtcta cttcttcttc cgagggattc    1560

    aatatttcct gcagaggcga ccatccctca agagtttgtt tgtggacagc tacagtgaga    1620

    tacttttctt tgtacagtcg ctgttcatgc tggtgtctgt ggtactgtac ttcagccaac    1680

    gcaaggagta tgtggcttcc atggtgttct ccctggccat gggctggacc aacatgctct    1740

    actatacccg aggattccag cagatgggca tctatgctgt catgattgag aagatgatcc    1800

    tcagagacct gtgccggttt atgttcgtct acctcgtgtt cttgtttgga ttttccacag    1860

    ctgtggtgac actgattgag gatgggaaga ataactctct gcctatggag tccacaccac    1920

    acaagtgccg ggggtctgcc tgcaagccag gtaactctta caacagcctg tattccacat    1980

    gtctggagct gttcaagttc accatcggca tgggcgacct ggagttcact gagaactacg    2040

    acttcaaggc tgtcttcatc atcctgttac tggcctatgt gattctcacc tacatccttc    2100

    tgctcaacat gctcattgct ctcatgggtg agaccgtcaa caagattgca caagagagca    2160

    agaacatctg gaagctgcag agagccatca ccatcctgga tacagagaag agcttcctga    2220

    agtgcatgag gaaggccttc cgctctggca agctgctgca ggtggggttc actcctgacg    2280

    gcaaggatga ctaccggtgg tgtttcaggg tggacgaggt aaactggact acctggaaca    2340

    ccaatgtggg tatcatcaac gaggacccag gcaactgtga gggcgtcaag cgcaccctga    2400

    gcttctccct gaggtcaggc cgagtttcag ggagaaactg gaagaacttt gccctggttc    2460

    cccttctgag ggatgcaagc actcgagata gacatgccac ccagcaggaa gaagttcaac    2520

    tgaagcatta tacgggatcc cttaagccag aggatgctga ggttttcaag gattccatgg    2580

    tcccagggga gaaataatgg acactatgca gggatcaatg cggggtcttt gggtggtctg    2640

    cttagggaac cagcagggtt gacgttatct gggtccactc tgtgcctgcc taggcacatt    2700

    cctaggactt cggcgggcct gctgtgggaa ctgggaggtg tgtgggaatt gagatgtgta    2760

    tccaaccatg atctccaaac atttggcttt caactcttta tggactttat taaacagagt    2820

    gaatggcaaa tctctacttg gacacat                                        2847

    <210>2

    <211>4184

    <212>DNA

    <213>褐鼠(rattus norvegicus)

    <400>2

    gtgctctaaa gagaagctct tggctgtttga gcagctcca cggcaagatg tccttcgagg    60    

    gagccaggct cagcatgagg agccgcagaa atggaactct gggcagcacc cggaccctgt    120

    actccagcgt gtctcggagc acagacgtgt cctacagtga aagtgatttg gtgaatttta    180

    ttcaggcaaa ttttaaaaaa cgagaatgcg tcttctttac cagagactcc aaggccatgg    240

    agagcatatg caagtgtggt tatgcccaga gccagcatat cgaaggcacc cagatcaacc    300

    aaaatgagaa gtggaactac aaaaaacaca ccaaggagtt tccaacagac gcctttgggg    360

    acattcagtt tgagactctg gggaagaaag gcaagtactt acgcttatcc tgtgacacgg    420

    actctgaaac cctctacgaa ctgctgaccc agcactggca cctcaaaaca cccaacctgg    480

    tcatctcagt gacgggtgga gccaaaaact ttgctttgaa gccacgcatg cgcaaaatct    540

    tcagtcggct gatctacatc gctcagtcta aaggggcatg gattcttacc ggaggcactc    600

    attacggtct gatgaagtac ataggtgaag tggtgaggga taacaccatc agcaggaact    660

    cggaagagaa catcgtggcc attggcatag cggcctgggg catggtctcc aacagggaca    720

    ccctcatcag gaattgtgat gatgagggac atttttcagc tcaatatatc atggatgact    780

    tcatgagaga tcctctctac atcctggaca acaatcatac ccacctgctg cttgtggaca    840

    acggttgtca tggacacccc acggtggaag ccaaacttcg gaatcagctg gagaagtaca    900

    tctctgagcg caccagtcaa gattccaact atggtggtaa gatccccatc gtgtgttttg    960

    cccagggagg tggaagagaa actttgaaag ccatcaacac ctctgtcaaa agtaagatcc    1020

    cctgtgtggt ggtggaaggc tcggggcaga ttgccgatgt gattgccagc ctggtggagg    1080

    tagaggatgt tttaacctct tccatggtca aaggagaagctggtacggttt ttaccccgca    1140

    ctgtgtcccg gctgcctgaa gaggagattg agagctggat caaatggctc aaagaaattc    1200

    ttgagagccc ccacctcctc acggtcatca agatggagga ggctggagac gaggtcgtga    1260

    gcagcgccat ttcctacgcg ctgtacaaag ccttcagcac taatgaacaa gacaaggaca    1320

    actggaacgg acagctgaag cttctgctgg agtggaacca actggacctt gccagtgatg    1380

    agatcttcac ccatgaccgc cgctgggagt ctgccgacct tcaggaagtc atgttcacgg    1440

    ccctcataaa ggacaggccc aagtttgtcc gcctcttcct ggagaatggc ctcaacctgc    1500

    agaagttcct caccaatgaa gtcctcacgg agctcttctc cacccacttc agcaccctag    1560

    tgtaccggaa cctgcagatc gccaagaact cctacaacga tgcactcctt acctttgtct    1620

    ggaagttggt ggcaaacttc cgtagaagct tctggaaaga ggacagaagc agcagggagg    1680

    acttggatgt ggaactccat gatgcatctc tcaccacccg gcaccccctg caggctcttt    1740

    tcatctgggc cattcttcag aacaagaagg aactctccaa ggtcatctgg gagcaaacca    1800

    aaggctgtac tctggccgcc ttgggggcca gcaaacttct gaagaccctg gccaaagtta    1860

    agaatgatat caacgcagct ggggaatctg aggaactggc taatgagtat gagacccgag  1920

    cagtggagtt gttcactgag tgttacagca gtgatgagga cttggcagaa cagctactgg  1980

    tctactcttg tgaagcctgg ggtgggagca actgtctgga gctggcggtg gaggctacgg  2040

    accagcattt cattgctcag cctggggtcc agaatttcct ttctaagcaa tggtatggag  2100

    agatttcccg agacacgaag aactggaaga ttatcctgtg tctgttcatc atccccctgg  2160

    tgggctgtgg cctcgtatcg tttaggaaga agcccattga caagcacaag aagctgctct  2220

    ggtactacgt ggccttcttc acttcgccct tcgtggtctt ctcctggaac gtggtcttct  2280

    acatcgcctt cctcctgctg tttgcgtatg tgctgctcat ggacttccac tcggtgccac  2340

    acacccccga gctgatcctc tatgccctgg tcttcgtcct cttctgtgat gaagtgaggc  2400

    agtggtacat gaacggagtg aattatttca ccgacctatg gaacgttatg gacacactgg  2460

    gacttttcta cttcatagcg ggtattgtat tccggcttca ctcttcaaat aaaagctctt  2520

    tgtactccgg gcgagtcatt ttctgtctgg attacattat attcactcta aggctcatcc  2580

    acattttcac cgtgagcagg aacctgggac ccaagattat aatgctgcag cggatgctca  2640

    tcgacgtttt cttcttcttg tttctctttg ctgtgtggat ggtggccttc ggcgtagcca  2700

    gacaggggat ccttaggcaa aatgaacagc gctggaggtg gatcttccgc tctgtcatct  2760

    atgagcccta cctggccatg tttggccagg tgcccagtga tgtggacagt accacatatg  2820

    acttctccca ctgcaccttc tcgggaaatg agtccaagcc actgtgcgtg gagctagatg  2880

    aatacaatct gccccgcttc cctgagtgga tcaccatccc actagtgtgc atctacatgc  2940

    tctccaccaa catccttctg gtcaatctcc tggtcgccat gtttggctac acggtgggca  3000

    ttgtgcagga gaacaacgat caggtctgga agttccagcg gtacttcctg gtgcaggagt  3060

    actgcaaccg cctcaacatc cccttcccct tcgtcgtctt cgcttacttc tacatggtgg  3120

    tcaagaagtg tttcaaatgc tgctgtaaag agaagaacac ggagtcttct gcctgctgtt  3180

    tcagaaatga ggacaacgag actttggcgt gggagggcgt catgaaggag aattaccttg  3240

    tcaagatcaa cacgaaggcc aacgacaacg cagaggagat gaggcatcgg ttcagacaac  3300

    tggacacaaa gcttaatgat ctcaaaggtc ttctgaaaga gattgctaat aaaatcaaat  3360

    aaggcaggcg actgctcatg gagagaagtc aaattgcaat aagatcaaat caaacacctg  3420

    gatttggagg ctcgtgggac tctgataaac aatactgcta ttgacttcta aaggagacat  3480

    ttccaggtcc ctgggcacaa agtggatgag tcatagtcac cctcaagggc ataggtcagg  3540

    gaccaaagtg tacagagaac tgtgcacaag aagaggagtg caaaggttcc tccatgaagg  3600

    tgcctgtgct gtctgcatct cggagccttg aactgatgct gaaggtttaa gtgatgacac  3660

    acctttccca ccctcgtctc atgcacctcc catgactgtg accctggccc tgattttaca  3720

    cctacactgc tattgtgttt atttcctact gtcccctttc tgcattgtat gatgaattca  3780

    tcgacatagg tcagagtcct acaccacccc aaagaaaagt caggccggat gctaaaatac    3840

    cctggggcaa cctctccttt ctcacatgtc aaacgtggga ggtgtgtgtg tggggggggc    3900

    acacggaggc agtgacttct ttctctgggg ctctccagga ctcctgctga aggaaccctt    3960

    gagagccgta ccttgctcct tttgtttttg ggagtgtgcc tctcctccat tctctcatta    4020

    tttccccatt gagaatagca aatggatctc acaggaggtt agaggagcac aaaaatgtat    4080

    ggaaacggcc tcccactcac agcccttgct cacacttccg tgtgtttgct caatcccagc    4140

    cttttctatg catgctacac ttcactttta aaaaaaaaaaa aaaa                    4184

    <210>3

    <211>1831

    <212>DNA

    <213>褐鼠(rattus norvegicus)

    <400>3

    gccgctgcac agccccggct tcccgcgggg gcggccatgg tccggcgctt ggcccggggc    60

    tgctggtccg cgttctggga ctacgagacg cctaaggtga tcgtggtgcg gaatcggcgc    120

    ctgggattcg tgcaccgcat ggtgcagctt ctcatcctgc tttacttcgt gtggtacgtc    180

    ttcatcgtgc agaaaagcta ccaggacagc gagaccggac cggagagctc catcatcacc    240

    aaagtcaagg ggatcaccat gtcggaagac aaagtgtggg acgtggagga atacgtaaag    300

    cccccggagg ggggcagtgt agtcagcatc atcaccagga tcgaggttac cccttcccag    360

    accttgggaa catgcccaga gagcatgagg gttcacagct ctacctgcca ttcagacgac    420

    gactgtattg ccggacagct ggacatgcaa ggcaatggga ttcgcacagg gcactgtgta    480

    ccctattacc atggggactc caagacctgc gaggtgtcag cctggtgccc ggtggaggat    540

    ggaacttctg acaaccattt tctgggtaaa atggccccaa atttcaccat cctcatcaag    600

    aacagcatcc actaccccaa gttcaagttc tcaaagggca acattgcaag ccagaagagt    660

    gactacctca agcattgcac atttgatcag gactctgacc catactgtcc catcttcagg    720

    ctgggtttca ttgttgagaa ggcaggagag aacttcacag aactggcaca caagggcggt    780

    gtcattggag tcatcatcaa ctggaactgt gacctggact tgtctgaatc agagtgcaac    840

    cccaaatatt ctttccggag gctcgacccc aagtatgacc ctgcctcctc aggctacaac    900

    ttcaggtttg ccaagtatta caagataaac ggcactacca ccactcgaac tctcatcaaa    960

    gcctatggga ttcgaatcga tgttatcgtg catggacagg cagggaaatt cagtctcatt    1020

    cccaccatca tcaatctggc cactgctctg acctccatcg gggtgggctc cttcctgtgt    1080

    gactggattt tgttaacgtt catgaacaaa aacaagctct acagccataa gaagttcgac    1140

    aaggtgcgta ctccaaagca tccctcaagt agatggcctg tgacccttgc ccttgtcttg    1200

    ggccagatcc ctcccccacc tagtcactac tcccaggatc agccacccag ccctccatca    1260

    ggtgaaggac caactttggg agaaggggca gagctaccac tggctgtcca gtctcctcgg    1320

    ccttgctcca tctctgctct gactgagcag gtggtggaca cacttggcca gcatatggga    1380

    caaagacctc ctgtccctga gccttcccaa caggactcca catccacgga ccccaaaggt    1440

    ttggcccaac tttgatctca tcctcactaa actacagacc tggacctggg aaggcagaga    1500

    cagctttggc tgctaaggca gtcctagaga agatctgcgc tcttcagtaa ccatgtccat    1560

    gtgactggga aacagaaacc tgtgcaagag gacaggcgtc ttgctttagc ccaagcttac    1620

    attcttcctc tccctaaggc ctctggggag aagtgggttc cctgccatct cctttcccaa    1680

    cagaactcct cataggacct ttccctgctc acctcttgta ctctcataca gtattcaggg    1740

    accccaagtt aggggctatg ctcctgttgt ataatttcaa gccccccttt agaagttgca    1800

    gcatgctgag ttcaataaac cagtgatgag c                                   1831

    <210>4

    <211>73

    <212>DNA

    <213>人工序列

    <220>

    <223>用于转基因和瞬时离子通道表达的慢病毒载体双链克隆盒

    <400>4

    ggatcccgta cgataacttc gtatagcata cattatacga agttatcgta cgggcgcgcc    60

    cggaccggaa ttc                                                       73

    <210>5

    <211>76

    <212>DNA

    <213>人工序列

    <220>

    <223>5′loxP克隆盒

    <400>5

    aagcttcgta cgataacttc gtatagcata cattatacga agttatagaa acagggatcc    60

    tctagagcca ccatgg                                                    76

    <210>6

    <211>65

    <212>DNA

    <213>人工序列

    <220>

    <223>3′loxP克隆盒

    <400>6

    gcggccgcta attagttgaa taacttcgta tagcatacat tatacgaagt tatcgtacgg    60

    aattc                                                                65

    <210>7

    <211>283

    <212>DNA

    <213>人工序列

    <220>

    <223>大鼠TRPV1的探针

    <400>7

    atggagcaac gggctagctt agactcagag gagtctgagt ccccacccca agagaactcc    60

    tgcctggacc ctccagacag agaccctaac tgcaagccac ctccagtcaa gccccacatc    120

    ttcactacca ggagtcgtac ccggcttttt gggaagggtg actcggagga ggcctctccc    180

    ctggactgcc cttatgagga aggcgggctg gcttcctgcc ctatcatcac tgtcagctct    240

    gttctaacta tccagaggcc tggggatgga cctgccagtg tca                      283

    <210>8

    <211>195

    <212>DNA

    <213>人工序列

    <220>

    <223>大鼠P2X2的探针

    <400>8

    ggtgaaggac caactttggg agaaggggca gagctaccac tggctgtcca gtctcctcgg    60

    ccttgctcca tctctgctct gactgagcag gtggtggaca cacttggcca gcatatggga    120

    caaagacctc ctgtccctga gccttcccaa caggactcca catccacgga ccccaaaggt    180

    ttggcccaac tttga                                                     195

异源刺激门控离子通道及其使用方法.pdf_第1页
第1页 / 共79页
异源刺激门控离子通道及其使用方法.pdf_第2页
第2页 / 共79页
异源刺激门控离子通道及其使用方法.pdf_第3页
第3页 / 共79页
点击查看更多>>
资源描述

《异源刺激门控离子通道及其使用方法.pdf》由会员分享,可在线阅读,更多相关《异源刺激门控离子通道及其使用方法.pdf(79页珍藏版)》请在专利查询网上搜索。

体内或体外人工激活经遗传操作的特定靶细胞(或靶细胞群体)的方法和组合物,用异源刺激门控离子通道的触发激活所述细胞。所述刺激门控离子通道适宜为TRPV1、TRPM8或P2X2。导致所述离子通道开放或“门控”的刺激可以是物理刺激或化学刺激。物理刺激可以是加热或机械力,而化学刺激适宜为配体,例如对于TRPV1为辣椒素或对于P2X2为ATP,或者为“笼蔽配体”,例如光不稳定配体衍生物,在这种情况下,以光形。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 测量;测试


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1