一种控制自动传动装置的设备和方法 技术领域
本发明涉及一种控制自动传动装置的技术,该装置包括机械离合器和机械传动装置。特别的,本发明涉及一种当车辆在所谓坡上启动而发生溜车(moves backward)时保护机械离合器的技术。
背景技术
近年来,提出了自动传动装置(参见日本未审查专利公开文本第2001-165294号)。自动传动装置被设定为电子控制一个机械离合器和一个机械传动装置(这种传动装置以下被简称为“机械自动传动装置”),从而根据行驶条件自动改变排档(gear)到驱动状态。在机械自动传动装置中,由于从引擎到驱动轮的驱动力传动系统中没有液压离合器(变矩器,torque converter),驱动力传动装置效率很高,因此有可能改进油耗。此外,由于没有液压离合器所特有的滑动传感器(slipping sensation),也有可能提高驾驶性能。
有时候,当车辆在坡上启动时,刹车从启动待命状态被松开,传动装置被切换到前进状态并且机械离合器被释放,此时车辆可能因为重力而溜车。这时,如果没有注意到溜车而踩下油门踏板前进,由于传动装置的输入轴(input shaft)被颠倒,机械离合器在相对转速较高的状态被啮合。因此,有人担心这可能会损害机械离合器。相反地,在下坡时,当刹车从启动待命状态被松开时,车辆有可能由于重力而向前滑行。这时,如果踩下油门让车辆在速度很高时启动,机械离合器在转动装置输入轴转速高于引擎的转速的状态下被啮合。因此,不仅担心机械离合器受损,引擎也会过度旋转(over-revolved)。
为了防止这种不希望的情况发生,传统技术保护机械离合器的方法是,当车速在启动待命状态达到一个预定值时,及时把传动装置切换到空档。因此,在传动装置被切换至空档后操作油门和变速杆(shift lever)时,传动装置按照操作自动切换到驱动状态,立即开始驱动。
但是,由于换档按照油门和变速杆的操作来运行,当车辆在上坡时发生溜车时,机械离合器有时会在以前的相对转速高的状态被啮合。因此,担心机械离合器受损。并且,在下坡状态启动车辆时,担心这种不希望的情况会同样发生。
此外,一种传统的转速传感器通过利用一种电磁传感器(pick up)或霍耳元件探测齿轮的轮齿而检测转速。在这种情况下,由于这种转速传感器只能测定齿轮的轮齿,它只能测量转速的绝对值而不顾转动方向。结果,当需要利用转速传感器来确定传动装置的反向转动时,必须对于同一齿轮安装两个位置相位可改变的转速传感器。传动装置的反转必须从它们的输出信号地相位差来确定。然而,这种方法要求有空间来准确地安装两个转速传感器,并且需要有一个单独的电路来非常准确地处理信号。因此,这种方法成本高,并且控制软件的负担很重。
发明内容
因此,考虑到上述问题,本发明的目的在于提供一种自动传动装置的控制技术,该技术可以通过一种简单结构来确定传动装置的反转,防止车辆在所谓坡上启动发生溜车时传动装置被切换到驱动状态,从而保护机械离合器。
在本发明中,当车辆处于启动待命状态,并且车速大于或等于一个预定值时,传动装置切换到其中的空档并且机械离合器被啮合。这里,如果传动装置切换至空档,则驱动系统的惯性与传动装置分离。因此,即使机械离合器在此状态被啮合,也不必担心其受到损伤。根据机械离合器啮合过程中主动侧或从动侧的转动波动,通过接受驱动轮的输入,可以确定车辆是否已经在所谓坡上启动时发生溜车以及传动装置是否处于反转中。当传动装置处于反转中时,举例来说,即使司机踩下油门或通过操纵变速杆来输入换档指令,传动装置也会被阻止切换到驱动状态。相应地,当车辆在所谓坡上启动时发生溜车时,传动装置被阻止切换到驱动状态。因此,机械离合器无法在相对转速较高的状态下被啮合,从而得到保护。另一方面,由于根据机械离合器啮合过程中主动侧或从动侧的转动波动主来确定传动装置是否处于反转中,有可能通过简单的结构来确定反转是否发生。
此外,当啮合机械离合器时,主动侧或从动侧的转速变化率大于或等于预定的最大值以及小于或等于预定的最小值,最好确定传动装置处于反转中。也就是说,当传动装置处于反转时,在啮合机械离合器的过程中反转在从动侧被消除。因此,在主动侧或从动侧的转动起伏变化率显著下降。反转在从动侧被消除后,主动侧或从动侧的转速变化率显著增加,随后变为一个恒定值。因此,通过检测转速变化率的显著增加或减小,有可能确定传动装置是否处于反转中。
除了上述的反转确定,也可以根据在啮合机械离合器的过程中,从动侧的转速小于或等于一个预定值来确定传动装置是否处于反转中。也就是说,如果机械离合器在传动装置反转时被啮合,从动侧的反转逐渐减小以至于旋转方向开始与主动侧相同。此时,由于转速被确定为一个绝对值,从动侧的转速即刻为零。相应地,通过检测到从动侧的转速小于或等于一个预定值,有可能确定传动装置是否处于反转中。
此外,也希望确定,当传动装置被切换到驱动状态并且机械离合器被脱开时,车辆处于启动待命状态。也就是说,当司机进行操作以启动车辆时,他或她踩下离合器踏板来释放离合器,进行一系列操作把传动装置切换到驱动状态。结果,通过确定反映司机操作的启动待命状态所作的处理,有可能按照司机的意愿来执行换档控制。
另外,如果传动装置在车辆发动时没有被反转,则希望根据一个启程操作来把传动装置切换到驱动状态。通过这样的操作,当车辆在所谓坡上启动没有发生溜车时,传动装置被切换到驱动状态。因此,可能使车辆平稳地从启动切换到正常驾驶状态。
另外,当油门踏板以一个大于或等于预定角度的角度被踩下时,或者对传动装置发出换档指令时,最好可以确定启程操作被执行。通过这样的操作,当车辆由于重力而向坡下运动时,可以按照司机的意愿立即把车开走。
此外,当传动装置处于反转时,关于这一事实的信息最好被处理。这样的话,司机就能意识到车辆在所谓坡上启动中溜车,并采取诸如踩下刹车踏板等操作来制止溜车。
附图说明
图1是一个装有本发明的自动传动装置的控制装置的汽车的示意图。
图2是上述传动装置的框图。
图3是换档控制相关的主程序流程图。
图4是换档控制相关的子程序流程图。
图5是解释确定传动装置反转原理的说明示意图。
具体实施方式
以下是结合附图做出的关于本发明的详细的说明。
图1显示了一个装有本发明的自动传动装置的控制装置的的汽车的结构。
一个传动装置20通过机械离合器(以下简称为“离合器”)12安装在一个引擎10上。如图2所示,传动装置20包括一个具有输入侧和输出侧的主传动装置20A。一个分离器(splitter)20B和一个排档(range)20C分别连接在输入侧和输出侧,作为子传动装置来切换到至少一个高速齿轮和一个低速齿轮。
以下为传动装置20的结构说明。
一个用于切换分离器20B至一个高速齿轮的分离器齿轮Zm5被安装,它可以在输入引擎10的输出的输入轴22上自由转动,而一个包含同步啮合机构24的同步轴24A被固定在输入轴22的顶端。一个驱动齿轮Zm4、一个第三变速齿轮Zm2、一个第一变速齿轮Zm1和一个换向齿轮ZmR分别构成主传动装置20A的换档状态。它们被安装在与输入轴22同轴的一个主轴26上,因此它们可以自由转动,而一个用于切换排档20C至高速齿轮的排档高齿轮Zr1被固定在主轴26的顶端。包含同步啮合机构24的同步器毂24A被固定在主轴26上,分别位于驱动齿轮Zm4与第三变速齿轮Zm3、第二变速齿轮Zm2与第一变速齿轮Zm1以及第一变速齿轮Zm1与换向齿轮ZmR之间。
分别与分离器齿轮Zm5、驱动齿轮Zm4、第三变速齿轮Zm3、第二变速齿轮Zm2和第一变速齿轮Zm1相啮合一个反向分离器齿轮Zc5、一个反向驱动齿轮Zc4、一个反向第三变速齿轮Zc3、一个反向第二变速齿轮Zc2和一个反向第一变速齿轮Zc1被固定在与输入轴22和主轴26平行的主反向轴28上。此外,一个通过换向空转齿轮ZmR1与换向齿轮ZmR啮合的反向换向齿轮ZcR被固定在主反向轴28上。
一个用于切换排档20C至一个低速齿轮的排档低速齿轮Zr2被安装在与主轴26同轴的输出轴30上,这样它可以自由转动,而一个包含同步啮合机构24的同步器毂24A被固定在输出轴30的一端。总是与排档高速齿轮Zr1与排档低速齿轮Zr2相啮合的一个排档反向高速齿轮Zcr1和一个排档反向低速齿轮Zcr2被固定在与输出轴30平行的排档反向轴32上。
此外,一个在促动器(actuator)(图中未示出)作用下可以沿轴向自由向前后滑动的同步器轴套24B,通过在每一个组成同步啮合机构24的同步器毂24A的外围的花键(spline)相连接。通过向一个需同步的齿轮滑动同步器轴套24B,一个同步器环(图中未示出)被压在需同步的齿轮的摩擦表面,同步齿轮和需被同步的齿轮之间的相对转动被摩擦力消除,从而二者可以同步。
在具有这种结构的传动装置20中,用主传动装置20A和排档20C来设定6个换档级(stage)。12个前进换档级和两个反向级通过使用分离器20B的半级而变换每一个换档级来设定。
引擎1O安装有一个燃料喷射泵42。该泵可以通过一个包含微型计算机的引擎控制部件40和一个检测引擎转速的引擎转速传感器44来控制燃料喷射量。此外,离合器12有一个离合器增压器46的输出轴,与之相连作为一个离合器驱动促动器。一个由冲程量来检测从离合器啮合状态至释放状态中的任一情形的离合器冲程传感器48被安装在上面。
另一方面,传动装置20安装有一个主促动器54、一个分离器促动器56和一个排档促动器58,它们通过电磁阀52的气动压力分别切换主传动装置20A、分离器20B和排档20C。该电磁阀的断开和闭合由包含微型计算机的传动控制部件50控制。此外,传动装置20安装有一个主位置传感器60、一个分离器位置传感器62和一个排档位置传感器64,它们可以检测主传动装置20A、分离器20B和排档20C的换档状态。此外,传动装置20安装有一个车速传感器66(车速测定装置),它根据输出轴30的转速来测定车速;一个主转速传感器68,用来检测主反向轴28的转速和一个排档转速传感器70,用来检测排档反向轴32的转速。
司机的驾驶室里安装有用于探测油门72踩下角度的油门打开传感器74和一个对传动装置20发出换档指令的变速杆76。一个12速开关76A安装在变速杆76上,用于确定分离器20B是否被切换到12种换档状态。此外,驾驶室还安装有一个监视器78,用于显示传动装置20的换档级。
油门打开传感器74向引擎控制部件40发出一个信号,而通过油门72踩下的角度来控制燃料喷射泵42。另一方面,来自于离合器冲程传感器48、主位置传感器60、分离器位置传感器62、排档位置传感器64、车速传感器66、主转速传感器68、排档转速传感器70和变速杆76的信号被输入到传动控制部件50中,分别控制电磁阀52和监视器78,从而在与引擎控制部件40进行相互联络的同时执行自动换档操作或手动换档操作。
传动控制部件50与引擎转速传感器44、离合增压器46、离合冲程传感器48、电磁阀52、主促动器54、分离器促动器56、排档促动器58、主位置传感器60、车速传感器66、主转速传感器68、油门打开传感器74、变速杆76和监视器78一起工作,来实现启动待命状态测定装置、第一换档控制装置、反转确定装置、换档阻止装置、启动操作检测装置、第二换档控制装置和告知装置。
图3所示为传动装置控制部件50中,以预定的间隔反复进行的主程序操作。
步骤1(简称为“S1”,下同)确定了车辆是否处于启动待命状态。即,根据来自于分离器位置传感器62、排档位置传感器64和主位置传感器60的信号,可以确定传动装置20是否处于驱动状态(前进状态或后退状态)。此外,根据来自于离合器冲程传感器48的信号,可以确定离合器12是否被释放。如果传动装置20处于驱动状态并且离合器12被释放,则可以确定车辆处于启动待命状态。如果车辆被确定为处于启动待命状态,则操作进行至步骤2(是)。如果车辆被确定为未处于启动待命状态,则操作终止(否)。步骤1的处理对应于启动待命状态确定装置。
根据来自于车速传感器66的信号,步骤2确定车速是否大于或等于预定值V0。如果车速大于或等于预定值V0,则操作进行至步骤3(是)。如果车速小于预定值V0,则操作终止(否)。
在步骤3中,传动装置20被切换至空档,如图4所示的一个子程序(后文中将详细描述)被调用,来确定传动装置20是否被反转。
在步骤4中,根据油门打开传感器74的信号可以确定油门踏板72是否被踩下至一个大于或等于预定角度θ0的角度。如果油门踏板72被踩下至于或等于预定角度θ0的角度,则操作进行至步骤6(是)。否则,操作进行至步骤5(否)。
在步骤5中,根据变速杆76的信号可以确定换档指令是否被输入。如果换档指令被输入,则操作进行至步骤6(是),否则,操作回到步骤4(否)。步骤4和步骤5的一系列处理对应于启动操作确定装置。
在步骤6中,根据子程序设置的反转标记可以确定传动装置20是否被反转,即传动装置20是否因收到由于车辆在坡上启动发生溜车而由驱动轮发出的指令被反转。如果传动装置被反转(反转标记=1),则操作进行至步骤8(是)。如果传动装置未被反转(反转标记=0),则操作进行至步骤7(否)。步骤的处理对应于换档阻止装置。
在步骤7中,因为传动装置20没有被反转,然后根据油门踏板72的踩下状态或传统方法中来自变速杆76的指令,传动装置20被转换至该行驶状态下的最佳啮合级,并且控制前进至步骤9。步骤7的处理对应的是第二换档控制装置。
在步骤8中,根据车速传感器66的信号,确定车速是否小于一个预定值(停止确定车速)V1。如果车速小于该预定值V1,则操作进行至步骤9(是),而如果车速大于等于预定值V1,则操作返回至步骤4(否)。
在步骤9中,反转标记被重置。
图4展示了切换传动装置20至空档,并且确定传动装置是否反转的子程序。
在步骤11中,主促动器54经由电磁阀52操作将传动装置切换至空档。
在步骤12中,负标记和正标记都被设置为零。
在步骤13中,离合器增压器46经由电磁阀52操作,开始啮合离合器12。
在步骤14中,根据引擎转速传感器44的信号,计算出引擎速度变化率(转动加速度)ΔNe。
在步骤15中,确定引擎速度变化率ΔNe是否小于等于负临界值(一个预定的下限)。如果引擎速度变化率ΔNe小于等于负临界值,则操作进行至步骤16(是),并且负标记设置为1。相反,如果引擎速度变化率ΔNe大于负临界值,则操作进行至步骤17(否)。
在步骤17中,确定引擎速度变化率ΔNe是否大于等于正临界值(一个预定的上限)。如果引擎速度变化率ΔNe大于等于正临界值,则操作进行至步骤18(是),并且正标记设置为1。相反,如果引擎速度变化率ΔNe小于正临界值,则操作进行至步骤19(否)。
在步骤19中,根据离合器冲程传感器48的信号,确定离合器12是否啮合完毕。如果离合器12已经啮合完毕,则操作进行至步骤20(是),而要是离合器12没有啮合完毕,则操作进行至步骤14(否)。
在这里,步骤11、步骤13以及步骤19的一系列处理对应的是第一换档控制装置。
步骤20确定正标记和负标记是否同时为1,也就是说,在啮合离合器12的过程中,引擎速度变化率ΔNe是否小于等于负临界值并且大于等于正临界值。如果正标记和负标记同时为1,则操作行至步骤21(是),并且反转标记被设置为1,之后操作返回到主程序。相反,如果正标记和负标记都不为1,则操作返回主程序(否)。从步骤14到步骤18、步骤20和步骤21的一系列处理对应的是反转确定装置。
根据上述处理,在传动装置20调至驱动状态并且离合器12处于脱离中的启动待命状态下,如果车速大于等于一个预定值V0,则传动装置20转换至空档并且离合器12啮合。在啮合离合器12的过程中,确定引擎速度变化率ΔNe是否大于等于正临界值并且小于等于负临界值。在此时,由于传动装置20调至空档,即使传动装置20正在反转,离合器12需要承受的惯性也很小,因此不必担心会损坏。并且,如果引擎速度变化率ΔNe大于等于正临界值并且小于等于负临界值,则确定车辆正在所谓的坡上启动中溜车,并且传动装置20接受到来自驱动轮的输入信号而反转。因此,用来表明传动装置是否反转的反转标记被设置为1。
在这里将描述可用在所述用来确定传动装置20的反转处理中的原理。
图5解释出在传动装置20转换至空档后啮合离合器12的过程中,当传动装置20反转时,引擎速度Ne,引擎速度变化率ΔNe以及主反向轴转速Nc是怎样变化的。
当离合器12在传动装置20处在反转状态下开始啮合时,传动装置20的反转由于啮合状态生效而逐渐被抵消。此时,由于离合器的从动侧反转,在离合器驱动侧发动机速度Ne逐渐下降。当传动装置20的反转被抵消后,引擎速度Ne增大到原来的状态。至于引擎速度变化率ΔNe,当引擎速度下降时,变化率ΔNe也随之下降,并且在传动装置20的反转被抵消的时刻变化率ΔNe达到最小值。另一方面,当传动装置20的反转被抵消后,变化率ΔNe随着发动机速度的增大而增大,到离合器完全啮合时达到最大值。因此,在啮合离合器12的过程中,当发现引擎速度变化率ΔNe小于等于一个负临界值,或者大于等于一个正临界值时,即可确定传动装置20处于反转中。
除了引擎速度变化率ΔNe,也可通过将主反向轴28的转速Nc作为驱动侧转速来确定传动装置20的反转。也就是说,既然主转速传感器68只能检测转速的绝对值而而不管转动的方向,主反向轴28的转速Nc在反转被抵消的那一刻变成零,因此,它会表现出图5所示的特征,并且可以通过检测转速Nc小于或等于临界值从而确定传动装置20处于反转中。此外,除了转速Nc,还可通过和引擎速度变化率ΔNe表现出同样特征的主反向轴28的变化率ΔNc来确定反转。
当司机将油门踩下至大于预定角度θo以发动车辆,或操纵排档76以下达换档指令时,如果反转标记为零,则传动装置20切换到了此操作下的最佳驱动级。相反,如果反转标记为1,也就是说,传动装置处于反转中,则传动装置20被阻止换齿轮。
相应地,当车辆在所谓的坡上启动中发生溜车时,传动装置20被阻止转换成驱动状态。因此,离合器12不能被啮合到一个相对转速较高的状态中,从而保护了离合器。另一方面,当车辆没有发生溜车时,传动装置20根据司机的操作被调至一个最佳驱动级。因此可以像平常一样立即启动。
另外,当确定传动装置20反转时,希望可以通过一个类似蜂鸣器、语音、警示灯之类的报告装置来通知司机这一情况。这样的话,司机就能识别车辆正在所谓的坡上启动中溜车,并且能够采取例如踩刹车这样的操作来制止溜车。也可以用监视器78作为告知装置。
如上所述,根据本发明的用来控制自动传动装置的设备或方法可以通过一种非常简易的构造来确定传动装置的反转,并且可以在所谓的坡上启动溜车的情况下保护机械离合器。因此,可确保本发明具有极高的实用性。