一种水下声纳图像的小目标检测方法.pdf

上传人:g**** 文档编号:6099243 上传时间:2019-04-11 格式:PDF 页数:8 大小:580.37KB
返回 下载 相关 举报
摘要
申请专利号:

CN201610629838.6

申请日:

2016.08.03

公开号:

CN106296603A

公开日:

2017.01.04

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):G06T 5/00申请日:20160803|||公开

IPC分类号:

G06T5/00; G06T7/00

主分类号:

G06T5/00

申请人:

哈尔滨工程大学

发明人:

郑丽颖; 田凯

地址:

150001 黑龙江省哈尔滨市南岗区南通大街145号哈尔滨工程大学科技处知识产权办公室

优先权:

专利代理机构:

代理人:

PDF下载: PDF下载
内容摘要

本发明属于目标检测领域,具体涉及一种水下声纳图像的小目标检测方法。本发明包括:初始化:令二值化阈值th=0.8,阴影方向为θ度,令I0=I;令SE1表示目标模板,SE1是尺寸为3×3像素的正方形模板,令SE0表示背景模板,SE0是尺寸为25×25像素的正方形模板的边缘区域。本发明所提出的目标检测模板简单;检测速度快;抗噪声能力强;无需训练数据。

权利要求书

1.一种水下声纳图像的小目标检测方法,其特征在于,包括如下步骤:
(1)初始化:令二值化阈值th=0.8,阴影方向为θ度,令I0=I,其中I为H×W像素的输入
声纳图像矩阵;
(2)令SE1表示目标模板,SE1是尺寸为3×3像素的正方形模板;令SE0表示背景模板,SE0
是尺寸为25×25像素的正方形模板的边缘区域;
(3)计算图像I0的亮度均值,用m0表示;令t=m0…255,对于每一个t,计算二值图像Bt:

其中,h=1…H,w=1…W;
(4)分别计算前景模板匹配率poFore和背景模板匹配率poBack:
poFore(t)=conv(Bt,SE1)/9
poBack(t)=conv(1-Bt,SE0)/96
其中,t=m0…255,conv(.)表示卷积运算;
(5)计算图像I0的占有率击中-击不中变换poHMT:
<mrow> <mi>p</mi> <mi>o</mi> <mi>H</mi> <mi>M</mi> <mi>T</mi> <mo>=</mo> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <mi>m</mi> <mn>0....255</mn> </mrow> </munder> <mo>{</mo> <mi>min</mi> <mo>{</mo> <mi>p</mi> <mi>o</mi> <mi>F</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>p</mi> <mi>o</mi> <mi>B</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>}</mo> </mrow>
其中,min{.}为最小值函数,max{.}为最大值函数;
(6)将步骤(5)的poHMT做二值化处理:

其中,h=1…H,w=1…W,poHMT(h,w)表示二维矩阵poHMT在(h,w)处的取值,poBW(h,w)
表示poBW在(h,w)处的取值;
(7)利用形态学膨胀、腐蚀运算去除poBW中的细小噪声点;
(8)令poBW1表示去噪之后的poBW,利用8-连接区域标记方法标记poBW1中的连通区域,
分别记录各连通区域的外接矩形的位置、长、宽;
(9)令I0=255-I,执行步骤(3)~步骤(7),并用poBW0表示去噪之后的poBW,利用8-连接
区域标记方法标记poBW0中的连通区域,分别记录各连通区域的外接矩形的位置、长、宽;
(10)以poBW1中的一个连通区域R1的外接矩形为依据,确定出搜索区域,;将此搜索区域
映射到poBW0的相应区域,并用RS表示poBW0中的这个搜索区域;
(11)在poBW0的RS区域中进行搜索,如果能够找到一个连通区域R0,则将poBW1中的连通
区域R1标记为目标,同时删除区域R0;否则,如果在poBW0的RS中不存在连通区域,则将poBW1
中的连通区域R1标记为非目标。
(12)重复步骤(10)~步骤(11),检查poBW1中的下一个连通区域,直至遍历poBW1的所有
连通区域。

说明书

一种水下声纳图像的小目标检测方法

技术领域

本发明属于目标检测领域,具体涉及一种水下声纳图像的小目标检测方法。

背景技术

水下声纳系统除了需要胜任极端工作环境,还需具有高效的目标检测和识别能
力,能够准确分辨沉底小目标和水中小目标。然而,由于声纳系统在某时刻接收的回波,是
水下各反射声波的矢量和,系统记录的回波幅值呈抖动变化,形成声图时相应的产生斑点
噪声,影响对声图的解释。虽然随着成像声纳技术日趋成熟,侧扫声纳可提供高分辨率图
像,但是与光学图像相比,侧扫声纳图像仍然具有成像质量差、目标与背景之间对比度低等
问题。特别是对于水下小目标检测问题,由于信道噪声和散射噪声的影响,使得现有的目标
检测技术很难达到满意的结果。

利用图像处理技术和模式识别技术从水下声纳数据中检测小目标自上世纪90年
代以来已取得了长足进步。这些方法大体上可分为两类:有监督方法和无监督方法。其中有
监督方法需要大量训练数据,算法性能高度依赖训练数据的性质。这类方法主要包括K-近
邻神经网络、最佳辨识滤波分类器、贝叶斯分类器、主成分分析等。另一方面,无监督方法无
需特别的训练数据,适用于相当宽范围的输入数据,并不针对特别训练数据优化。此类方法
包括马尔可夫随机场、统计蛇模型、形态学处理等技术。此外,为了进一步提高算法性能,也
有学者将各种不同的检测/识别技术相融合,主要采用的融合技术包括:将各种算法的检
测/识别结果采用逻辑融合(如布尔与、或运算)、对数似然比测试算法、线性加权融合等等。

本发明利用具有较强抗噪能力的形态学变换——占有率击中-击不中变换
(Percentage Occupancy Hit-or-Miss Transform,POHMT),实现一种快速、准确的侧扫声
纳图像小目标检测算法。

发明内容

本发明的目的在于提供一种基于占有率击中-击不中变换(Percentage
Occupancy Hit-or-Miss Transform,POHMT)的水下声纳图像的小目标检测方法。

本发明的目的是这样实现的:

(1)初始化:令二值化阈值th=0.8,阴影方向为θ度,令I0=I,其中I为H×W像素的
输入声纳图像矩阵;

(2)令SE1表示目标模板,SE1是尺寸为3×3像素的正方形模板,令SE0表示背景模
板,SE0是尺寸为25×25像素的正方形模板的边缘区域;

(3)计算图像I0的亮度均值,用m0表示,令t=m0…255,对于每一个t,计算二值图像
Bt:


其中,h=1…H,w=1…W;

(4)分别计算前景模板匹配率poFore和背景模板匹配率poBack

poFore(t)=conv(Bt,SE1)/9

poBack(t)=conv(1-Bt,SE0)/96

其中,t=m0…255,conv(.)表示卷积运算,对于固定的t值,poFore(t)和poBack
(t)均为H×W矩阵;

(5)计算图像I0的占有率击中-击不中变换poHMT

<mrow> <mi>p</mi> <mi>o</mi> <mi>H</mi> <mi>M</mi> <mi>T</mi> <mo>=</mo> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <mi>m</mi> <mn>0....255</mn> </mrow> </munder> <mo>{</mo> <mi>min</mi> <mo>{</mo> <mi>p</mi> <mi>o</mi> <mi>F</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>p</mi> <mi>o</mi> <mi>B</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>}</mo> </mrow>

其中,min{.}为最小值函数,min{poFore(t),poBack(t)}表示对于一个固定的t
值,取前poFore(t)和poBack(t)二者之中较小的一个;max{.}为最大值函数;poHMT为H×W
矩阵;

(6)将步骤(5)的poHMT做二值化处理


其中,h=1…H,w=1…W,poHMT(h,w)表示二维矩阵poHMT在(h,w)处的取值,poBW
为二值矩阵,poBW(h,w)表示poBW在(h,w)处的取值;

(7)利用形态学膨胀、腐蚀运算去除poBW中的细小噪声点;

(8)令poBW1表示去噪之后的poBW,利用8-连接区域标记方法标记poBW1中的连通区
域,分别记录各连通区域的外接矩形的位置、长、宽;

(9)令I0=255-I,执行步骤(3)~步骤(7),并用poBW0表示去噪之后的poBW,利用8-
连接区域标记方法标记标记poBW0中的连通区域,分别记录各连通的外接矩形框的位置、
长、宽;

(10)以poBW1中的一个连通区域R1的外接矩形为依据,确定出搜索区域,;将此搜索
区域映射到poBW0的相应区域,并用RS表示poBW0中的这个搜索区域;

(11)在poBW0的RS区域中进行搜索,如果能够找到一个连通区域R0,则将poBW1中的
连通区域R1标记为目标,同时删除区域R0;否则,如果在poBW0的RS中不存在连通区域,则将
poBW1中的连通区域R1标记为非目标。

(12)重复步骤(10)~步骤(11),检查poBW1中的下一个连通区域,直至遍历poBW1的
所有连通区域。

本发明的有益效果在于:1)所提出的目标检测模板简单;2)检测速度快;3)抗噪声
能力强;4)无需训练数据。

附图说明

图1是侧扫声纳图像中的目标及其阴影示意图;

图2是目标模板示意图;

图3是背景模板示意图;

图4是搜索区域示意图。

具体实施方式

下面结合附图对本发明做进一步描述。

本发明提出一采用的技术方案是:1)初始化:设置检测阈值、确定目标和背景模板
尺寸、设置阴影方向;2)对原声纳图像进行POHMT运算,并将运算结果做二值化处理,得到目
标二值图像;3)对原声纳图像做反色处理;4)对反色之后的声纳图像做POHMT运算,并将运
算结果做二值化处理,得到阴影二值图像;5)利用目标二值图像、阴影二值图像以及阴影方
向,标记出小目标。

设I为输入声纳图像矩阵,尺寸为H×W像素,I(h,w)表示(h,w)位置处图像的亮度,
其中h=1,2,…,H,w=1,2,…,W;并且图像I中包含多个高亮度目标区域,每个目标均具有
相应的低亮度阴影区域,如图1所示。

本发明所提出的目标检测方法的具体实现步骤如下:

步骤1,初始化:令二值化阈值th=0.8,阴影方向为θ度,令I0=I。

步骤2,令SE1表示目标模板,这里SE1是尺寸为3×3像素的正方形模板,如图2所示;
令SE0表示背景模板,这里SE0是尺寸为25×25像素的正方形模板的边缘区域,如图3所示,图
3中,灰色区域的大小为23×23像素,其像素值为0,边缘白色区域的像素值为1。

步骤3,计算图像I0的亮度均值,用m0表示;令t=m0…255,对于每一个t,根据公式
(1)计算二值图像Bt:


其中,h=1…H,w=1…W。

步骤4,利用公式(2)计算前景模板匹配率poFore,利用公式(3)计算背景模板匹配
率poBack:

poFore(t)=conv(Bt,SE1)/9 (2)

poBack(t)=conv(1-Bt,SE0)/96 (3)

其中,t=m0…255,conv(.)表示卷积运算,对于固定的t值,poFore(t)和poBack
(t)均为H×W矩阵。

步骤5,利用公式(4)计算图像的占有率击中-击不中变换poHMT:

<mrow> <mi>p</mi> <mi>o</mi> <mi>H</mi> <mi>M</mi> <mi>T</mi> <mo>=</mo> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mi>t</mi> <mo>=</mo> <mi>m</mi> <mn>0....255</mn> </mrow> </munder> <mo>{</mo> <mi>min</mi> <mo>{</mo> <mi>p</mi> <mi>o</mi> <mi>F</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>p</mi> <mi>o</mi> <mi>B</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>

其中,min{.}为最小值函数,min{poFore(t),poBack(t)}表示对于一个固定的t
值,取poFore(t)和poBack(t)二者之中较小的一个;max{.}为最大值函数;poHMT为H×W矩
阵。

步骤6,利用公式(5)将步骤5的poHMT做二值化处理


其中,h=1…H,w=1…W,poHMT(h,w)表示二维矩阵poHMT在(h,w)处的取值,poBW
为二值矩阵,poBW(h,w)表示poBW在(h,w)处的取值,

步骤7,利用形态学膨胀、腐蚀运算去除poBW中的细小噪声点。

步骤8,令poBW1表示去噪之后的poBW,利用8-连接区域标记方法标记poBW1中的连
通区域,分别记录各连通区域的外接矩形的位置、长、宽。

步骤9,令I0=255-I,执行步骤3~步骤7,并用poBW0表示去噪之后的poBW,利用8-
连接区域标记方法标记标记poBW0中的连通区域,分别记录各连通区域的外接矩形框的位
置、长、宽。

步骤10,以poBW1中的一个连通区域R1的外接矩形为依据,确定搜索区域,如图4所
示,其中w=5,l=5×w0,w0为连通区域R1的外接矩形宽度。将此搜索区域映射到poBW0的相
应区域,并用RS表示poBW0中的这个搜索区域。

步骤11,在poBW0的RS区域中进行搜索,如果能够找到一个连通区域(假设用R0表示
这个连通区域),则将poBW1中的连通区域R1标记为目标,同时删除区域R0;否则,如果在
poBW0的RS中不存在连通区域,则将poBW1中的连通区域R1标记为非目标。

步骤12,重复步骤10~步骤11,检查poBW1中的下一个连通区域,直至遍历poBW1的
所有连通区域。

一种水下声纳图像的小目标检测方法.pdf_第1页
第1页 / 共8页
一种水下声纳图像的小目标检测方法.pdf_第2页
第2页 / 共8页
一种水下声纳图像的小目标检测方法.pdf_第3页
第3页 / 共8页
点击查看更多>>
资源描述

《一种水下声纳图像的小目标检测方法.pdf》由会员分享,可在线阅读,更多相关《一种水下声纳图像的小目标检测方法.pdf(8页珍藏版)》请在专利查询网上搜索。

本发明属于目标检测领域,具体涉及一种水下声纳图像的小目标检测方法。本发明包括:初始化:令二值化阈值th0.8,阴影方向为度,令I0I;令SE1表示目标模板,SE1是尺寸为33像素的正方形模板,令SE0表示背景模板,SE0是尺寸为2525像素的正方形模板的边缘区域。本发明所提出的目标检测模板简单;检测速度快;抗噪声能力强;无需训练数据。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1