反馈电压采样电路、反馈电压消隐电路及方法.pdf

上传人:1*** 文档编号:5779944 上传时间:2019-03-18 格式:PDF 页数:23 大小:1.71MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410034017.9

申请日:

2014.01.24

公开号:

CN103715898A

公开日:

2014.04.09

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):H02M 3/28申请日:20140124|||公开

IPC分类号:

H02M3/28; G01R19/10

主分类号:

H02M3/28

申请人:

矽力杰半导体技术(杭州)有限公司

发明人:

黄秋凯; 胡志亮; 徐孝如; 白永江

地址:

310012 浙江省杭州市文三路90号东部软件园科技大厦A1501

优先权:

专利代理机构:

北京成创同维知识产权代理有限公司 11449

代理人:

蔡纯;张靖琳

PDF下载: PDF下载
内容摘要

本发明涉及反馈电压采样电路、反馈电压消隐电路及方法。所述反馈电压消隐电路包括消隐时间控制电路和消隐滤波电路;消隐时间控制电路用于根据表征负载状态的电压参量生成消隐时间控制信号;消隐滤波电路连接在反馈电压输入端和消隐输出端之间,用于根据消隐时间控制信号在对应的消隐时间区间内输出随反馈电压同步变化的第一电压信号,在消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。本发明还公开了对应的反馈电压消隐方法和应用所述反馈电压消隐电路的反馈电压采样电路。本发明根据负载状态设置消隐时间,既可以有效防止反馈电压误采样,还可以避免电路在空载或轻载的损耗。

权利要求书

权利要求书
1.  一种反馈电压消隐电路,用于对原边控制的隔离式变换器的反馈电压进行消隐,所述反馈电压消隐电路包括消隐时间控制电路和消隐滤波电路;
所述消隐时间控制电路用于根据表征负载状态的电压参量生成消隐时间控制信号,所述消隐时间控制信号指示随所述表征负载状态的电压参量变化的消隐时间区间;
所述消隐滤波电路连接在反馈电压输入端和消隐输出端之间,用于根据所述消隐时间控制信号在对应的消隐时间区间内输出随反馈电压同步变化的第一电压信号,在消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。

2.  根据权利要求1所述的反馈电压消隐电路,其特征在于,所述消隐时间控制电路包括充电电流源、压控电流源、充电电容、放电开关和消隐比较器;
所述充电电容、所述放电开关和所述压控电流源并联连接在充电电压输出端和接地点之间,所述放电开关由反馈电压过零点或功率开关控制信号下降沿相对应的控制脉冲控制导通;所述压控电流源由所述表征负载状态的电压参量控制;
所述充电电流源连接到所述充电电压输出端,用于对所述充电电容充电;
所述消隐比较器的输入端分别与所述充电电压输出端和第一参考电压连接,所述消隐比较器的输出端输出所述消隐时间控制信号。

3.  根据权利要求2所述的反馈电压消隐电路,其特征在于,所述消隐滤波电路包括消隐开关、滤波电阻和滤波电容;
所述消隐开关与所述滤波电阻并联连接在反馈电压输入端和所述消隐输出端之间;
所述滤波电容连接在所述消隐输出端和接地点之间;
所述消隐开关由所述消隐时间控制信号控制,在消隐时间区间内导通,在消隐时间区间外关断。

4.  根据权利要求2所述的反馈电压消隐电路,其特征在于,所述消隐滤波电路包括消隐开关、滤波电阻、第一滤波电容和第二滤波电容;
所述滤波电阻串联连接在所述反馈电压输入端和所述消隐输出端之间;
所述第一滤波电容连接在所述消隐输出端和接地点之间;
所述第二滤波电容和所述消隐开关串联连接在所述消隐输出端和接地点之间;
所述消隐开关由所述消隐时间控制信号控制,在消隐时间区间内关断,在消隐时间区间外导通。

5.  根据权利要求1所述的反馈电压消隐电路,其特征在于,所述表征负载状态的电压参量为电压控制环路的输出电压或原边电流检测信号的峰值信号。

6.  一种反馈电压消隐电路,用于对原边控制的隔离式变换器的反馈电压进行消隐,所述反馈电压消隐电路包括消隐时间控制电路和消隐滤波电路;
所述消隐时间控制电路用于根据表征负载状态的电压参量生成第一消隐时间控制信号和第二消隐时间控制信号,所述第一消隐时间控制信号和所述第二消隐时间控制信号分别指示随所述表征负载状态的电压参量变化的第一消隐时间区间和第二消隐时间区间,所述第一消隐时间区间和第二消隐时间区间具有相同的起始时刻,且所述第二消隐时间区间大于所述第一消隐时间区间;
所述消隐滤波电路连接在反馈电压输入端和消隐输出端之间,用于根据所述消隐时间控制信号在第一消隐时间区间内关断所述反馈电压输入端和所述消隐输出端之间的电连接,在第一消隐时间区间外、第二消隐时间区间内输出随反馈电压同步变化的第一电压信号,在第二消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。

7.  根据权利要求6所述的反馈电压消隐电路,其特征在于,所述消隐时间控制电路包括充电电流源、压控电流源、充电电容、放电开关、第一消隐比较器和第二消隐比较器;
所述充电电容、所述放电开关和所述压控电流源并联连接在充电电 压输出端和接地点之间,所述放电开关由反馈电压过零点或功率开关控制信号下降沿相对应的控制脉冲控制导通;所述压控电流源由所述表征负载状态的电压参量控制;
所述充电电流源连接到充电电压输出端,用于对所述充电电容充电;
所述第一消隐比较器的输入端分别与所述充电电压输出端和第二参考电压连接,所述第一消隐比较器的输出端输出第一消隐时间控制信号;
所述第二消隐比较器的输入端分别与所述充电电压输出端和第三参考电压连接;所述第二消隐比较器的输出端输出第二消隐时间控制信号;
所述第二参考电压小于所述第三参考电压。

8.  根据权利要求7所述的反馈电压消隐电路,其特征在于,所述消隐滤波电路包括第一消隐开关、第二消隐开关、滤波电阻和滤波电容;
所述滤波电容连接在所述消隐输出端和接地点之间;
所述第二消隐开关与所述滤波电阻并联连接组成通道选择电路;所述通道选择电路与所述第一消隐开关串联连接在所述反馈电压输入端和所述消隐输出端之间;
所述第一消隐开关由所述第一消隐时间控制信号控制,在第一消隐时间区间内关断,在第一消隐时间区间外导通;
所述第二消隐开关由所述第二消隐时间控制信号控制,在第二消隐时间区间内导通,在第二消隐时间区间外关断。

9.  根据权利要求7所述的反馈电压消隐电路,其特征在于,所述消隐滤波电路包括第一消隐开关、第二消隐开关、滤波电阻、第一滤波电容和第二滤波电容;
所述滤波电阻和所述第一消隐开关串联连接在所述反馈电压输入端和所述消隐输出端之间;
所述第一滤波电容连接在所述消隐输出端和接地点之间;
所述第二滤波电容和所述第二消隐开关串联连接在所述消隐输出端和接地点之间;
所述第一消隐开关由所述第一消隐时间控制信号控制,在第一消隐 时间区间内关断,在第一消隐时间区间外导通;
所述第二消隐开关由所述第二消隐时间控制信号控制,在第二消隐时间区间内关断,在第二消隐时间区间外导通。

10.  根据权利要求6所述的反馈电压消隐电路,其特征在于,所述表征负载状态的电压参量为电压控制环路的输出电压或原边电流检测信号的峰值信号。

11.  一种反馈电压采样电路,用于对原边控制的隔离式变换器的反馈电压进行采样,所述反馈电压采样电路包括电压源、采样比较器、采样执行电路和如权利要求1-10中任一项所述的反馈电压消隐电路;
所述电压源连接在反馈电压输入端和所述采样比较器的第一输入端之间;所述反馈电压消隐电路的消隐输出端与所述采样比较器的第二输入端以及所述采样执行电路的输入端连接;
所述采样比较器的输出端输出采样控制信号,所述采样控制信号控制所述采样执行电路对所述反馈电压消隐电路输出的电压信号进行采样。

12.  一种反馈电压消隐方法,包括:
根据表征负载状态的电压参量生成消隐时间控制信号,所述消隐时间控制信号指示随所述表征负载状态的电压参量变化的消隐时间区间;
根据所述消隐时间控制信号在对应的消隐时间区间内输出随反馈电压同步变化的第一电压信号,在消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。

13.  一种反馈电压消隐方法,包括:
根据表征负载状态的电压参量生成第一消隐时间控制信号和第二消隐时间控制信号,所述第一消隐时间控制信号和所述第二消隐时间控制信号分别指示随所述表征负载状态的电压参量变化的第一消隐时间区间和第二消隐时间区间,所述第一消隐时间区间和第二消隐时间区间具有相同的起始时刻,且所述第二消隐时间区间大于所述第一消隐时间区间;
根据所述消隐时间控制信号在第一消隐时间区间内关断反馈电压输入端和消隐输出端之间的电连接,在第一消隐时间区间外、第二消隐时间区间内输出随反馈电压同步变化的第一电压信号,在第二消隐时间 区间外输出延迟所述反馈电压获得的第二电压信号。

说明书

说明书反馈电压采样电路、反馈电压消隐电路及方法
技术领域
本发明涉及电力电子技术,具体涉及一种反馈电压采样电路、反馈电压消隐电路及方法。
背景技术
隔离式变换器被广泛应用于各种离线供电系统中。隔离式变换器通常包括原边侧电路和副边侧电路,两者通过具有原边绕组和副边绕组的变压器隔离。对于隔离式变换器,可以通过开关管控制原边绕组的电流从而使得隔离式变换器输出恒定的电压和/或电流。
对于隔离式变换器,原边控制方式具有器件少,结构简单和成本低等优点。在原边控制方式中,输出电压反馈采样是通过采样辅助绕组上的电压来实现。在隔离式变换器的原边功率开关导通时,辅助绕组的电压与隔离式变换器的输入电压成比例。在隔离式变换器的原边功率开关关断时,副边二极管进行续流,副边二极管的续流电流从峰值开始线性减小。当副边二极管的续流电流逐渐接近于零时,辅助绕组的电压与隔离式变换器的输出电压成比例,此时采样辅助绕组电压作为输出电压的反馈,从而实现对输出电压的控制。当副边二极管的续流电流等于零时,辅助绕组电压不被隔离式变换器的输出电压箝位,并且会发生振荡,也就是辅助绕组电压会有一个较大的跌落,通常会通过将跌落开始的时刻作为输出电压反馈的采样时刻。同时,隔离式变换器的原边功率开关再次导通。
但是,在隔离式变换器的原边功率开关关断后,由于变压器漏感的存在以及寄生二极管反向恢复等原因,辅助绕组上的电压会发生振荡,这样有可能发生反馈电压的误采样。现有技术通常会设定一个预定的消 隐时间,在原边功率开关关断后预定的消隐时间内,不进行输出电压的反馈采样。然而,辅助绕组的振荡时间并不是固定的,预设较长的消隐时间会导致电路在空载或轻载时的损耗变高。
发明内容
有鉴于此,本发明所要解决的技术问题是提供一种反馈电压采样电路、反馈电压消隐电路及方法,用于对隔离式变换器进行原边控制,避免不必要的消隐时间所导致的电路在轻载或空载时的损耗。
第一方面,提供一种反馈电压消隐电路,用于对原边控制的隔离式变换器的反馈电压进行消隐,所述反馈电压消隐电路包括消隐时间控制电路和消隐滤波电路;
所述消隐时间控制电路用于根据表征负载状态的电压参量生成消隐时间控制信号,所述消隐时间控制信号指示随所述表征负载状态的电压参量变化的消隐时间区间;
所述消隐滤波电路连接在反馈电压输入端和消隐输出端之间,用于根据所述消隐时间控制信号在对应的消隐时间区间内输出随反馈电压同步变化的第一电压信号,在消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。
优选地,所述消隐时间控制电路包括充电电流源、压控电流源、充电电容、放电开关和消隐比较器;
所述充电电容、所述放电开关和所述压控电流源并联连接在充电电压输出端和接地点之间,所述放电开关由反馈电压过零点或功率开关控制信号下降沿相对应的控制脉冲控制导通;所述压控电流源由所述表征负载状态的电压参量控制;
所述充电电流源连接到所述充电电压输出端,用于对所述充电电容充电;
所述消隐比较器的输入端分别与所述充电电压输出端和第一参考电压连接,所述消隐比较器的输出端输出所述消隐时间控制信号。
优选地,所述消隐滤波电路包括消隐开关、滤波电阻和滤波电容;
所述消隐开关与所述滤波电阻并联连接在反馈电压输入端和所述消隐输出端之间;
所述滤波电容连接在所述消隐输出端和接地点之间;
所述消隐开关由所述消隐时间控制信号控制,在消隐时间区间内导通,在消隐时间区间外关断。
优选地,所述消隐滤波电路包括消隐开关、滤波电阻、第一滤波电容和第二滤波电容;
所述滤波电阻串联连接在所述反馈电压输入端和所述消隐输出端之间;
所述第一滤波电容连接在所述消隐输出端和接地点之间;
所述第二滤波电容和所述消隐开关串联连接在所述消隐输出端和接地点之间;
所述消隐开关由所述消隐时间控制信号控制,在消隐时间区间内关断,在消隐时间区间外导通。
优选地,所述表征负载状态的电压参量为电压控制环路的输出电压或原边电流检测信号的峰值信号。
第二方面,提供一种反馈电压消隐电路,用于对原边控制的隔离式变换器的反馈电压进行消隐,所述反馈电压消隐电路包括消隐时间控制电路和消隐滤波电路;
所述消隐时间控制电路用于根据表征负载状态的电压参量生成第一消隐时间控制信号和第二消隐时间控制信号,所述第一消隐时间控制信号和所述第二消隐时间控制信号分别指示随所述表征负载状态的电压参量变化的第一消隐时间区间和第二消隐时间区间,所述第一消隐时间区间和第二消隐时间区间具有相同的起始时刻,且所述第二消隐时间区间大于所述第一消隐时间区间;
所述消隐滤波电路连接在反馈电压输入端和消隐输出端之间,用于根据所述消隐时间控制信号在第一消隐时间区间内关断所述反馈电压输入端和所述消隐输出端之间的电连接,在第一消隐时间区间外、第二消隐时间区间内输出随反馈电压同步变化的第一电压信号,在第二消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。
优选地,所述消隐时间控制电路包括充电电流源、压控电流源、充电电容、放电开关、第一消隐比较器和第二消隐比较器;
所述充电电容、所述放电开关和所述压控电流源并联连接在充电电压输出端和接地点之间,所述放电开关由反馈电压过零点或功率开关控制信号下降沿相对应的控制脉冲控制导通;所述压控电流源由所述表征负载状态的电压参量控制;
所述充电电流源连接到充电电压输出端,用于对所述充电电容充电;
所述第一消隐比较器的输入端分别与所述充电电压输出端和第二参考电压连接,所述第一消隐比较器的输出端输出第一消隐时间控制信号;
所述第二消隐比较器的输入端分别与所述充电电压输出端和第三参考电压连接;所述第二消隐比较器的输出端输出第二消隐时间控制信号;
所述第二参考电压小于所述第三参考电压。
优选地,所述消隐滤波电路包括第一消隐开关、第二消隐开关、滤波电阻和滤波电容;
所述滤波电容连接在所述消隐输出端和接地点之间;
所述第二消隐开关与所述滤波电阻并联连接组成通道选择电路;所述通道选择电路与所述第一消隐开关串联连接在所述反馈电压输入端和所述消隐输出端之间;
所述第一消隐开关由所述第一消隐时间控制信号控制,在第一消隐时间区间内关断,在第一消隐时间区间外导通;
所述第二消隐开关由所述第二消隐时间控制信号控制,在第二消隐时间区间内导通,在第二消隐时间区间外关断。
优选地,所述消隐滤波电路包括第一消隐开关、第二消隐开关、滤波电阻、第一滤波电容和第二滤波电容;
所述滤波电阻和所述第一消隐开关串联连接在所述反馈电压输入端和所述消隐输出端之间;
所述第一滤波电容连接在所述消隐输出端和接地点之间;
所述第二滤波电容和所述第二消隐开关串联连接在所述消隐输出 端和接地点之间;
所述第一消隐开关由所述第一消隐时间控制信号控制,在第一消隐时间区间内关断,在第一消隐时间区间外导通;
所述第二消隐开关由所述第二消隐时间控制信号控制,在第二消隐时间区间内关断,在第二消隐时间区间外导通。
优选地,所述表征负载状态的电压参量为电压控制环路的输出电压或原边电流检测信号的峰值信号。
第三方面,提供一种反馈电压采样电路,用于对原边控制的隔离式变换器的反馈电压进行采样,所述反馈电压采样电路包括电压源、采样比较器、采样执行电路和如上所述的反馈电压消隐电路;
所述电压源连接在反馈电压输入端和所述采样比较器的第一输入端之间;所述反馈电压消隐电路的消隐输出端与所述采样比较器的第二输入端以及所述采样执行电路的输入端连接;
所述采样比较器的输出端输出采样控制信号,所述采样控制信号控制所述采样执行电路对所述反馈电压消隐电路输出的电压信号进行采样。
第四方面,提供一种反馈电压消隐方法,包括:
根据表征负载状态的电压参量生成消隐时间控制信号,所述消隐时间控制信号指示随所述表征负载状态的电压参量变化的消隐时间区间;
根据所述消隐时间控制信号在对应的消隐时间区间内输出随反馈电压同步变化的第一电压信号,在消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。
第五方面,提供一种反馈电压消隐方法,包括:
根据表征负载状态的电压参量生成第一消隐时间控制信号和第二消隐时间控制信号,所述第一消隐时间控制信号和所述第二消隐时间控制信号分别指示随所述表征负载状态的电压参量变化的第一消隐时间区间和第二消隐时间区间,所述第一消隐时间区间和第二消隐时间区间具有相同的起始时刻,且所述第二消隐时间区间大于所述第一消隐时间区间;
根据所述消隐时间控制信号在第一消隐时间区间内关断反馈电压输入端和消隐输出端之间的电连接,在第一消隐时间区间外、第二消隐 时间区间内输出随反馈电压同步变化的第一电压信号,在第二消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。
本发明基于辅助绕组振荡时间随负载状态变化的特点,根据表征负载状态的电压参量自适应生成消隐时间控制信号,消隐时间控制信号指示随表征负载状态的电压参量变化的消隐时间,在轻载时消隐时间较小,而在重载时消隐时间较大,使得消隐时间与辅助绕组振荡时间相匹配,既避免了由于振荡造成反馈电压误采样,又避免了因增加假负载来满足消隐时间而导致的轻载或空载时的损耗。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1是本发明实施例的使用辅助绕组实现反馈的隔离式变换器的电路示意图;
图2是本发明实施例的开关控制电路的结构示意图;
图3是本发明实施例的隔离式变换器中各信号参量的波形示意图;
图4A是本发明第一实施例的反馈电压采样电路的电路示意图;
图4B是本发明第一实施例的反馈电压消隐电路的电路示意图;
图4C是本发明第一实施例中反馈电压和经延迟的反馈电压的波形图;
图4D是本发明第一实施例的消隐滤波电路的一个替代电路的示意图;
图5A是本发明第二实施例的反馈电压消隐电路的电路示意图;
图5B是本发明第二实施例的消隐滤波电路的一个替代电路的示意图;
图6是本发明第三实施例的反馈电压消隐方法的流程图;
图7是本发明第四实施例的反馈电压消隐方法的流程图。
具体实施方式
以下结合附图对本发明的优选实施例进行详细描述。虽然本发明是 结合以下的优选实施例进行描述的,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员而言没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
同时,应当理解,“电路”是指由至少一个元件或子电路通过电气连接或电磁连接构成的导电回路。当称元件或电路“连接到”另一元件或称元件或电路“连接在”两个节点之间时,它可以是直接耦接或连接到另一元件或者可以存在中间元件,元件之间的连接可以是物理上的、逻辑上的、或者其结合。相反,当称元件“直接耦接到”或“直接连接到”另一元件时,意味着两者不存在中间元件。除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本发明可以被应用于任何原边控制的隔离式变换器,在以下的详细描述中,仅以反激式变换器(flyback converter)为例解释本发明的具体工作原理。
图1是本发明实施例的使用辅助绕组实现反馈的隔离式变换器的电路示意图。如图1所示,隔离式变换器10包括变压器T、功率开关S、开关控制电路11、电压反馈电路12、副边整流电路13和供电电路14以及电流采样电阻Rsen。变压器T包括原边绕组L1以及与其耦合的副边绕组L2和辅助绕组L3;副边整流电路13与副边绕组L2连接,用于对副边绕组L2的两端电压进行整流以输出恒定电压和/或电流,在图1中,副边整流电路13包括副边整流二极管D和副边输出电容C。
供电电路14与辅助绕组L3连接,通过对辅助绕组L3的两端电压进行整流,并输出稳定的偏置电压为开关控制电路11供电。开关控制电路11包括偏置电压输入端Vb、电流检测信号输入端SEN、反馈电压输入端FB、信号接地端GND和开关控制信号输出端DRV,供电电路14的输出端连接到偏置电压输入端Vb。电流采样电阻Rsen将流过功率开关S的电流转换为电压信号,其与功率开关S连接的公共端与开关控制电路11的电流检测信号输入端SEN连接,将原边电流检测信号输入到开关控制电路11。在图1中,电压反馈电路12为连接在辅助绕组L3两端的分压电路,其将辅助绕组L3两端的电压分压后输入到开关控制电路11的反馈电压输入端FB。通常,开关控制电路11可以单独或与隔离式变换器中的功率开关被制造为集成电路。
图2是本发明实施例的开关控制电路的结构示意图。如图2所示,开关控制电路11包括反馈电压采样电路111、置位脉冲生成电路112、电压误差放大器113、脉冲宽度调制比较器114和逻辑控制电路115。
其中,反馈电压采样电路111的输入端连接到反馈电压输入端FB,用于在副边绕组电流变化为零或接近零时,对辅助绕组的次级输出电压进行采样。
反馈电压采样电路111的输出端与置位脉冲生成电路112连接,置位脉冲生成电路112根据反馈电压采样电路111采样到的电压值生成控制开关控制信号频率的置位脉冲信号。
同时,电压误差放大器113与反馈电压采样电路111连接,用于比较反馈电压采样电路111采样到的电压值相对于内部的基准电压值Vref的误差,并将该误差进行放大后输出误差电压Vcomp。电压误差放大器113的输出构成了开关控制电路11的电压控制环路的输出。误差电压Vcomp(也即,电压控制环路的输出电压)可以表征隔离式变换器的负载状态,在负载较大时,误差电压Vcomp较大,在轻载或空载时,误差电压Vcomp较小。
类似地,原边电流检测信号VSEN的峰值信号也可以表征负载状态,在负载较大时,原边电流检测信号VSEN的峰值信号较大,在负载较小时,原边电流检测信号VSEN的峰值信号较小。
脉冲宽度调制比较器114的输入端分别与电压误差放大器113的输出端以及电流检测信号输入端连接,用于将电压误差放大器113输出的误差电压Vcomp和原边侧电路中电流采样电阻Rsen采样获得的原边电流检测信号VSEN比较,生成置零脉冲信号。
逻辑控制电路115根据脉冲宽度调制比较器114输出的置零脉冲信号和置位脉冲生成电路112输出的置位脉冲信号生成控制功率开关的开关控制信号,逻辑控制电路115的输出端连接到开关控制信号输出端DRV。
逻辑控制电路115可以包括RS触发器,置位脉冲信号输入到RS触发器的S端,控制功率开关的导通。置零脉冲信号输入到RS触发器的R端,控制功率开关的关断。
可选地,逻辑控制电路115还可以包括与RS触发器输出端连接的驱动电路,该驱动电路给功率开关S提供驱动。
图3是本发明实施例的隔离式变换器中各信号参量的波形示意图。VDRV为开关控制信号,其为方波信号,IP为流过原边绕组的电流,IS为流过副边绕组的电流,VAUX为辅助绕组两端的电压,其与反馈电压VFB成正比。如图3所示,开关控制信号VDRV控制功率开关导通期间,也即时刻t0至时刻t1期间,原边绕组的电感电流持续上升,原边绕组持续储能,反馈电压VFB与隔离式变换器的输入端电压(也即直流母线电压)成正比。
在开关控制信号VDRV控制功率开关关断后,也即时刻t1至时刻t2期间,原边绕组电流IP变为零,原边绕组的储能传递至副边绕组,副边绕组电流IS持续下降,直到电流降为零,副边绕组的储能全部传递至负载。
副边绕组在放电结束时,反馈电压VFB与功率级电路的输出电压成正比,因此,在t2时刻附近对反馈电压VFB进行采样所获得的采样电压可以反映输出电压的状况。
在副边绕组的电感电流下降为零后直至原边功率开关再次导通前,也即时刻t2至时刻t3期间,原边绕组的漏感与功率开关以及线路的寄生电容产生谐振,这时反馈电压会有较大的跌落。反馈电压采样电路111可以通过检测反馈电压的跌落来确定反馈电压的采样时刻,保证采样获得的电压在时刻t2或该时刻附近,由此,可以准确获取隔离式变换器输出电压的状况。
同时,如图3所示,在功率开关关断后一段时间内,也即,图3中时刻t1至时刻toff期间,辅助绕组两端的电压会发生振荡。由于振荡时,辅助绕组两端的电压会时高时低,当辅助绕组的两端电压过低时,会导致对反馈电压的误采样,误采样得到的电压与隔离式变换器的输出电压没有关联,会导致功率开关控制出现错误。为了避免对于反馈电压的误采样,需要设置消隐时间,在辅助绕组发生振荡的时间段内不进行反馈电压采样。现有的消隐时间被设置为固定值,使得空载或轻载时的损耗变高。同时,辅助绕组两端的电压的振荡时间会随着输出负载增大而增大,由此,可以根据反映负载状态的参量来自适应设置消隐时间。
图4A是本发明第一实施例的反馈电压采样电路的电路示意图。如图4A所示,反馈电压采样电路111包括反馈电压消隐电路41、电压源42、采样比较器43和采样执行电路44。
其中,电压源42连接在反馈电压输入端FB和采样比较器43的第一输入端之间;反馈电压消隐电路41的消隐输出端OFF与采样比较器43的第二输入端以及采样执行电路44的输入端连接。
采样比较器43的输出端输出采样控制信号PS,以控制采样执行电路44对反馈电压消隐电路输出的电压信号进行采样。
在图4A中,电压源42的负极与反馈电压输入端FB连接,正极与采样比较器43连接,电压源的电压值预设为ΔV,从而使得输入到采样比较器中的电压高于反馈电压VFB一个预定电压值ΔV。在图4A中,第一输入端为采样比较器43的反相输入端,第二输入端为采样比较器43的同相输入端。由此,在消隐输出端OFF的输出电压变化为大于VFB+ΔV时,采样比较器43输出高电平。
如图4A所示,采样执行电路44包括连接在输入端和输出端之间的采样开关S1和连接在输出端和接地点之间的采样电容C1。采样开关S1根据采样控制信号PS的指示,在采样时刻导通,给采样电容C1充电,直到采样电容C1两端的电压等于消隐输出端输出的电压,然后采样开关S1断开,采样电容C1上的电压保持,直到采样开关S1再次导通。
图4B是本发明第一实施例的反馈电压消隐电路的电路示意图。如图4B所示,反馈电压消隐电路41包括消隐时间控制电路411和消隐滤 波电路412。
消隐时间控制电路411用于根据表征负载状态的电压参量生成消隐时间控制信号POFF,消隐时间控制信号POFF指示随所述表征负载状态的电压参量变化的消隐时间区间。
在本实施例中,负载越大,消隐时间越长。
消隐滤波电路412连接在反馈电压输入端FB和消隐输出端OFF之间,用于根据消隐时间控制信号POFF在对应的消隐时间区间内输出随反馈电压同步变化的第一电压信号,在消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。
由于在消隐时间区间内,反馈电压消隐电路41在消隐输出端OFF输出随反馈电压同步变化的第一电压信号,因此,采样比较器43第二输入端的电压小于第一输入端的电压,由此,采样比较器43输出低电平。
在消隐时间区间外,反馈电压消隐电路41在消隐输出端OFF输出延迟所述反馈电压获得的第二电压信号,在反馈电压平缓变化时(图3中时刻toff至时刻t2),采样比较器43第二输入端的电压仍然小于第一输入端的电压。但是,当副边绕组L2放电结束后,反馈电压开始快速下降。参见图4C,VFB为反馈电压波形,VFB’为延迟Δt的反馈电压波形。由于采样比较器43第二输入端的电压为延迟Δt的反馈电压,因此,在t2+Δt时刻(也即副边绕组L2放电结束后Δt),第二输入端的电压反馈VFB’的电压值与t2时刻的反馈电压VFB的电压值相等。而此时采样比较器43的第一输入端的电压为当前时刻的反馈电压加上电压源的电压ΔV,由于反馈电压快速下降,t2+Δt时刻的反馈电压小于t2时刻的反馈电压。当Δt和ΔV设置的合适时,在t2+Δt时刻,采样比较器43的第二输入端的电压由小于第一输入端的电压变换为大于第一输入端的电压。由此,采样比较器43输出高电平,其输出信号的上升沿指示出采样时刻,也即时刻t2+Δt。
本领域技术人员可以理解,根据采样控制信号表现形式的不同,采样比较器43的第一输入端和第二输入端也可以互换,也即,第一输入端为同相输入端,第二输入端为反相输入端,这时,采样比较器43输出信号的下降沿指示出采样时刻。同时,采样控制信号PS的形式也可以根据 实际情况选择,只要能实现采样开关S1采样控制信号PS在采样时刻导通即可。
采样执行电路44根据采样比较器43输出的采样控制信号PS在采样时刻对消隐输出端OFF的电压进行采样。同样,由于此时消隐输出端OFF的电压等于t2时刻的反馈电压,因此,采样得到的电压可以用于表征隔离式变换器输出电压的状况。
消隐时间控制电路411包括充电电流源A1、压控电流源A2、充电电容C2、放电开关S2和消隐比较器411a。
充电电容C2、放电开关S2和压控电流源A2并联连接在充电电压输出端和接地点之间。放电开关S2由反馈电压过零点或功率开关控制信号下降沿相对应的控制脉冲PZ控制导通。
充电电流源A1连接到充电电压输出端,对充电电容C2充电。压控电流源A2由表征负载状态的电压参量VLOAD控制。如前所述,开关控制电路中的电压控制环路的输出电压可以表征负载状态,因此,可以被用于控制本实施例的压控电流源A2。
类似地,电流检测信号VSEN的峰值也可以表征负载状态,因此,在开关控制电路中存在电流峰值检测电路时,也可以使用电流检测信号VSEN的峰值信号来控制压控电流源A2。
消隐比较器411a的输入端分别与充电电压输出端和第一参考电压V1连接,消隐比较器411a根据输入端电压的比较状况输出消隐时间控制信号POFF。虽然图4B中,充电电压输出端与消隐比较器411a的反相输入端连接,而第一参考电压V1输入到同相输入端,本领域技术人员容易理解,上述连接关系可以调换,也即,充电电压输出端与消隐比较器411a的同相输入端连接,而第一参考电压V1输入到反相输入端。
放电开关S2受控制脉冲PZ的控制,在开关控制信号的下降沿或反馈电压过零点处导通,使得充电电容C2放电直到其两端电压变为零时,放电开关S2关断。放电开关S2关断后,充电电流源A1开始给充电电容C2充电,直到充电电容C2两端电压上升至第一参考电压V1时,消隐比较器411a的输出发生跳变。同时,充电电流源A1的一部分电流流进压控电流源A2。由于压控电流源的输出电流随控制电压VLOAD变化,在负载 较小时,压控电流源的输出电流较小,此时流向充电电容C2的充电电流较大,使得充电电容C2两端电压以较快速度上升,其上升至第一参考电压V1所需要的时间较短,由此,消隐比较器411a输出消隐时间区间较小的消隐时间控制信号POFF。对应地,在负载较大时,压控电流源的输出电流较大,此时流向充电电容C2的充电电流较小,使得充电电容C2两端电压以较慢速度上升,其上升至第一参考电压V1所需要的时间较长,由此,消隐比较器411a输出消隐时间区间较长的消隐时间控制信号POFF。
消隐滤波电路412包括消隐开关SOFF、滤波电阻ROFF和滤波电容COFF。
消隐开关SOFF与滤波电阻ROFF并联连接在反馈电压输入端FB和消隐输出端OFF之间。
滤波电容COFF连接在消隐输出端OFF和接地点之间。
消隐开关SOFF由消隐时间控制信号POFF控制,在消隐时间区间内导通,在消隐时间区间外关断。
在消隐开关SOFF导通时,滤波电阻ROFF被短路,滤波电容COFF两端电压随反馈电压同步变化。
在消隐开关SOFF关断时,滤波电阻ROFF和滤波电容COFF组成RC延迟电路,对反馈电压进行延迟后输出。
图4D是本发明第一实施例的消隐滤波电路的一个替代电路的示意图。如图4D所示,消隐滤波电路412包括消隐开关SOFF、滤波电阻ROFF、第一滤波电容COFF1和第二滤波电容COFF2。
滤波电阻ROFF连接在反馈电压输入端FB和消隐输出端OFF之间。
第一滤波电容COFF1连接在消隐输出端OFF和接地点之间;第二滤波电容COFF2和消隐开关SOFF串联连接在消隐输出端OFF和接地点之间。优选地,第二滤波电容COFF2大于第一滤波电容COFF1。
消隐开关SOFF由消隐时间POFF控制信号控制,在消隐时间区间内关断,在消隐时间区间外导通。
在消隐开关SOFF关断时,滤波电阻ROFF和第一滤波电容COFF1组成具有较小时间常数的RC延迟电路,在滤波电阻阻值选取得较小时,消隐输出端OFF电压以极小的延迟随反馈电压变化,可以认为其随反馈电压同步变化。
在消隐开关SOFF导通时,滤波电阻ROFF和第一滤波电容COFF1以及第二滤波电容COFF2组成具有较大时间常数的RC延迟电路,对反馈电压进行延迟后输出。
本实施例基于辅助绕组振荡时间随负载状态变化的特点,根据表征负载状态的电压参量自适应生成消隐时间控制信号,消隐时间控制信号指示随表征负载状态的电压参量变化的消隐时间,在轻载时消隐时间较小,而在重载时消隐时间较大,使得消隐时间与辅助绕组振荡时间相匹配,既避免了由于振荡造成反馈电压误采样,又避免了因增加假负载来满足消隐时间而导致的轻载或空载时的损耗。
图5A是本发明第二实施例的反馈电压消隐电路的电路示意图。所述反馈电压消隐电路可以应用于图4A所述的反馈电压采样电路。如图5A所示,反馈电压消隐电路41包括消隐时间控制电路411和消隐滤波电路412。
消隐时间控制电路411用于根据表征负载状态的电压参量VLOAD生成第一消隐时间控制信号POFF1和第二消隐时间控制信号POFF2,所述第一消隐时间控制信号POFF1和第二消隐时间控制信号POFF2分别指示随表征负载状态的电压参量VLOAD变化的第一消隐时间区间和第二消隐时间区间,第一消隐时间区间和第二消隐时间区间具有相同的起始时刻,且第二消隐时间区间大于第一消隐时间区间。
消隐滤波电路412连接在反馈电压输入端FB和消隐输出端OFF之间,用于根据消隐时间控制信号POFF1和POFF2在第一消隐时间区间内关断反馈电压输入端和消隐输出端之间的电连接,在第一消隐时间区间外、第二消隐时间区间内输出随反馈电压同步变化的第一电压信号,在第二消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。
本实施例中,通过两个消隐时间控制信号,将功率开关的关断期间划分为三个区间,在第一个区间,也即第一消隐时间区间内,功率开关关断时间短,反馈电压的振荡幅度较大,此时关断反馈电压输入端和所述消隐输出端之间的电连接,防止振荡电压幅度过大对电路造成损害。在第二个区间,也即第一消隐时间区间外、第二消隐时间区间内,输出 随反馈电压同步变化的第一电压信号,防止采样比较器输出错误的采样时刻。在第三个区间,反馈电压的振荡结束,输出延迟所述反馈电压获得的第二电压信号,使得采样比较器可以检测反馈电压的跌落,从而精确捕捉采样时刻。
具体地,如图5A所示,消隐时间控制电路411包括充电电流源A1、压控电流源A2、充电电容C2、放电开关S2、第一消隐比较器411a和第二消隐比较器411b。
充电电容C2、放电开关S2和压控电流源A2并联连接在充电电压输出端和接地点之间,放电开关S2由反馈电压过零点或功率开关控制信号下降沿相对应的控制脉冲控制导通;压控电流源A2由表征负载状态的电压参量VLOAD控制。
如前所述,开关控制电路中的电压控制环路的输出电压可以表征负载状态,因此,可以被用于控制本实施例的压控电流源A2。
类似地,原边电流检测信号VSEN的峰值信号也可以表征负载状态,因此,在开关控制电路中存在电流峰值检测电路时,也可以使用电流检测信号VSEN的峰值信号来控制压控电流源A2。
充电电流源A1连接到充电电压输出端,对充电电容C2充电。
第一消隐比较器411a的输入端分别与充电电压输出端和第二参考电压V2连接,第一消隐比较器411a的输出端输出第一消隐时间控制信号POFF1。
第二消隐比较器411b的输入端分别与充电电压输出端和第三参考电压V3连接;第二消隐比较器411b的输出端输出第二消隐时间控制信号POFF2。
放电开关S2受控制脉冲PZ的控制,在开关控制信号的下降沿或反馈电压过零点处导通,使得充电电容C2放电直到其两端电压变为零时,放电开关S2关断。放电开关S2关断后,充电电流源A1开始给充电电容C2充电,直到充电电容C2两端电压上升至第二参考电压V2时,第一消隐比较器411a的输出发生跳变;直到充电电容C2两端电压上升至第三参考电压V3时,第二消隐比较器411b的输出发生跳变。
通过设置第二参考电压V2小于第三参考电压V3,可以使得对应的 第一消隐时间区间小于第二消隐时间区间。
与第一实施例类似,充电电流源A1的电流一部分流入压控电流源A2。由于压控电流源的输出电流随控制电压VLOAD变化,在负载较小时,消隐比较器411a和消隐比较器411b分别输出消隐时间区间较小的第一消隐时间控制信号POFF1和第二消隐时间控制信号POFF2;在负载较大时,消隐比较器411a和消隐比较器411b分别输出消隐时间区间较大的第一消隐时间控制信号POFF1和第二消隐时间控制信号POFF2。
由此,消隐时间可以随着负载的变化而被自适应地设定。
消隐滤波电路412包括第一消隐开关SOFF1、第二消隐开关SOFF2、滤波电阻ROFF和滤波电容COFF。
滤波电容COFF连接在消隐输出端OFF和接地点之间。
第二消隐开关SOFF2与滤波电阻ROFF并联连接组成通道选择电路;通道选择电路与第一消隐开关SOFF1串联连接在反馈电压输入端FB和消隐输出端OFF之间。
第一消隐开关SOFF1由第一消隐时间控制信号POFF1控制,在第一消隐时间区间内关断,在第一消隐时间区间外导通。
第二消隐开关SOFF2由第二消隐时间控制信号POFF2控制,在第二消隐时间区间内导通,在第二消隐时间区间外关断。
由于第一消隐时间区间和第二消隐时间区间具有相同的起始时刻,同时,第二消隐时间区间大于第一消隐时间区间,在第一消隐时间区间内,第一消隐开关SOFF1关断而第二消隐开关SOFF2导通,反馈电压输入端FB和消隐输出端OFF之间的电连接被第一消隐开关SOFF1关断。
在第一消隐时间区间外、第二消隐时间区间内,第一消隐开关SOFF1导通且第二消隐开关SOFF2导通,滤波电阻ROFF被短路,滤波电容COFF两端电压随反馈电压同步变化。
在第二消隐时间区间外,第一消隐开关SOFF1导通而第二消隐开关SOFF2关断,滤波电阻ROFF和滤波电容COFF组成RC延迟电路,对反馈电压进行延迟后输出。
图5B是本发明第二实施例的消隐滤波电路的一个替代电路的示意图。如图5B所示,消隐滤波电路412包括第一消隐开关SOFF1、第二消隐 开关SOFF2、滤波电阻ROFF、第一滤波电容COFF1和第二滤波电容COFF2。
滤波电阻ROFF和第一消隐开关SOFF1串联连接在反馈电压输入端FB和消隐输出端OFF之间。
第一滤波电容COFF1连接在消隐输出端OFF和接地点之间。
第二滤波电容COFF2和第二消隐开关SOFF2串联连接在消隐输出端OFF和接地点之间。
第一消隐开关SOFF1由第一消隐时间控制信号POFF1控制,在第一消隐时间区间内关断,在第一消隐时间区间外导通。
第二消隐开关SOFF2由第二消隐时间控制信号POFF2控制,在第二消隐时间区间内关断,在第二消隐时间区间外导通。
由于第一消隐时间区间和第二消隐时间区间具有相同的起始时刻,同时,第二消隐时间区间大于第一消隐时间区间,在第一消隐时间区间内,第一消隐开关SOFF1和第二消隐开关SOFF2均关断,反馈电压输入端FB和消隐输出端OFF之间的电连接被第一消隐开关SOFF1关断。
在第一消隐时间区间外、第二消隐时间区间内,第一消隐开关SOFF1导通而第二消隐开关SOFF2关断,滤波电阻ROFF和第一滤波电容COFF1组成具有较小时间常数的RC延迟电路,在滤波电阻阻值选取得较小时,消隐输出端OFF电压以极小的延迟随反馈电压变化,可以认为其随反馈电压同步变化。
在第二消隐时间区间外,第一消隐开关SOFF1导通且第二消隐开关SOFF2导通,滤波电阻ROFF和第一滤波电容COFF1以及第二滤波电容COFF2组成具有较大时间常数的RC延迟电路,对反馈电压进行延迟后输出。
本实施例通过设置两个自适应变化的消隐时间区间,使得在反馈电压振荡幅度较大的第一消隐时间区间内,反馈电压输入端和后级电路之间的电连接被关断,从而为后级电路提供了更好的保护,同时,消隐时间随表征负载状态的电压参量变化,既避免了由于电压振荡造成反馈电压误采样,又避免了因增加假负载来满足消隐时间而导致的轻载或空载时的损耗。
图6是本发明第三实施例的反馈电压消隐方法的流程图。如图6所示,所述方法包括:
步骤610、根据表征负载状态的电压参量生成消隐时间控制信号,所述消隐时间控制信号指示随所述表征负载状态的电压参量变化的消隐时间区间。
其中,所述表征负载状态的电压参量为电压控制环路的输出电压或原边电流检测信号的峰值信号。
步骤620、根据所述消隐时间控制信号在对应的消隐时间区间内输出随反馈电压同步变化的第一电压信号,在消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。
本实施例基于辅助绕组振荡时间随负载状态变化的特点,根据表征负载状态的电压参量自适应生成消隐时间控制信号,消隐时间控制信号指示随表征负载状态的电压参量变化的消隐时间,在轻载时消隐设置得较小,而在重载时消隐时间较大,使得消隐时间与辅助绕组振荡时间相匹配,既避免了由于振荡造成反馈电压误采样,又避免了因增加假负载来满足消隐时间而导致的轻载或空载时的损耗。
图7是本发明第四实施例的反馈电压消隐方法的流程图。如图7所示,所述方法包括:
步骤710、根据表征负载状态的电压参量生成第一消隐时间控制信号和第二消隐时间控制信号,所述第一消隐时间控制信号和所述第二消隐时间控制信号分别指示随所述表征负载状态的电压参量变化的第一消隐时间区间和第二消隐时间区间,所述第一消隐时间区间和第二消隐时间区间具有相同的起始时刻,且所述第二消隐时间区间大于所述第一消隐时间区间。
其中,所述表征负载状态的电压参量为电压控制环路的输出电压或原边电流检测信号的峰值信号。
步骤720、根据所述消隐时间控制信号在第一消隐时间区间内关断所述反馈电压输入端和消隐输出端之间的电连接,在第一消隐时间区间外、第二消隐时间区间内输出随反馈电压同步变化的第一电压信号,在 第二消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。
本实施例通过设置两个自适应变化的消隐时间区间,使得在反馈电压振荡幅度较大的第一消隐时间区间内,反馈电压输入端和后级电路之间的电连接被关断,从而为后级电路提供了更好的保护,同时,消隐时间随表征负载状态的电压参量变化,既避免了由于振荡造成反馈电压误采样,又避免了因增加假负载来满足消隐时间而导致的轻载或空载时的损耗。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

反馈电压采样电路、反馈电压消隐电路及方法.pdf_第1页
第1页 / 共23页
反馈电压采样电路、反馈电压消隐电路及方法.pdf_第2页
第2页 / 共23页
反馈电压采样电路、反馈电压消隐电路及方法.pdf_第3页
第3页 / 共23页
点击查看更多>>
资源描述

《反馈电压采样电路、反馈电压消隐电路及方法.pdf》由会员分享,可在线阅读,更多相关《反馈电压采样电路、反馈电压消隐电路及方法.pdf(23页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 103715898 A (43)申请公布日 2014.04.09 CN 103715898 A (21)申请号 201410034017.9 (22)申请日 2014.01.24 H02M 3/28(2006.01) G01R 19/10(2006.01) (71)申请人 矽力杰半导体技术(杭州)有限公司 地址 310012 浙江省杭州市文三路 90 号东 部软件园科技大厦 A1501 (72)发明人 黄秋凯 胡志亮 徐孝如 白永江 (74)专利代理机构 北京成创同维知识产权代理 有限公司 11449 代理人 蔡纯 张靖琳 (54) 发明名称 反馈电压采样电路、 反馈。

2、电压消隐电路及方 法 (57) 摘要 本发明涉及反馈电压采样电路、 反馈电压消 隐电路及方法。所述反馈电压消隐电路包括消隐 时间控制电路和消隐滤波电路 ; 消隐时间控制电 路用于根据表征负载状态的电压参量生成消隐时 间控制信号 ; 消隐滤波电路连接在反馈电压输入 端和消隐输出端之间, 用于根据消隐时间控制信 号在对应的消隐时间区间内输出随反馈电压同步 变化的第一电压信号, 在消隐时间区间外输出延 迟所述反馈电压获得的第二电压信号。本发明还 公开了对应的反馈电压消隐方法和应用所述反馈 电压消隐电路的反馈电压采样电路。本发明根据 负载状态设置消隐时间, 既可以有效防止反馈电 压误采样, 还可以避免。

3、电路在空载或轻载的损耗。 (51)Int.Cl. 权利要求书 3 页 说明书 12 页 附图 7 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书3页 说明书12页 附图7页 (10)申请公布号 CN 103715898 A CN 103715898 A 1/3 页 2 1. 一种反馈电压消隐电路, 用于对原边控制的隔离式变换器的反馈电压进行消隐, 所 述反馈电压消隐电路包括消隐时间控制电路和消隐滤波电路 ; 所述消隐时间控制电路用于根据表征负载状态的电压参量生成消隐时间控制信号, 所 述消隐时间控制信号指示随所述表征负载状态的电压参量变化的消隐时间区间 ; 所述消隐。

4、滤波电路连接在反馈电压输入端和消隐输出端之间, 用于根据所述消隐时间 控制信号在对应的消隐时间区间内输出随反馈电压同步变化的第一电压信号, 在消隐时间 区间外输出延迟所述反馈电压获得的第二电压信号。 2. 根据权利要求 1 所述的反馈电压消隐电路, 其特征在于, 所述消隐时间控制电路包 括充电电流源、 压控电流源、 充电电容、 放电开关和消隐比较器 ; 所述充电电容、 所述放电开关和所述压控电流源并联连接在充电电压输出端和接地点 之间, 所述放电开关由反馈电压过零点或功率开关控制信号下降沿相对应的控制脉冲控制 导通 ; 所述压控电流源由所述表征负载状态的电压参量控制 ; 所述充电电流源连接到所。

5、述充电电压输出端, 用于对所述充电电容充电 ; 所述消隐比较器的输入端分别与所述充电电压输出端和第一参考电压连接, 所述消隐 比较器的输出端输出所述消隐时间控制信号。 3. 根据权利要求 2 所述的反馈电压消隐电路, 其特征在于, 所述消隐滤波电路包括消 隐开关、 滤波电阻和滤波电容 ; 所述消隐开关与所述滤波电阻并联连接在反馈电压输入端和所述消隐输出端之间 ; 所述滤波电容连接在所述消隐输出端和接地点之间 ; 所述消隐开关由所述消隐时间控制信号控制, 在消隐时间区间内导通, 在消隐时间区 间外关断。 4. 根据权利要求 2 所述的反馈电压消隐电路, 其特征在于, 所述消隐滤波电路包括消 隐开。

6、关、 滤波电阻、 第一滤波电容和第二滤波电容 ; 所述滤波电阻串联连接在所述反馈电压输入端和所述消隐输出端之间 ; 所述第一滤波电容连接在所述消隐输出端和接地点之间 ; 所述第二滤波电容和所述消隐开关串联连接在所述消隐输出端和接地点之间 ; 所述消隐开关由所述消隐时间控制信号控制, 在消隐时间区间内关断, 在消隐时间区 间外导通。 5. 根据权利要求 1 所述的反馈电压消隐电路, 其特征在于, 所述表征负载状态的电压 参量为电压控制环路的输出电压或原边电流检测信号的峰值信号。 6. 一种反馈电压消隐电路, 用于对原边控制的隔离式变换器的反馈电压进行消隐, 所 述反馈电压消隐电路包括消隐时间控制。

7、电路和消隐滤波电路 ; 所述消隐时间控制电路用于根据表征负载状态的电压参量生成第一消隐时间控制信 号和第二消隐时间控制信号, 所述第一消隐时间控制信号和所述第二消隐时间控制信号分 别指示随所述表征负载状态的电压参量变化的第一消隐时间区间和第二消隐时间区间, 所 述第一消隐时间区间和第二消隐时间区间具有相同的起始时刻, 且所述第二消隐时间区间 大于所述第一消隐时间区间 ; 所述消隐滤波电路连接在反馈电压输入端和消隐输出端之间, 用于根据所述消隐时间 控制信号在第一消隐时间区间内关断所述反馈电压输入端和所述消隐输出端之间的电连 权 利 要 求 书 CN 103715898 A 2 2/3 页 3 。

8、接, 在第一消隐时间区间外、 第二消隐时间区间内输出随反馈电压同步变化的第一电压信 号, 在第二消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。 7. 根据权利要求 6 所述的反馈电压消隐电路, 其特征在于, 所述消隐时间控制电路包 括充电电流源、 压控电流源、 充电电容、 放电开关、 第一消隐比较器和第二消隐比较器 ; 所述充电电容、 所述放电开关和所述压控电流源并联连接在充电电压输出端和接地点 之间, 所述放电开关由反馈电压过零点或功率开关控制信号下降沿相对应的控制脉冲控制 导通 ; 所述压控电流源由所述表征负载状态的电压参量控制 ; 所述充电电流源连接到充电电压输出端, 用于对所述。

9、充电电容充电 ; 所述第一消隐比较器的输入端分别与所述充电电压输出端和第二参考电压连接, 所述 第一消隐比较器的输出端输出第一消隐时间控制信号 ; 所述第二消隐比较器的输入端分别与所述充电电压输出端和第三参考电压连接 ; 所述 第二消隐比较器的输出端输出第二消隐时间控制信号 ; 所述第二参考电压小于所述第三参考电压。 8. 根据权利要求 7 所述的反馈电压消隐电路, 其特征在于, 所述消隐滤波电路包括第 一消隐开关、 第二消隐开关、 滤波电阻和滤波电容 ; 所述滤波电容连接在所述消隐输出端和接地点之间 ; 所述第二消隐开关与所述滤波电阻并联连接组成通道选择电路 ; 所述通道选择电路与 所述第一。

10、消隐开关串联连接在所述反馈电压输入端和所述消隐输出端之间 ; 所述第一消隐开关由所述第一消隐时间控制信号控制, 在第一消隐时间区间内关断, 在第一消隐时间区间外导通 ; 所述第二消隐开关由所述第二消隐时间控制信号控制, 在第二消隐时间区间内导通, 在第二消隐时间区间外关断。 9. 根据权利要求 7 所述的反馈电压消隐电路, 其特征在于, 所述消隐滤波电路包括第 一消隐开关、 第二消隐开关、 滤波电阻、 第一滤波电容和第二滤波电容 ; 所述滤波电阻和所述第一消隐开关串联连接在所述反馈电压输入端和所述消隐输出 端之间 ; 所述第一滤波电容连接在所述消隐输出端和接地点之间 ; 所述第二滤波电容和所述。

11、第二消隐开关串联连接在所述消隐输出端和接地点之间 ; 所述第一消隐开关由所述第一消隐时间控制信号控制, 在第一消隐时间区间内关断, 在第一消隐时间区间外导通 ; 所述第二消隐开关由所述第二消隐时间控制信号控制, 在第二消隐时间区间内关断, 在第二消隐时间区间外导通。 10. 根据权利要求 6 所述的反馈电压消隐电路, 其特征在于, 所述表征负载状态的电压 参量为电压控制环路的输出电压或原边电流检测信号的峰值信号。 11. 一种反馈电压采样电路, 用于对原边控制的隔离式变换器的反馈电压进行采样, 所 述反馈电压采样电路包括电压源、 采样比较器、 采样执行电路和如权利要求 1-10 中任一项 所述。

12、的反馈电压消隐电路 ; 所述电压源连接在反馈电压输入端和所述采样比较器的第一输入端之间 ; 所述反馈电 压消隐电路的消隐输出端与所述采样比较器的第二输入端以及所述采样执行电路的输入 权 利 要 求 书 CN 103715898 A 3 3/3 页 4 端连接 ; 所述采样比较器的输出端输出采样控制信号, 所述采样控制信号控制所述采样执行电 路对所述反馈电压消隐电路输出的电压信号进行采样。 12. 一种反馈电压消隐方法, 包括 : 根据表征负载状态的电压参量生成消隐时间控制信号, 所述消隐时间控制信号指示随 所述表征负载状态的电压参量变化的消隐时间区间 ; 根据所述消隐时间控制信号在对应的消隐时。

13、间区间内输出随反馈电压同步变化的第 一电压信号, 在消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。 13. 一种反馈电压消隐方法, 包括 : 根据表征负载状态的电压参量生成第一消隐时间控制信号和第二消隐时间控制信号, 所述第一消隐时间控制信号和所述第二消隐时间控制信号分别指示随所述表征负载状态 的电压参量变化的第一消隐时间区间和第二消隐时间区间, 所述第一消隐时间区间和第二 消隐时间区间具有相同的起始时刻, 且所述第二消隐时间区间大于所述第一消隐时间区 间 ; 根据所述消隐时间控制信号在第一消隐时间区间内关断反馈电压输入端和消隐输出 端之间的电连接, 在第一消隐时间区间外、 第二消隐时。

14、间区间内输出随反馈电压同步变化 的第一电压信号, 在第二消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。 权 利 要 求 书 CN 103715898 A 4 1/12 页 5 反馈电压采样电路、 反馈电压消隐电路及方法 技术领域 0001 本发明涉及电力电子技术, 具体涉及一种反馈电压采样电路、 反馈电压消隐电路 及方法。 背景技术 0002 隔离式变换器被广泛应用于各种离线供电系统中。 隔离式变换器通常包括原边侧 电路和副边侧电路, 两者通过具有原边绕组和副边绕组的变压器隔离。 对于隔离式变换器, 可以通过开关管控制原边绕组的电流从而使得隔离式变换器输出恒定的电压和 / 或电流。 0。

15、003 对于隔离式变换器, 原边控制方式具有器件少, 结构简单和成本低等优点。 在原边 控制方式中, 输出电压反馈采样是通过采样辅助绕组上的电压来实现。在隔离式变换器的 原边功率开关导通时, 辅助绕组的电压与隔离式变换器的输入电压成比例。在隔离式变换 器的原边功率开关关断时, 副边二极管进行续流, 副边二极管的续流电流从峰值开始线性 减小。当副边二极管的续流电流逐渐接近于零时, 辅助绕组的电压与隔离式变换器的输出 电压成比例, 此时采样辅助绕组电压作为输出电压的反馈, 从而实现对输出电压的控制。 当 副边二极管的续流电流等于零时, 辅助绕组电压不被隔离式变换器的输出电压箝位, 并且 会发生振荡。

16、, 也就是辅助绕组电压会有一个较大的跌落, 通常会通过将跌落开始的时刻作 为输出电压反馈的采样时刻。同时, 隔离式变换器的原边功率开关再次导通。 0004 但是, 在隔离式变换器的原边功率开关关断后, 由于变压器漏感的存在以及寄生 二极管反向恢复等原因, 辅助绕组上的电压会发生振荡, 这样有可能发生反馈电压的误采 样。 现有技术通常会设定一个预定的消隐时间, 在原边功率开关关断后预定的消隐时间内, 不进行输出电压的反馈采样。 然而, 辅助绕组的振荡时间并不是固定的, 预设较长的消隐时 间会导致电路在空载或轻载时的损耗变高。 发明内容 0005 有鉴于此, 本发明所要解决的技术问题是提供一种反馈。

17、电压采样电路、 反馈电压 消隐电路及方法, 用于对隔离式变换器进行原边控制, 避免不必要的消隐时间所导致的电 路在轻载或空载时的损耗。 0006 第一方面, 提供一种反馈电压消隐电路, 用于对原边控制的隔离式变换器的反馈 电压进行消隐, 所述反馈电压消隐电路包括消隐时间控制电路和消隐滤波电路 ; 0007 所述消隐时间控制电路用于根据表征负载状态的电压参量生成消隐时间控制信 号, 所述消隐时间控制信号指示随所述表征负载状态的电压参量变化的消隐时间区间 ; 0008 所述消隐滤波电路连接在反馈电压输入端和消隐输出端之间, 用于根据所述消隐 时间控制信号在对应的消隐时间区间内输出随反馈电压同步变化。

18、的第一电压信号, 在消隐 时间区间外输出延迟所述反馈电压获得的第二电压信号。 0009 优选地, 所述消隐时间控制电路包括充电电流源、 压控电流源、 充电电容、 放电开 关和消隐比较器 ; 说 明 书 CN 103715898 A 5 2/12 页 6 0010 所述充电电容、 所述放电开关和所述压控电流源并联连接在充电电压输出端和接 地点之间, 所述放电开关由反馈电压过零点或功率开关控制信号下降沿相对应的控制脉冲 控制导通 ; 所述压控电流源由所述表征负载状态的电压参量控制 ; 0011 所述充电电流源连接到所述充电电压输出端, 用于对所述充电电容充电 ; 0012 所述消隐比较器的输入端分。

19、别与所述充电电压输出端和第一参考电压连接, 所述 消隐比较器的输出端输出所述消隐时间控制信号。 0013 优选地, 所述消隐滤波电路包括消隐开关、 滤波电阻和滤波电容 ; 0014 所述消隐开关与所述滤波电阻并联连接在反馈电压输入端和所述消隐输出端之 间 ; 0015 所述滤波电容连接在所述消隐输出端和接地点之间 ; 0016 所述消隐开关由所述消隐时间控制信号控制, 在消隐时间区间内导通, 在消隐时 间区间外关断。 0017 优选地, 所述消隐滤波电路包括消隐开关、 滤波电阻、 第一滤波电容和第二滤波电 容 ; 0018 所述滤波电阻串联连接在所述反馈电压输入端和所述消隐输出端之间 ; 00。

20、19 所述第一滤波电容连接在所述消隐输出端和接地点之间 ; 0020 所述第二滤波电容和所述消隐开关串联连接在所述消隐输出端和接地点之间 ; 0021 所述消隐开关由所述消隐时间控制信号控制, 在消隐时间区间内关断, 在消隐时 间区间外导通。 0022 优选地, 所述表征负载状态的电压参量为电压控制环路的输出电压或原边电流检 测信号的峰值信号。 0023 第二方面, 提供一种反馈电压消隐电路, 用于对原边控制的隔离式变换器的反馈 电压进行消隐, 所述反馈电压消隐电路包括消隐时间控制电路和消隐滤波电路 ; 0024 所述消隐时间控制电路用于根据表征负载状态的电压参量生成第一消隐时间控 制信号和第。

21、二消隐时间控制信号, 所述第一消隐时间控制信号和所述第二消隐时间控制信 号分别指示随所述表征负载状态的电压参量变化的第一消隐时间区间和第二消隐时间区 间, 所述第一消隐时间区间和第二消隐时间区间具有相同的起始时刻, 且所述第二消隐时 间区间大于所述第一消隐时间区间 ; 0025 所述消隐滤波电路连接在反馈电压输入端和消隐输出端之间, 用于根据所述消隐 时间控制信号在第一消隐时间区间内关断所述反馈电压输入端和所述消隐输出端之间的 电连接, 在第一消隐时间区间外、 第二消隐时间区间内输出随反馈电压同步变化的第一电 压信号, 在第二消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。 0026 优。

22、选地, 所述消隐时间控制电路包括充电电流源、 压控电流源、 充电电容、 放电开 关、 第一消隐比较器和第二消隐比较器 ; 0027 所述充电电容、 所述放电开关和所述压控电流源并联连接在充电电压输出端和接 地点之间, 所述放电开关由反馈电压过零点或功率开关控制信号下降沿相对应的控制脉冲 控制导通 ; 所述压控电流源由所述表征负载状态的电压参量控制 ; 0028 所述充电电流源连接到充电电压输出端, 用于对所述充电电容充电 ; 0029 所述第一消隐比较器的输入端分别与所述充电电压输出端和第二参考电压连接, 说 明 书 CN 103715898 A 6 3/12 页 7 所述第一消隐比较器的输出。

23、端输出第一消隐时间控制信号 ; 0030 所述第二消隐比较器的输入端分别与所述充电电压输出端和第三参考电压连接 ; 所述第二消隐比较器的输出端输出第二消隐时间控制信号 ; 0031 所述第二参考电压小于所述第三参考电压。 0032 优选地, 所述消隐滤波电路包括第一消隐开关、 第二消隐开关、 滤波电阻和滤波电 容 ; 0033 所述滤波电容连接在所述消隐输出端和接地点之间 ; 0034 所述第二消隐开关与所述滤波电阻并联连接组成通道选择电路 ; 所述通道选择电 路与所述第一消隐开关串联连接在所述反馈电压输入端和所述消隐输出端之间 ; 0035 所述第一消隐开关由所述第一消隐时间控制信号控制, 。

24、在第一消隐时间区间内关 断, 在第一消隐时间区间外导通 ; 0036 所述第二消隐开关由所述第二消隐时间控制信号控制, 在第二消隐时间区间内导 通, 在第二消隐时间区间外关断。 0037 优选地, 所述消隐滤波电路包括第一消隐开关、 第二消隐开关、 滤波电阻、 第一滤 波电容和第二滤波电容 ; 0038 所述滤波电阻和所述第一消隐开关串联连接在所述反馈电压输入端和所述消隐 输出端之间 ; 0039 所述第一滤波电容连接在所述消隐输出端和接地点之间 ; 0040 所述第二滤波电容和所述第二消隐开关串联连接在所述消隐输出端和接地点之 间 ; 0041 所述第一消隐开关由所述第一消隐时间控制信号控制。

25、, 在第一消隐时间区间内关 断, 在第一消隐时间区间外导通 ; 0042 所述第二消隐开关由所述第二消隐时间控制信号控制, 在第二消隐时间区间内关 断, 在第二消隐时间区间外导通。 0043 优选地, 所述表征负载状态的电压参量为电压控制环路的输出电压或原边电流检 测信号的峰值信号。 0044 第三方面, 提供一种反馈电压采样电路, 用于对原边控制的隔离式变换器的反馈 电压进行采样, 所述反馈电压采样电路包括电压源、 采样比较器、 采样执行电路和如上所述 的反馈电压消隐电路 ; 0045 所述电压源连接在反馈电压输入端和所述采样比较器的第一输入端之间 ; 所述反 馈电压消隐电路的消隐输出端与所。

26、述采样比较器的第二输入端以及所述采样执行电路的 输入端连接 ; 0046 所述采样比较器的输出端输出采样控制信号, 所述采样控制信号控制所述采样执 行电路对所述反馈电压消隐电路输出的电压信号进行采样。 0047 第四方面, 提供一种反馈电压消隐方法, 包括 : 0048 根据表征负载状态的电压参量生成消隐时间控制信号, 所述消隐时间控制信号指 示随所述表征负载状态的电压参量变化的消隐时间区间 ; 0049 根据所述消隐时间控制信号在对应的消隐时间区间内输出随反馈电压同步变化 的第一电压信号, 在消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。 说 明 书 CN 103715898 A 7。

27、 4/12 页 8 0050 第五方面, 提供一种反馈电压消隐方法, 包括 : 0051 根据表征负载状态的电压参量生成第一消隐时间控制信号和第二消隐时间控制 信号, 所述第一消隐时间控制信号和所述第二消隐时间控制信号分别指示随所述表征负载 状态的电压参量变化的第一消隐时间区间和第二消隐时间区间, 所述第一消隐时间区间和 第二消隐时间区间具有相同的起始时刻, 且所述第二消隐时间区间大于所述第一消隐时间 区间 ; 0052 根据所述消隐时间控制信号在第一消隐时间区间内关断反馈电压输入端和消隐 输出端之间的电连接, 在第一消隐时间区间外、 第二消隐时间区间内输出随反馈电压同步 变化的第一电压信号,。

28、 在第二消隐时间区间外输出延迟所述反馈电压获得的第二电压信 号。 0053 本发明基于辅助绕组振荡时间随负载状态变化的特点, 根据表征负载状态的电压 参量自适应生成消隐时间控制信号, 消隐时间控制信号指示随表征负载状态的电压参量变 化的消隐时间, 在轻载时消隐时间较小, 而在重载时消隐时间较大, 使得消隐时间与辅助绕 组振荡时间相匹配, 既避免了由于振荡造成反馈电压误采样, 又避免了因增加假负载来满 足消隐时间而导致的轻载或空载时的损耗。 附图说明 0054 通过以下参照附图对本发明实施例的描述, 本发明的上述以及其它目的、 特征和 优点将更为清楚, 在附图中 : 0055 图 1 是本发明实。

29、施例的使用辅助绕组实现反馈的隔离式变换器的电路示意图 ; 0056 图 2 是本发明实施例的开关控制电路的结构示意图 ; 0057 图 3 是本发明实施例的隔离式变换器中各信号参量的波形示意图 ; 0058 图 4A 是本发明第一实施例的反馈电压采样电路的电路示意图 ; 0059 图 4B 是本发明第一实施例的反馈电压消隐电路的电路示意图 ; 0060 图 4C 是本发明第一实施例中反馈电压和经延迟的反馈电压的波形图 ; 0061 图 4D 是本发明第一实施例的消隐滤波电路的一个替代电路的示意图 ; 0062 图 5A 是本发明第二实施例的反馈电压消隐电路的电路示意图 ; 0063 图 5B 。

30、是本发明第二实施例的消隐滤波电路的一个替代电路的示意图 ; 0064 图 6 是本发明第三实施例的反馈电压消隐方法的流程图 ; 0065 图 7 是本发明第四实施例的反馈电压消隐方法的流程图。 具体实施方式 0066 以下结合附图对本发明的优选实施例进行详细描述。 虽然本发明是结合以下的优 选实施例进行描述的, 但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述 中, 详尽描述了一些特定的细节部分。对本领域技术人员而言没有这些细节部分的描述也 可以完全理解本发明。 为了避免混淆本发明的实质, 公知的方法、 过程、 流程、 元件和电路并 没有详细叙述。 0067 此外, 本领域普通技术人。

31、员应当理解, 在此提供的附图都是为了说明的目的, 并且 附图不一定是按比例绘制的。 说 明 书 CN 103715898 A 8 5/12 页 9 0068 同时, 应当理解,“电路” 是指由至少一个元件或子电路通过电气连接或电磁连接 构成的导电回路。当称元件或电路 “连接到” 另一元件或称元件或电路 “连接在” 两个节点 之间时, 它可以是直接耦接或连接到另一元件或者可以存在中间元件, 元件之间的连接可 以是物理上的、 逻辑上的、 或者其结合。相反, 当称元件 “直接耦接到” 或 “直接连接到” 另 一元件时, 意味着两者不存在中间元件。 除非上下文明确要求, 否则整个说明书和权利要求 书中。

32、的 “包括” 、“包含” 等类似词语应当解释为包含的含义而不是排他或穷举的含义 ; 也就 是说, 是 “包括但不限于” 的含义。 0069 在本发明的描述中, 需要理解的是, 术语 “第一” 、“第二” 等仅用于描述目的, 而不 能理解为指示或暗示相对重要性。此外, 在本发明的描述中, 除非另有说明,“多个” 的含义 是两个或两个以上。 0070 本发明可以被应用于任何原边控制的隔离式变换器, 在以下的详细描述中, 仅以 反激式变换器 (flyback converter) 为例解释本发明的具体工作原理。 0071 图 1 是本发明实施例的使用辅助绕组实现反馈的隔离式变换器的电路示意图。如 图。

33、 1 所示, 隔离式变换器 10 包括变压器 T、 功率开关 S、 开关控制电路 11、 电压反馈电路 12、 副边整流电路 13 和供电电路 14 以及电流采样电阻 Rsen。变压器 T 包括原边绕组 L1 以及与 其耦合的副边绕组 L2 和辅助绕组 L3 ; 副边整流电路 13 与副边绕组 L2 连接, 用于对副边绕 组 L2 的两端电压进行整流以输出恒定电压和 / 或电流, 在图 1 中, 副边整流电路 13 包括副 边整流二极管 D 和副边输出电容 C。 0072 供电电路 14 与辅助绕组 L3 连接, 通过对辅助绕组 L3 的两端电压进行整流, 并输 出稳定的偏置电压为开关控制电路。

34、 11 供电。开关控制电路 11 包括偏置电压输入端 Vb、 电 流检测信号输入端SEN、 反馈电压输入端FB、 信号接地端GND和开关控制信号输出端DRV, 供 电电路 14 的输出端连接到偏置电压输入端 Vb。电流采样电阻 Rsen将流过功率开关 S 的电 流转换为电压信号, 其与功率开关S连接的公共端与开关控制电路11的电流检测信号输入 端 SEN 连接, 将原边电流检测信号输入到开关控制电路 11。在图 1 中, 电压反馈电路 12 为 连接在辅助绕组 L3 两端的分压电路, 其将辅助绕组 L3 两端的电压分压后输入到开关控制 电路 11 的反馈电压输入端 FB。通常, 开关控制电路 。

35、11 可以单独或与隔离式变换器中的功 率开关被制造为集成电路。 0073 图 2 是本发明实施例的开关控制电路的结构示意图。如图 2 所示, 开关控制电路 11包括反馈电压采样电路111、 置位脉冲生成电路112、 电压误差放大器113、 脉冲宽度调制 比较器 114 和逻辑控制电路 115。 0074 其中, 反馈电压采样电路 111 的输入端连接到反馈电压输入端 FB, 用于在副边绕 组电流变化为零或接近零时, 对辅助绕组的次级输出电压进行采样。 0075 反馈电压采样电路 111 的输出端与置位脉冲生成电路 112 连接, 置位脉冲生成电 路112根据反馈电压采样电路111采样到的电压值。

36、生成控制开关控制信号频率的置位脉冲 信号。 0076 同时, 电压误差放大器113与反馈电压采样电路111连接, 用于比较反馈电压采样 电路 111 采样到的电压值相对于内部的基准电压值 Vref的误差, 并将该误差进行放大后输 出误差电压Vcomp。 电压误差放大器113的输出构成了开关控制电路11的电压控制环路的输 出。误差电压 Vcomp(也即, 电压控制环路的输出电压) 可以表征隔离式变换器的负载状态, 说 明 书 CN 103715898 A 9 6/12 页 10 在负载较大时, 误差电压 Vcomp较大, 在轻载或空载时, 误差电压 Vcomp较小。 0077 类似地, 原边电流。

37、检测信号 VSEN的峰值信号也可以表征负载状态, 在负载较大时, 原边电流检测信号 VSEN的峰值信号较大, 在负载较小时, 原边电流检测信号 VSEN的峰值信号 较小。 0078 脉冲宽度调制比较器114的输入端分别与电压误差放大器113的输出端以及电流 检测信号输入端连接, 用于将电压误差放大器 113 输出的误差电压 Vcomp和原边侧电路中电 流采样电阻 Rsen采样获得的原边电流检测信号 VSEN比较, 生成置零脉冲信号。 0079 逻辑控制电路115根据脉冲宽度调制比较器114输出的置零脉冲信号和置位脉冲 生成电路 112 输出的置位脉冲信号生成控制功率开关的开关控制信号, 逻辑控。

38、制电路 115 的输出端连接到开关控制信号输出端 DRV。 0080 逻辑控制电路 115 可以包括 RS 触发器, 置位脉冲信号输入到 RS 触发器的 S 端, 控 制功率开关的导通。置零脉冲信号输入到 RS 触发器的 R 端, 控制功率开关的关断。 0081 可选地, 逻辑控制电路 115 还可以包括与 RS 触发器输出端连接的驱动电路, 该驱 动电路给功率开关 S 提供驱动。 0082 图 3 是本发明实施例的隔离式变换器中各信号参量的波形示意图。VDRV为开关控 制信号, 其为方波信号, IP为流过原边绕组的电流, IS为流过副边绕组的电流, VAUX为辅助绕 组两端的电压, 其与反馈。

39、电压 VFB成正比。如图 3 所示, 开关控制信号 VDRV控制功率开关导 通期间, 也即时刻 t0至时刻 t1期间, 原边绕组的电感电流持续上升, 原边绕组持续储能, 反 馈电压 VFB与隔离式变换器的输入端电压 (也即直流母线电压) 成正比。 0083 在开关控制信号 VDRV控制功率开关关断后, 也即时刻 t1至时刻 t2期间, 原边绕组 电流IP变为零, 原边绕组的储能传递至副边绕组, 副边绕组电流IS持续下降, 直到电流降为 零, 副边绕组的储能全部传递至负载。 0084 副边绕组在放电结束时, 反馈电压 VFB与功率级电路的输出电压成正比, 因此, 在 t2时刻附近对反馈电压 VF。

40、B进行采样所获得的采样电压可以反映输出电压的状况。 0085 在副边绕组的电感电流下降为零后直至原边功率开关再次导通前, 也即时刻 t2至 时刻 t3期间, 原边绕组的漏感与功率开关以及线路的寄生电容产生谐振, 这时反馈电压会 有较大的跌落。反馈电压采样电路 111 可以通过检测反馈电压的跌落来确定反馈电压的采 样时刻, 保证采样获得的电压在时刻 t2或该时刻附近, 由此, 可以准确获取隔离式变换器输 出电压的状况。 0086 同时, 如图 3 所示, 在功率开关关断后一段时间内, 也即, 图 3 中时刻 t1至时刻 toff 期间, 辅助绕组两端的电压会发生振荡。由于振荡时, 辅助绕组两端的。

41、电压会时高时低, 当 辅助绕组的两端电压过低时, 会导致对反馈电压的误采样, 误采样得到的电压与隔离式变 换器的输出电压没有关联, 会导致功率开关控制出现错误。为了避免对于反馈电压的误采 样, 需要设置消隐时间, 在辅助绕组发生振荡的时间段内不进行反馈电压采样。 现有的消隐 时间被设置为固定值, 使得空载或轻载时的损耗变高。 同时, 辅助绕组两端的电压的振荡时 间会随着输出负载增大而增大, 由此, 可以根据反映负载状态的参量来自适应设置消隐时 间。 0087 图 4A 是本发明第一实施例的反馈电压采样电路的电路示意图。如图 4A 所示, 反 馈电压采样电路 111 包括反馈电压消隐电路 41、。

42、 电压源 42、 采样比较器 43 和采样执行电路 说 明 书 CN 103715898 A 10 7/12 页 11 44。 0088 其中, 电压源 42 连接在反馈电压输入端 FB 和采样比较器 43 的第一输入端之间 ; 反馈电压消隐电路 41 的消隐输出端 OFF 与采样比较器 43 的第二输入端以及采样执行电路 44 的输入端连接。 0089 采样比较器 43 的输出端输出采样控制信号 PS, 以控制采样执行电路 44 对反馈电 压消隐电路输出的电压信号进行采样。 0090 在图 4A 中, 电压源 42 的负极与反馈电压输入端 FB 连接, 正极与采样比较器 43 连 接, 电压。

43、源的电压值预设为 V, 从而使得输入到采样比较器中的电压高于反馈电压 VFB一 个预定电压值 V。在图 4A 中, 第一输入端为采样比较器 43 的反相输入端, 第二输入端为 采样比较器 43 的同相输入端。由此, 在消隐输出端 OFF 的输出电压变化为大于 VFB+V 时, 采样比较器 43 输出高电平。 0091 如图 4A 所示, 采样执行电路 44 包括连接在输入端和输出端之间的采样开关 S1 和 连接在输出端和接地点之间的采样电容 C1。采样开关 S1 根据采样控制信号 PS的指示, 在 采样时刻导通, 给采样电容C1充电, 直到采样电容C1两端的电压等于消隐输出端输出的电 压, 然。

44、后采样开关 S1 断开, 采样电容 C1 上的电压保持, 直到采样开关 S1 再次导通。 0092 图 4B 是本发明第一实施例的反馈电压消隐电路的电路示意图。如图 4B 所示, 反 馈电压消隐电路 41 包括消隐时间控制电路 411 和消隐滤波电路 412。 0093 消隐时间控制电路 411 用于根据表征负载状态的电压参量生成消隐时间控制信 号 POFF, 消隐时间控制信号 POFF指示随所述表征负载状态的电压参量变化的消隐时间区间。 0094 在本实施例中, 负载越大, 消隐时间越长。 0095 消隐滤波电路 412 连接在反馈电压输入端 FB 和消隐输出端 OFF 之间, 用于根据消 。

45、隐时间控制信号 POFF在对应的消隐时间区间内输出随反馈电压同步变化的第一电压信号, 在消隐时间区间外输出延迟所述反馈电压获得的第二电压信号。 0096 由于在消隐时间区间内, 反馈电压消隐电路 41 在消隐输出端 OFF 输出随反馈电 压同步变化的第一电压信号, 因此, 采样比较器 43 第二输入端的电压小于第一输入端的电 压, 由此, 采样比较器 43 输出低电平。 0097 在消隐时间区间外, 反馈电压消隐电路41在消隐输出端OFF输出延迟所述反馈电 压获得的第二电压信号, 在反馈电压平缓变化时 (图3中时刻toff至时刻t2) , 采样比较器43 第二输入端的电压仍然小于第一输入端的电。

46、压。但是, 当副边绕组 L2 放电结束后, 反馈电 压开始快速下降。参见图 4C, VFB为反馈电压波形, VFB 为延迟 t 的反馈电压波形。由于 采样比较器 43 第二输入端的电压为延迟 t 的反馈电压, 因此, 在 t2+t 时刻 (也即副边 绕组 L2 放电结束后 t) , 第二输入端的电压反馈 VFB 的电压值与 t2时刻的反馈电压 VFB的 电压值相等。而此时采样比较器 43 的第一输入端的电压为当前时刻的反馈电压加上电压 源的电压 V, 由于反馈电压快速下降, t2+t 时刻的反馈电压小于 t2时刻的反馈电压。当 t 和 V 设置的合适时, 在 t2+t 时刻, 采样比较器 43。

47、 的第二输入端的电压由小于第一 输入端的电压变换为大于第一输入端的电压。由此, 采样比较器 43 输出高电平, 其输出信 号的上升沿指示出采样时刻, 也即时刻 t2+t。 0098 本领域技术人员可以理解, 根据采样控制信号表现形式的不同, 采样比较器 43 的 第一输入端和第二输入端也可以互换, 也即, 第一输入端为同相输入端, 第二输入端为反相 说 明 书 CN 103715898 A 11 8/12 页 12 输入端, 这时, 采样比较器43输出信号的下降沿指示出采样时刻。 同时, 采样控制信号PS的 形式也可以根据实际情况选择, 只要能实现采样开关 S1 采样控制信号 PS在采样时刻导。

48、通 即可。 0099 采样执行电路 44 根据采样比较器 43 输出的采样控制信号 PS在采样时刻对消隐 输出端 OFF 的电压进行采样。同样, 由于此时消隐输出端 OFF 的电压等于 t2时刻的反馈电 压, 因此, 采样得到的电压可以用于表征隔离式变换器输出电压的状况。 0100 消隐时间控制电路411包括充电电流源A1、 压控电流源A2、 充电电容C2、 放电开关 S2 和消隐比较器 411a。 0101 充电电容 C2、 放电开关 S2 和压控电流源 A2 并联连接在充电电压输出端和接地点 之间。放电开关 S2 由反馈电压过零点或功率开关控制信号下降沿相对应的控制脉冲 PZ控 制导通。 。

49、0102 充电电流源 A1 连接到充电电压输出端, 对充电电容 C2 充电。压控电流源 A2 由表 征负载状态的电压参量 VLOAD控制。如前所述, 开关控制电路中的电压控制环路的输出电压 可以表征负载状态, 因此, 可以被用于控制本实施例的压控电流源 A2。 0103 类似地, 电流检测信号 VSEN的峰值也可以表征负载状态, 因此, 在开关控制电路中 存在电流峰值检测电路时, 也可以使用电流检测信号 VSEN的峰值信号来控制压控电流源 A2。 0104 消隐比较器 411a 的输入端分别与充电电压输出端和第一参考电压 V1 连接, 消隐 比较器 411a 根据输入端电压的比较状况输出消隐时间控制信号 POFF。虽然图 4B 中, 充电电 压输出端与消隐比较器411a的反相输入端连接, 而第一参考电压V1输入到同相输入端, 本 领域技术人员容。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 发电、变电或配电


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1