具体实施方式
可用于本公开中的驻极体织物包括热塑性树脂和电荷添加剂的共混物。由此类共混物制备的驻极体织物表现出的性能强于由热塑性树脂单独制备的驻极体织物的性能。可用的电荷添加剂包括酯取代和酰胺取代的三苯胺基三嗪材料。
驻极体织物可以为多种形式。例如,该织物可以为连续或不连续的膜、或纤维织物。纤维织物尤其可用于形成过滤介质。在一些实施例中,该织物为非织造微纤维织物。微纤维的直径通常为1-100微米。
术语“一个”和“所述”可与“至少一个”互换使用,以指一个或多个所描述的元素。
术语“烷基”是指为烷烃基团的一价基团,所述烷烃是饱和烃。所述烷基可以是直链的、支链的、环状的或它们的组合,通常具有1至20个碳原子。在一些实施例中,所述烷基包含1至18个、1至12个、1至10个、1至8个、1至6个、或1至4个碳原子。烷基的例子包括但不限于甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、正己基、环己基、正庚基、正辛基和乙基己基。
术语“杂烷基”是指含有杂原子的烷基。这些杂原子可以为诸如氟、氯、溴或碘的卤素,或者为其他原子,例如氮、氧或硫。杂烷基的一个例子为聚烷氧基,例如-CH2CH2(OCH2CH2)nOCH2CH2。
术语“取代的烷基”是指含有沿烃主链的取代基的烷基。这些取代基可以为烷基、杂烷基或芳基。取代的烷基的一个例子为苄基。
术语“芳基”是指芳香族碳环基团,该基团包含1至5个可连接或稠合的环。芳基可以被烷基或杂烷基取代。芳基的一个例子为苯基。
术语“取代的三苯胺基三嗪”是指具有3个取代的苯胺环连接至一个三嗪环的结构的材料,如式Ⅰ所示,其中R1、R2和R3为三苯胺基三嗪材料上的取代基。当术语“酯取代的”和“酰胺取代的”与“取代的三苯胺基三嗪”一起使用时,则意指R1、R2和R3基团各自独立地通过酯键(-C(O)-O-)或酰胺键(-C(O)NR-)连接至苯胺环,其中R在这种情况下为氢原子或烷基:
![]()
式Ⅰ
术语“聚合物”和“聚合物材料”是指由一种单体制得的诸如均聚物之类的材料,或是指由两种或更多种单体制得的诸如共聚物、三元共聚物等之类的材料。同样,术语“聚合”是指制备聚合物材料的工艺,所述聚合材料可以是均聚物、共聚物、三元共聚物等。术语“共聚物”和“共聚物材料”是指由至少两种单体制得的聚合物材料。
术语“室温”和“环境温度”可互换使用,意指20℃至25℃范围内的温度。
如本文所用,术语“可热熔融加工”是指组合物可以通过例如加热和施压由固体转化为粘性流体。应该能够对该组合物进行热熔融加工,同时而不引起组合物发生化学转化、降解或无法用于预期应用。
除非另外指明,否则用于说明书和权利要求书中的所有表示特征尺寸、数量和物理性质的数字应被理解为在一切情况下均受术语“约”修饰。因此,除非有相反的指示,否则所述数值是近似值,这些近似值可以根据所期望的性质采用本文所公开的教导变化。
可用于本发明中的热塑性树脂包括在成型为织物并充电时能够具有大量捕获的静电电荷的任何热塑性绝缘聚合物。通常,此类树脂在预期使用的温度下具有大于1014Ω-cm的DC(直流电)电阻率。能够获得捕获电荷的聚合物包括聚烯烃,例如聚丙烯、聚乙烯和聚(4-甲基-1-戊烯);聚氯乙烯;聚苯乙烯;聚碳酸酯;和聚酯。特别可用的材料包括聚丙烯、聚(4-甲基-1-戊烯)、它们的共混物或由丙烯和4-甲基-1-戊烯中的至少一者形成的共聚物。
电荷添加剂为酯取代和/或酰胺取代的三苯胺基三嗪材料。已观察到与具有(例如)简单烷基的取代基的材料相比,在苯胺环上具有酯和/或酰胺取代基的材料具有更好的驻极体电荷保持能力。通常,电荷添加剂为可热熔融加工材料。特别合适的电荷添加剂包括由式Ⅱ表示的材料。
![]()
式Ⅱ
其中每个Z1、Z2和Z3独立地为-OR4(酯取代)或-NR5R6(酰胺取代),并且每个R4独立地为烷基、取代的烷基、杂烷基或芳基;每个R5独立地为H或烷基、取代的烷基、杂烷基或芳基;每个R6独立地为烷基、取代的烷基、杂烷基或芳基。在一些实施例中,每个Z1、Z2和Z3独立地为-OR4,其中每个R4独立地为含有1至20个碳原子的直链或支链烷基。在其他实施例中,每个Z1和Z2独立地为-OR4,其中每个R4独立地为含有1至20个碳原子的直链或支链烷基,并且Z3为-NR5R6,其中R5为H或含有1至20个碳原子的直链或支链烷基,R6为含有1至20个碳原子的直链或支链烷基。
合适的电荷添加剂的例子包括例如2,4,6-三苯胺基-对-(碳-2’-乙基己基-1’-氧)-1,3,5-三嗪,可以UVINUL T-150从BASF(Ludwigshafen,Germany)商购获得,以下面的式Ⅲ表示(Et为乙基、Bu-n为正丁基、Bu-t为叔丁基);4,4’-[[6-[[4-[[(1,1-二甲基乙基)氨基]羰基]苯基]氨基]-1,3,5-三嗪-2,4-二基]二亚氨基]双-苯甲酸双(2-乙基己基)酯,可以UVASORB HEB从3V(Bergamo,Italy)商购获得,以下面的式Ⅳ表示;2,4,6-三苯胺基(对-碳-十四烷基-氧)-1,3,5-三嗪,以下面的式Ⅴ表示;2,4,6-三苯胺基(对-碳-十八烷基-氧)-1,3,5-三嗪,以下面的式Ⅵ表示;以及它们的混合物。
![]()
式Ⅲ
![]()
式Ⅳ
![]()
式Ⅴ
![]()
式Ⅵ
通常存在于热塑性树脂/电荷添加剂共混物中的电荷添加剂的量在共混物总重量的0.1至5重量%范围内。在一些实施例中,存在的电荷添加剂的量在0.1至3重量%或0.25至2重量%的范围内。
热塑性树脂和电荷添加剂的共混物可通过熟知的方法制备。通常使用熔融挤出技术对共混物进行加工,所以可应用间歇工艺将该共混物预混成粒料,或者可应用连续工艺在挤出机中混合热塑性树脂和电荷添加剂。在采用连续工艺时,热塑性树脂和电荷添加剂可以固体的形式进行预混合、或独立地添加至挤出机并使之以熔化的状态混合。
可用于形成预混合粒料的熔融混合器的例子包括提供分散混合、分布混合或者分散混合和分布混合两者组合的那些混合器。间歇方法的例子包括使用布拉本达仪器(BRABENDER)(例如可从C.W.BrabenderInstruments,Inc.(South Hackensack,NJ)商购获得的布拉本达制备中心(BRABENDER PREP CENTER))或班伯里(BANBURY)内混式与辊轧式设备(例如可得自Farrel Co.(Ansonia,CT)的设备)的那些方法。间歇混合后,可以立即淬灭生成的混合物并将其保存于混合物熔融温度以下的温度以进行后续加工。
连续方法的例子包括单螺杆挤出、双螺杆挤出、圆盘挤出、往复式单螺杆挤出和销钉机筒单螺杆挤出。连续方法可以包括使用分布元件(例如空穴传递混合器(例如可从RAPRA Technology,Ltd.(Shrewsbury,England)商购获得的CTM))以及销钉混合元件、静态混合元件或分散混合元件(可商购获得,例如MADDOCK混合元件或SAXTON混合元件)两者。
可用于挤压通过间歇工艺制备的预混合粒料的挤出机的例子包括与上述连续工艺中所描述的设备类型相同的设备。可用的挤出条件通常是适于挤出不含添加剂的树脂的那些条件。
可将热塑性树脂和电荷添加剂的挤出共混物浇注或涂覆成薄膜或薄板,或可使用已知的技术将热塑性树脂和电荷添加剂的挤出共混物熔喷成非织造纤维织物。熔喷的非织造微纤维织物尤其可用作过滤介质。
熔喷的非织造微纤维驻极体过滤器尤其可用作呼吸器的空气过滤器元件(例如过滤面罩),或针对此目的,可用作家用和工业空调、空气净化器、真空吸尘器、医用空气管路过滤器和车辆与通用设备(例如计算机、计算机磁盘驱动器和电子设备)的空气调节系统。在应用于呼吸器时,驻极体过滤器可以为模制或折叠的半面罩呼吸器、可替换滤芯或滤罐、或预过滤器的形式。
可用于本发明中的熔喷微纤维可按照Van A.Wente,“SuperfineThermoplastic Fibers,”Industrial Engineering Chemistry,vol.48,pp.1342-1346(Van A.Wente,超细热塑性纤维,工业工程化学,第48卷第1342-1346页)和Van A.Wente等人所著的出版于1954年5月25日的Report No.4364 of the Naval Research Laboratori es(海军研究实验室第4364号报告)中名为“Manufacture of Super Fine OrganicFibers”(超细有机纤维的制造)的文章中所描述的方法进行制备。
可用于纤维驻极体过滤器的熔喷微纤维通常具有约3至30微米的有效纤维直径,在一些实施例中为约7至15微米,这些有效纤维直径是根据Davies,C.N.,“The Separation of Airborne Dust and Particles,”Institution of Mechanical Engineers,London,Proceedings 1B,1952(Davies,C.N.,气载粉尘和粒子的分离,机械工程师协会(London)会志1B辑,1952年)中示出的方法计算得出。
短纤维还可以存在于该织物中。与仅由吹塑微纤维形成的织物相比,短纤维的存在提供了通常更为膨松有弹性且密度更小的织物。优选存在不超过约90重量%的短纤维,更优选不超过约70重量%。含有短纤维的织物的例子在美国专利No.4,118,531(Hauser)中公开。
织物中还可以包含吸附剂颗粒物质,例如活性炭或氧化铝。此类颗粒存在的量可以最多为约织物内容物体积的约80%。颗粒填充织物的例子在(例如)美国专利No.3,971,373(Braun)、美国专利No.4,100,324(Anderson)和美国专利No.4,429,001(Kolpin等人)中有所描述。
根据本发明制备的驻极体过滤器介质通常具有在约10至500g/m2范围内的基重,并且在一些实施例中为约10至100g/m2。在制造熔喷微纤维织物的过程中,可以通过(例如)改变收集器的速度或模具通量来控制基重。过滤器介质的厚度通常为约0.25至20毫米,并且在一些实施例中为约0.5至2毫米。驻极体过滤器介质和制备其的树脂不应经过可能增加其电导率的任何不必要处理,例如将其暴露于电离辐射、γ射线、紫外线照射、高温分解、氧化等。
驻极体织物可在其形成时带上电荷,或者该体织物可在其形成后带上电荷。在驻极体过滤器介质中,该介质通常在形成织物后带上电荷。通常可以使用本领域已知的任何标准充电方法。例如,可通过多种方法进行充电,包括直流电晕放电充电和水充电。还可以使用这些方法的组合。
合适的直流电晕放电工艺的例子在美国专利Re.No.30,782(vanTurnhout)、美国专利Re.No.31,285(van Turnhout)、美国专利Re.No.32,171(van Turnhout)、美国专利No.4,215,682(Davis等人)、美国专利No.4,375,718(Wadsworth等人)、美国专利No.5,401,446(Wadsworth等人)、美国专利No.4,588,537(Klaase等人)和美国专利No.4,592,815(Nakao)中有所描述。
通过水射流或水滴流足以为织物提供促进过滤的驻极体电荷的压力冲击织物来进行织物的水充电。实现最佳结果的必需压力根据以下因素的不同而发生变化:使用的喷涂器的类型、形成织物的聚合物的类型、加入聚合物的添加剂的类型和浓度、织物的厚度和密度以及是否在水充电之前进行预处理,例如直流电晕表面处理。一般来讲,压力在约10至500psi(69至3450kPa)范围内为宜。对于水充电而言,通常蒸馏水或去离子水相比于自来水为优选的。
水射流或水滴流可以由任何合适的喷雾装置提供。可用于水力缠结纤维的设备通常可在本发明的方法中使用,但实施水充电操作的压力较实施水缠绕操作通常所用的压力为低。应理解水充电包括在美国专利No.5,496,507(Angadjivand)中所描述的方法和使用流体润湿和去湿工艺赋予驻极体电荷的其他各种衍生方法,如在例如日本专利申请JP 2002161467(Horiguchi)、日本专利申请JP 2002173866(Takeda)、日本专利申请JP2002115177(Takeda)、日本专利申请JP 2002339232(Takeda)、日本专利申请JP 2002161471(Takeda)、日本专利No.3,780,916(Takeda)、日本专利申请JP 2002115178(Takeda)、日本专利申请JP 2003013359(Horiguchi)、美国专利No.6,969,484(Horiguchi)、美国专利No.6,454,986(Eitzman)、日本专利申请JP 2004060110(Masumori)、日本专利申请JP 2005131485(Kodama)和日本专利申请JP 2005131484(Kodama)中所描述的那样。
在实际的应用中,使驻极体过滤器织物带上电荷的时间与使用它们的时间之间可以有相当大的时间间隔。该时间包括运输、保存等所需的时间,并可以涉及多种温度条件。期望的是保持赋予织物的电荷。
为了模拟这些因素,已经开发出多种过滤测试和加速老化测试方案。这些测试包括使用标准测试用气溶胶(例如邻苯二酸二辛酯(DOP))测定过滤器织物的气溶胶渗透率,通常以气溶胶渗透穿过过滤器织物的百分比(%Pen)表示;并且这些测试包括测定整个过滤器织物的压降(ΔP)。根据这两个测试,通过下列公式可以计算称为品质因数(QF)的数值:
QF=-ln(%Pen/100)/ΔP,
其中1n代表自然对数。较高的QF值表明过滤性能较好,而减小的QF值与过滤性能降低密切相关。通常将在未暴露于其他环境时产生的织物的品质因数指定为初始品质因数“Q0”。测定这些值的详细方法在实例部分展示。
为了确定过滤性能的稳定性,可以通过将带电荷BMF织物的初始品质因数与它在不同温度下保存不同时间段后的品质因数相比来测试加速老化。
在一个测试中,将织物置于空气中在71℃下保存72小时。通常将在此条件下老化后的品质因数指定为“Q3”。通过下列公式计算性能保持度:
保持度%(Q3)=Q3(在71℃下老化72小时后)/Q0(初始)×100%。
在更加苛刻的加速老化测试中,将织物在空气中于100℃下保存9小时。通常将在此条件下老化后的品质因数指定为“Q9”。通过下列公式计算性能保持度:
保持度%(Q9)=Q9(在100℃下老化9小时后)/Q0(初始)×100%。
通常,本公开的过滤介质在6.9厘米/秒的面速度下测得QF值为0.3或更大。在一些实施例中,性能保持度(Q3)为90%或更大。在其他实施例中,性能保持度(Q3)为91%、93%、95%或更大、或甚至100%。在一些实施例中,性能保持度(Q9)为90%或更大。在其他实施例中,性能保持度(Q9)为91%、93%、95%或更大、或甚至100%。
实例
这些实例仅仅是说明性目的,并不旨在限制所附的权利要求书的范畴。除非另外指明,否则实例以及说明书其余部分中的所有份数、百分数、比例等均按重量计。除非另外指明,否则所用溶剂和其他试剂均得自Sigma-Aldrich Chemical Company(Milwaukee,Wisconsin)。
缩写表
缩写或商品名称
说明
电荷添加剂-1
2,4,6-三苯胺基-对-(碳-2’-乙基己基-1’-氧)-1,3,5-三嗪,以上述式Ⅲ
表示,可作为“UVINUL T-150”从BASF(Ludwigshafen,Germany)商购获
得。
电荷添加剂-2
4,4’-[[6-[[4-[[(1,1-二甲基乙基)氨基]羰基]苯基]氨基]-1,3,5-三嗪-
2,4-二基]二亚氨基]双-苯甲酸双(2-乙基己基)酯,以上述式IV表示,可作
为“UVASORB HEB”从3V(Bergamo,Italy)商购获得。
电荷添加剂-3
2,4,6-三苯胺基(对-碳-十四烷基-氧)-1,3,5-三嗪,其按照以下合成部分描
述的方法制备。
电荷添加剂-4
2,4,6-三苯胺基(对-碳-十八烷基-氧)-1,3,5-三嗪,其按照以下合成部分描
述的方法制备。
电荷添加剂-5
N,N’,N”-三(4-十四烷基-苯基)-1,3,5-三嗪-2,4,6-三胺,其按照以下合成
部分描述的方法制备。
电荷添加剂-6
N,N’,N”-三(4-十八烷基苯基)-1,3,5-三嗪-2,4,6-三胺,其按照以下合成
部分描述的方法制备。
电荷添加剂-7
N,N’,N”-三(十八烷基)-1,3,5-三嗪-2,4,6-三胺,其按照以下合成部分描
述的方法制备。
电荷添加剂-8
聚[[6-[(1,1,3,3-四甲基丁基)氨基]-1,3,5-三嗪-2,4-二基][(2,2,6,6-四
甲基-4-哌啶基)亚氨基]-1,6-己烷二基[(2,2,6,6-四甲基-4-哌啶基)亚氨
基]]),可作为“CHIMASSORB 944”从Ciba Specialty Chemicals(Basel,
Switzerland)商购获得。
PP-1
等级1的聚丙烯树脂ESCORENE PP 3746G,可从Exxon-Mobil Corporation
(Irving,TX)商购获得。
PP-2
等级2的聚丙烯树脂TOTAL PP3860,可从Total Petrochemicals USA Inc.
(Houston,TX)商购获得。
PP-3
等级3的聚丙烯树脂TOTAL PP3960,可从Total Petrochemicals USA Inc.
(Houston,TX)商购获得。
测试方法
过滤测试
测试样品的DOP气溶胶渗透百分率(%Pen)和压降(ΔP),并计算品质因数(QF)。使用自动过滤器测试仪AFT型号8127(Automated FilterTester AFT Model 8127)(得自TSI,Inc.(St.Paul,MN))评估非织造微纤维织物的过滤性能(%Pen和QF),该自动过滤器测试仪使用邻苯二酸二辛酯(DOP)作为测试用气溶胶,并使用MKS压力传感器测量整个过滤器的压降(ΔP(mm H2O柱))。上游浓度为100mg/m3的DOP气溶胶具有标称的单分散0.3微米质量中位直径。迫使气溶胶以校准的42.5升/分钟(6.9cm/s的面速度)的流速通过过滤器介质样品,同时关闭气溶胶离子发生器。总测试时间为23秒(上升时间为15秒、试样时间为4秒、吹扫时间为4秒)。使用校准的光度计通过在过滤器介质上游和下游进行光散射来测量DOP气溶胶浓度。将DOP的%Pen定义为:%Pen=100×(DOP下游浓度/DOP上游浓度)。对每种材料而言,均在BMF织物上的不同位置进行6次单独的测量,并将测量结果进行平均。
使用%Pen和ΔP由下列公式计算QF:
QF=-ln(%Pen/100)/ΔP,
其中ln代表自然对数。较高的QF值表明过滤性能较好,而减小的QF值与过滤性能降低密切相关。通常将在未暴露于其他环境时产生的织物的品质因数指定为初始品质因数“Q0”。
加速老化性能
为了确定过滤性能的稳定性,可以通过将带电荷BMF织物的初始品质因数与它在不同温度下保存不同时间段后的品质因数相比来测试加速老化。
在一个测试中,将织物置于空气中在71℃下保存72小时。通常将在此条件下老化后的品质因数指定为“Q3”。通过下列公式计算性能保持度:
保持度%(Q3)=Q3(在71℃下老化72小时后)/Q0(初始)×100%
在更加苛刻的加速老化测试中,将织物于空气中在100℃下保存9小时。通常将在此条件下老化后的品质因数指定为“Q9”。通过下列公式计算性能保持度:
保持度%(Q9)=Q9(在100℃下老化9小时后)/Q0(初始)×100%
合成实例
合成实例1:电荷添加剂3的制备
![]()
在氮气氛下,将1-十四醇(96.3克,449mmol)、吡啶(40毫升)和二氯甲烷(1000毫升)的混合物加热至30℃。在二十分钟时间内将4-硝基苯甲酰氯(100克,539mmol)逐份加入混合物中。将反应混合物加热至回流并保持十六小时。用水(2×500毫升)洗涤反应混合物。将有机层减压浓缩,得到黄色固体。加入1000毫升己烷并将混合物加热至回流。将混合物冷却,然后过滤。浓缩滤液,得到黄色固体。使用乙醇将黄色固体重结晶两次,获得77.0克的黄色结晶4-硝基苯甲酸十四烷基酯。
在氮气吹扫下,将10%的铂碳(2.5克)加入Parr容器中的4-硝基苯甲酸十四烷基酯(25克,69mmol)和乙酸乙酯(250毫升)的混合物中。将该容器置于氢压力下(49psi,3.3×105Pa)十六小时。加入二氯甲烷,并使该反应混合物通过一层CELITE助滤剂过滤。将滤液减压浓缩,得到棕褐色固体。使用乙醇将该固体重结晶,获得15克的浅棕色针状4-氨基苯甲酸十四烷基酯。
在氮气氛下,将在二甲苯溶液(460毫升)的4-氨基苯甲酸十四烷基酯(45.6克,137mmol)和氰尿酰氯(8.40克,45.6mmol)的混合物加热至回流并保持二十四小时。将反应混合物冷却至90℃,并用饱和碳酸氢钠水溶液(2×500毫升)洗涤,随后再用水(3×500毫升)洗涤。在二甲苯溶液冷却过夜时形成白色沉淀物。过滤分离白色沉淀物,然后用过量二甲苯洗涤该沉淀物。使用34∶66的二氯甲烷∶甲醇(750毫升)将该固体重结晶两次,再使用二甲苯(300毫升)将其重结晶一次,从而得到27.6克白色固体状的2,4,6-三苯胺基(对-碳-十四烷基-氧)-1,3,5-三嗪。
组成分析:C66H102N6O6的计算值为:%C,73.70;%H,9.56;%N,7.81。测量值为:%C,73.44;%H,9.37;%N,7.62。
合成实例2:电荷添加剂4的制备
![]()
在氮气氛下,将1-十八醇(36克,210mmol)、吡啶(20毫升)和二氯甲烷(500毫升)的混合物加热至回流。溶解该醇,将溶液冷却至5℃。在二十分钟时间内逐份加入4-硝基苯甲酰氯(39.0克,210mmol)。将反应混合物加热至回流并保持十六小时。用250毫升水洗涤反应混合物。用250毫升二氯甲烷洗涤水层。合并有机层,并将其减压浓缩,得到浅棕色固体。加入500毫升己烷,并加热至回流。该溶液在冷却至室温时形成白色沉淀物。滤除该白色沉淀物,并将滤液浓缩,得到浅棕色固体。使用乙醇(500毫升)将该固体重结晶,获得46克白色固体状的4-硝基苯甲酸十八烷基酯。
在氮气吹扫下,将10%的铂碳(2.0克)加入Parr容器中的4-硝基苯甲酸十八烷基酯(23克,55mmol)和乙酸乙酯(230毫升)的混合物中。将该容器置于氢压力下(49psi,3.3×105Pa)十六小时。加入氯仿,并使该反应混合物通过一层CELITE助滤剂过滤。将滤液减压浓缩,得到浅棕色固体。使用乙醇将该固体重结晶,获得18克白色固体状的4-氨基苯甲酸十八烷基酯。
在氮气氛下,将在二甲苯(350毫升)中的4-氨基苯甲酸十八烷基酯(40.1克,103mmol)和氰尿酰氯(6.30克,34.2mmol)的混合物加热至回流并保持二十四小时。将反应混合物冷却至90℃,加入175毫升饱和碳酸氢钠水溶液并搅拌两小时。该混合物冷却过夜时形成白色沉淀物。过滤分离白色沉淀物,然后用过量二甲苯和水洗涤该沉淀物。使用90∶10的氯仿∶甲醇(500毫升)将该固体重结晶,从而得到38.2克白色固体状的2,4,6-三苯胺基(对-碳-十八烷基-氧)-1,3,5-三嗪。
组成分析:C78H126N6O6的计算值为:%C,75.32;%H,10.21;%N,6.76。测量值为:%C,75.27;%H,10.16;%N,6.72。
合成实例3:电荷添加剂5的制备
![]()
在氮气氛下,将在二甲苯(500毫升)中的4-十四烷基苯胺(50.0克,173mmol)和氰尿酰氯(10.6克,57.6mmol)的混合物加热至回流并保持二十四小时。将反应混合物冷却至90℃,并用饱和碳酸氢钠水溶液(2×500毫升)洗涤,随后再用水(3×500毫升)洗涤。在二甲苯溶液冷却过夜时形成白色沉淀物。过滤分离白色沉淀物,然后用过量二甲苯洗涤该沉淀物。使用34∶66的氯仿∶甲醇(750毫升)将该固体重结晶两次,再使用二甲苯(300毫升)将其重结晶一次,从而得到30.0克白色固体状的N,N’,N”-三(4-十四烷基-苯基)-1,3,5-三嗪-2,4,6-三胺。
组成分析:C63H102N6的计算值为:%C,80.20;%H,10.90;%N,8.91。测量值为:%C,80.16;%H,11.05;%N,8.92。
合成实例4:电荷添加剂6的制备
![]()
在氮气氛下,将在二甲苯(500毫升)中的4-十八烷基苯胺(50克,145mmol)和氰尿酰氯(8.9克,48mmol)的混合物加热至回流并保持二十四小时。将反应混合物冷却至90℃,并用饱和碳酸氢钠水溶液(2×500毫升)洗涤,随后再用水(2×500毫升)洗涤。在二甲苯溶液冷却过夜时形成白色沉淀物。过滤分离白色沉淀物,然后用过量二甲苯洗涤该沉淀物。使用90∶10的氯仿∶甲醇(500毫升)将该固体重结晶两次,再使用二甲苯(500毫升)将其重结晶一次,从而得到45克白色固体状的N,N’,N”-三(4-十八烷基苯基)-1,3,5-三嗪-2,4,6-三胺。
组成分析:C75H126N6的计算值为:%C,81.02;%H,11.42;%N,7.56。测量值为:%C,81.05;%H,11.38;%N,7.60。
合成实例5:电荷添加剂7的制备
![]()
在氮气氛下,将十八烷基胺(389克,1.44mol)、二(丙二醇)二甲醚(1.50升)、醋酸钠(134克,1.63mol)和氰尿酰氯(88.4克,0.479mol)的混合物搅拌三十分钟,随后加热至85℃并保持两小时。将反应混合物加热至155℃,在该温度下可以将醋酸从反应混合物中回流除去。将反应混合物加热至170℃并保持十六小时。反应混合物冷却至80℃后,将2-丙醇(1.60升)加入反应混合物中。在室温下过滤沉淀,然后用过量的2-丙醇洗涤沉淀。在回流水中(2.00升)搅拌固体两小时,过滤该固体并用过量的水洗涤。在回流的2-丙醇(2.00升)中搅拌固体两小时、过滤该固体并用过量的2-丙醇洗涤,得到377克白色固体状的N,N’,N”-三(十八烷基)-1,3,5-三嗪-2,4,6-三胺。
热稳定性分析:
使用得自TA Instruments(New Castle,Delaware)的2950型热重分析仪(TGA)(Thermogravimetric Analyzer(TGA)Model 2950)测定每种充电添加剂的热稳定性。将大约5-10毫克的材料放置于TGA中,并在空气环境下以10℃/分钟的速率将其从室温加热至500℃,同时测量由热分解导致的重量损失。表1列出了检测到2%的重量损失时的温度。
表1
充电添加剂
2%的重量损失时的温度(℃)
1
321
2
340
3
285
4
274
5
316
6
290
7
216
8
264
实例1-31和比较例C1-C25
每个实例和比较例都按照下述步骤进行。这些实例的数据在表2和表3中示出。
样品制备
步骤A:制备微纤维织物:
对每个实例而言,选择上述充电添加剂之一(添加剂1、2、3或4)并将其以表2中示出的浓度与3个等级的聚丙烯之一干混,并将共混物挤出,如Van A.Wente,“Superfine Thermoplastic Fibers,”IndustrialEngineering Chemistry,vol.48,pp.1342-1346(Van A.Wente,超细热塑性纤维,工业工程化学,第48卷第1342-1346页)中所描述的方法。挤出温度的范围为约250℃-300℃,挤出机为布拉本达(BRABENDER)锥形双螺杆挤出机(可从Brabender Instruments,Inc.商购获得),运行速率为约2.5至3kg/小时(5-7lb/h)。该模具宽25.4cm(10in),每厘米具有10个模孔(每英寸具有25个模孔)。形成的熔喷微纤维(BMF)织物具有约50-60g/m2的基重、约6.5-9.5微米的有效纤维直径以及约0.75-2毫米的厚度。
同样,对每个比较例而言,使用与对应实例织物等级相同的聚丙烯制备BMF织物,但是未加入电荷添加剂或未使用充电添加剂5、6、7或8中的一种。表2汇总每个比较例的具体的织物特性。
步骤B:制备驻极体:
通过三种驻极体充电方法中的一种使在上述步骤A中制备的每个BMF织物带电:水充电、电晕充电或者电晕预处理和水充电。表2汇总了每种样品使用的具体充电方法。
充电方法1:水充电:
从喷嘴不断产生电导率小于5μS/cm的高纯水的细小喷雾,工作水压为896千帕(130psig),流速为约1.4升/分钟。多孔传送带以大约10厘米/秒的速度将步骤A中制备的选定BMF织物传送穿过水喷雾,与此同时真空驱使水从该织物下方穿过。将每个BMF织物两次运送穿过水充电器(每个侧面依次穿过一次),然后在过滤器测试前使其彻底干燥过夜。
充电方法2:电晕充电:
通过直流电晕放电使在上述步骤A中制备的选定BMF织物带电。通过在接地表面上以约3厘米/秒的速率将织物传送通过电晕刷形源下方而完成电晕充电,其中电晕刷形源在每厘米的放电源长度上具有约0.01毫安的电晕电流。该电晕源在运载织物的接地表面上方约3.5厘米。该电晕源由正直流电压驱动。
充电方法3:电晕预处理和水充电:
通过在充电方法2中描述的直流电晕放电对在上述步骤A中制备的选定BMF织物进行预处理,然后通过在充电方法1中描述的水充电使该织物带电。
过滤测试步骤
初始过滤性能:
将在上述步骤B中制备的每个充电样品切成两个1米的节段。测试一个节段初始状态的DOP气溶胶渗透百分率(%Pen)和压降(ΔP),并按照上述测试方法中描述的方法计算品质因数(QF)。这些结果以初始%Pen、初始ΔP和初始QF记录于下表3。
加速老化过滤性能:
为了确定过滤性能的稳定性,按照上述测试方法中描述的方法进行加速老化测试以确定电荷保持百分率。使步骤B中制备的每个样品的另一个1米节段经由表3中记录的两种加速热老化方法之一处理。
热老化方法1:在71℃下加热3天。
热老化方法2:在100℃下加热9小时。
在热老化后,测试每个样品节段的DOP气溶胶渗透百分率(%Pen)和压降(ΔP),并按照上述测试方法中描述的方法计算品质因数(QF)。这些结果以老化后的%Pen、老化后的ΔP和老化后的QF记录于表3。最后,按照测试方法中所述的方法,通过将初始QF值与老化后的QF值相比来计算每个样品的保持百分率,结果记录于表3。
表2
![]()
![]()
表3
![]()
![]()