用于混合动力模块的与转子集成的离合器的冷却设备和冷却方法技术领域
本发明涉及用于冷却集成在机动车的混合动力模块的电机的转子
中的离合器的冷却方法和冷却设备以及具有这种冷却设备的混合动力
模块。
背景技术
机动车的所谓的混合动力模块在对现有技术有贡献的DE10036
504B4中示出。它具有离合器,所述离合器为了减少轴向结构空间而安
装在电机的转子的径向内部。
离合器的该与转子集成的布置的缺点是:相对于常规设置的离合器
降低离合器的运行特性的质量或离合器功能。
发明内容
本发明的目的是:在所述缺点方面改进现有技术。
所述目的通过一种冷却设备实现,其中冷却设备是用于集成在机动
车的混合动力模块的转子中的离合器的冷却设备,冷却设备包括:
-至少一个流体运输装置,所述流体运输装置构建成将流体运输至离合
器。
本发明实现:通过流体吸收且优选运送出在离合器中形成的热量的
方式,借助于流体冷却离合器。通过流体运输装置能够产生流体运动,
所述流体运动减少或禁止在离合器的区域中的热累积。在本发明的范围
中已经发现:在电机的转子之内存在热条件,所述热条件整体上负面地
影响离合器功能,因为离合器较高地承受热负荷。存在集成的结构形式
导致的、较差的散热并且由于其与转子集成的布置,用电机的附加的热
影响来加载离合器。此外,在混合动力模块的特定的运行形式中,将与
没有模块的驱动系相比更高的摩擦能量输入到离合器中,这附加地引起
更高的热量形成。通过本发明,离合器功能整体上被改进。例如,借助
于本发明防止或至少减少摩擦衬片的提高的磨损,关于所述提高的磨损
发现其归因于离合器的过高的温度。
混合动力模块优选是如下模块:借助于所述模块将电能作为力矩能
够传递到驱动轴上,其中所述轴还能够由内燃机加载力矩。混合动力模
块优选具有带有转子、尤其内转子和定子的电机。转子和定子优选具有
磁性部件,例如电磁体和/或永磁体和/或线圈,借助于所述磁性部件能
够将电能转换成力矩。混合动力模块优选具有集成在转子中的离合器。
离合器优选是分离式离合器或可脱离的离合器,尤其是自由轮分离
式离合器。优选地,它可分开地将内燃机和电机连接。所述离合器优选
具有压板和从动盘,其中这两者中的一个与转子抗转地连接,而另一个
在离合器断开的状态下能够相对于转子转动。压板和/或从动盘优选具
有摩擦衬片。离合器优选径向地和/或轴向地关于转子的旋转轴线设置
在转子之内,尤其优选设置在转子的磁性部件之内。所述离合器优选具
有离合器壳体,优选钟罩式壳体,所述壳体优选抗转动地与转子连接。
流体运输装置优选构建为将能量(例如动能和/或电能)转换成流体
的运动。尤其优选的是:所述流体运输装置构建成,将流体运输至离合
器,使得流体环流和/或穿流离合器、优选离合器壳体和/或流体在离合
器旁流动经过。所述流体运输装置优选构建为将流体也从离合器运走。
优选地,流体借助于流体运输装置能够与压板和/或从动盘和/或摩擦衬
片形成直接接触/以直接接触的方式在压板和/或从动盘和/或摩擦衬片
旁引导经过。流体运输装置优选具有负压侧,在上述负压侧上通过流体
运输装置产生负压,和/或具有超压侧,在所述超压侧上通过流体运输
装置产生超压。流体借助于流体运输装置优选从在其和离合器之间的一
个点能够借助于超压运输至离合器。尤其优选的是,流体能够从一个点
借助于负压朝离合器运输,在所述点和流体运输装置之间设置有离合
器。流体运输装置例如是如下可行方案中的一个或组合:泵、风扇(轮)、
径流式风扇、轴流式风扇、一个或多个流体引导元件或流动元件的装置。
优选也能够将固定式的导流元件/入流元件理解为流体运输装置,所述
导流元件/入流元件例如能够使用行车风进而空气在行驶期间从车辆外
部转向至离合器。流体运输装置例如由塑料和/或铝压铸件构成。流体
运输装置优选能够设置或设置在混合动力模块上、优选构件、尤其混合
动力模块的转子上,使得能够将流体运输至离合器。优选地,冷却设备
具有多个流体运输装置。
流体例如是冷却气体、尤其优选空气。
在根据本发明的另一冷却设备中,流体运输装置与转子抗转动地连
接。替选地,所述流体运输装置经由传动装置与转子连接。在这两种情
况下,转子的旋转能量能够传递到流体运输装置上。因此,所述流体运
输装置在没有单独的供电装置或马达的情况下是够用的。因此,所述流
体运输装置也能够以节约空间的方式设置,例如其可插到转子轴上,例
如其是可插接的风扇叶轮。
根据本发明的另一冷却设备包括至少一个通道,所述通道构建用于
将流体引导至离合器。以该方式,流体有针对性地能够引向到倾向于过
热的离合器部件上。此外,能够借助于通道将流动阻力保持得尽可能小。
优选地,通道与流体运输装置流体连接。优选地,流体运输装置位于通
道中。通道优选具有关于旋转轴线径向的和/或轴向的区域,在所述区
域中流体流动是径向的(径向区域)或轴向的(轴向区域)。优选地,
通道至少部分地由自由空间例如孔构成,所述孔引入或被引入在混合动
力模块的壳体和/或转子中。特别地,离合器壳体具有开口、优选孔和/
或冲裁的区域,所述区域用作为通道并且将流体引入到离合器壳体中和
/或从中引出。优选地,冷却设备具有由多个通道构成的连续的系统。
在根据本发明的另一冷却设备中,通道限定混合动力模块之内的至
少一个循环。以该方式,流体借助于流体运输装置同时引导至离合器和
引导远离离合器。优选地,通道限定闭合的循环,使得流体能够不受控
地从循环中泄漏并且新的、可能污染的流体不能够不受控地从外部进入
到循环中。
在根据本发明的另一冷却设备中,通道具有从外部引导到混合动力
模块中的流体输送部和/或从混合动力模块中向外引出的流体导出部。
以该方式,例如能够应用例如来自其他的冷却循环中的流体、例如不同
地用于冷却的流体,或者能够实现新鲜空气通行,其中新鲜空气优选被
预过滤。对此,优选地,在流体输送部上设有过滤器。优选地,流体输
送部和/或流体导出部耦联到车辆的空调设备和/或加热设备上。例如,
通过空调设备冷却的空气经由流体输送部导入到通道中和/或通过离合
器加热的空气经由流体导出部在需要加热的情况下导入到车辆内部空
间中。优选地,流体经由一个相对于混合动力模块在外部的冷却器调温。
在根据本发明的另一冷却设备中,通道至少部分地邻接于混合动力
模块的构建用于引导第二流体的另一个第二通道的壁。以该方式,流体
能够经由壁冷却,此外,混合动力模块中的已经存在的冷却循环的热量
运输能力能够用于运输出热量。因此,流体优选经由电机的第二通道冷
却。优选用于导热的壁优选是通道的和第二通道的共同的壁。优选地,
混合动力模块的定子具有第二通道。后者优选包含第二流体,借助于所
述第二流体能够冷却定子、例如其磁性部件、尤其其电磁体。优选地,
在通道和第二通道之间存在连续的导热的壁。优选地,流体和第二流体
空间上彼此分开,使得它们不混合。优选地,实现离合器的钟罩式壳体
中的空气流动,其中流动的空气通过在电机的冷却通道旁引导经过被冷
却。
在根据本发明的另一冷却设备中,在壁上设置有冷却片,所述冷却
片伸入到通道中。以该方式,提高与壁的热交换进而提高流体的冷却。
优选地,冷却片沿着流体的流动方向设置。这降低了流动阻力。
在根据本发明的另一冷却设备中,流体运输装置附加地构建用于将
流体运输至转子的电部件和/或磁性部件,和/或流体至少部分地在转子
的这些部件旁引导经过。因此,以简单的方式也能够冷却转子的可能过
热的构件。电部件优选是由电流穿流的部件,磁性部件是能够产生磁场
或具有磁场的部件。优选地,在转子和定子之间的间隙或已存在的间隙
是通道的或通道系统的一部分。
此外,所述目的通过一种机动车的混合动力模块实现,其中混合动
力模块具有根据本发明的冷却设备。这种混合动力模块相对于用于离合
器的其他的混合动力模块具有改进的热条件。
所述目的还通过一种冷却方法实现,其中冷却集成在机动车的混合
动力模块(40)的转子(50)中的离合器(60),其中执行如下步骤:
-借助于至少一个流体运输装置(10)将流体运输至所述离合器(60)。
下面的方法分别参考在该相应的方法之前提出的方法中的一个或
多个。已经描述的冷却设备和混合动力模块的特征类似地优选存在于所
述方法中。
在第二冷却方法中,流体运输装置(10)通过转子(50)驱动。在
第三冷却方法中,流体经由至少一个通道(20.1,20.2)引导至离合器
(60)。在第四冷却方法中,流体在限定通道(20,20.1,20.2)的混合
动力模块(40)之内的通道循环中运输。在第五冷却方法中,流体经由
流体输送部在通道(20)中运输至离合器(60)和/或运输远离离合器
(60)并且经由流体导出部从通道(20,20.1,20.2)中运输出。在第
六冷却方法中,流体经由混合动力模块(40)的构建用于引导第二流体
的另一个第二通道(71)的壁(72)冷却。在第七冷却方法中,流体在
冷却片旁运输经过,所述冷却片设置在壁(72)上。在第八冷却方法中,
流体附加地运输至转子(50)的电部件和/或磁性部件和/或流体经由通
道(20,20.1,20.2)至少部分地在转子(50)的这些部件旁引导经过。
附图说明
对于可行的实施方式的示例性地,图1-3示出冷却设备1和根据本
发明的混合动力模块40,图4示出流体运输装置10,其中
在图1中选择示意图,
在图2中根据本发明的冷却设备1附加地具有通道20,
在图3中示出根据本发明的冷却设备1的流体流,
在图4中示出流体运输装置10的简单的立体图。
具体实施方式
在图1中,冷却设备1具有流体运输装置10。混合动力模块40具
有定子70和转子50,在所述转子中集成离合器60。流体运输装置10
在离合器60的一侧上、例如传动装置侧上设置在转子50上。虚线示出
替选方案,其中流体运输装置10设置在离合器60的另一侧上、例如内
燃机侧上。优选地,流体运输装置10与转子50抗转动地连接。在该替
选的布置(虚线)中,流体运输装置与通过内燃机驱动的轴抗转动地连
接。
在本发明的运行中,借助于流体运输装置10将流体朝离合器60的
方向运输,这通过从离合器60的区域中抽吸流体来实现,使得新的较
冷的流体从更远的距离流动至离合器60,和/或通过借助于由流体运输
装置10产生的超压将流体从流体运输装置10引导至离合器60的方式
来流动。优选地,流体运输装置10通过转子50的转动或内燃机侧的离
合器轴(在附图左侧,虚线的变型形式)的转动而被驱动。
以该方式,将例如通过离合器60中的摩擦形成的且由于包围离合
器60的结构方式而不被充分地导出的热量借助于流体由离合器60吸收
并且所述热量能够被继续运输。
在图2中,冷却设备1具有通道20和流体运输装置10,所述流体
运输装置10具有流动元件11。通道20具有至少一个径向部段20.2和
至少一个轴向部段20.1。在通道中存在空气作为流体。混合动力模块40
与图1中相比附加地具有包围混合动力模块40的、优选基本上气密地
密封的混合动力模块壳体41。通道20、例如通道20的上部的轴向部段
20.1或者轴向的通道20.1是穿过混合动力模块壳体41的轴向孔。替选
地或附加地,通道20的轴向部段20.1通过附加的、外部的在其和混合
动力模块壳体41之间形成自由空间的饰面形成。类似地也能够形成径
向通道20.2或通道20的径向部段20.2。优选地,为了形成(例如径向
的或轴向的)通道20使用已经存在的肋片(例如径向肋片或轴向肋片),
所述肋片例如通常为了促进刚度安置在混合动力模块壳体41上。这种
(刚性)肋片的中间空间优选形成通道(例如径向的或轴向的)。定子
70还具有呈彼此贴靠的第二通道71形式的定子冷却装置,所述定子冷
却装置包含用于冷却定子70的第二流体、例如冷却液体。优选在一侧
上(如所示出那样)尤其优选在两侧上具有肋片的用于导热的壁72将
通道20与定子冷却装置的第二流体分开。在定子70和转子50上彼此
对置的平行设置的矩形是相应定子70的和相应转子50的磁性部件。离
合器60与图1相比附加地具有摩擦衬片61和离合器壳体62,所述离合
器壳体优选是钟罩式壳体。所述离合器壳体具有孔洞,所述孔洞为通道
20的一部分并且构建成将流体引入到离合器壳体62中和从中引出。在
转子50和定子70之间、尤其在所述磁性部件之间存在间隙42。在一个
实施方式中,间隙42是通道20的一部分。
本发明的运行根据图3阐述,所述图3示出与图2相同的冷却设备
1和相同的混合动力模块40,然而为了更好的浏览而没有附图标记。此
外,通过箭头说明流体的示例的运动。流动运输装置10通过流动元件
11的运动将流体沿轴向方向运输。所述流体偏转到径向通道20.2中、
随后偏转到轴向通道20.1中。在那里,所述流体沿着壁72运输。壁72
通过第二流体冷却,所述第二流体在第二通道71中循环,以便冷却定
子70。在壁72处冷却轴向通道20.1中的流体。现在被冷却的流体继续
运输到另一径向的通道部段20.2中并且在那里径向向内流动。随后所述
流体又沿轴向方向偏转至离合器60并且流动穿过离合器壳体62的一个
或多个开口。所述流体穿过离合器壳体62的内部并且尤其对离合器60
的摩擦衬片61环流,在流体穿过离合器壳体62的一个或多个其他的开
口再次从离合器壳体62中流出并且流动至流体运输装置10之前,流体
吸收所述离合器输出的热量。流体从那里重新在所示出的循环中运动。
在(未示出的)变型形式中,流体还被运输穿过间隙42并且以该方式
冷却定子70和转子50的所述磁性部件,优选还有可能存在的电部件。
以该方式,流体在循环中运输,所述循环一方面实现在优选已经存
在于混合动力模块中的冷却循环处冷却流体,并且另一方面实现在离合
器60的区域中、尤其在离合器的摩擦衬片61的区域中、优选在离合器
壳体62之内通过流体进行热吸收。
在图4中,流体运输装置10是风扇叶轮,所述风扇叶轮具有流动
元件11。在风扇叶轮10的毂上设置有至少一个凸起12。以该方式,风
扇叶轮10能够抗转动地插到轴上,尤其插到混合动力模块40的传动装
置侧的转子轴上。混合动力模块40的轴优选具有至少一个相应的开槽,
流体运输装置10能够插到所述轴上。
借助本发明,首次认识到:混合动力模块的与转子集成的离合器的
功能经受提高的热学条件和如何能够应对该热学条件。例如,离合器的
较高的磨损能够归因于该条件。已经认识到:如何能够改进离合器功能。
借助于冷却设备或冷却方法首次能够冷却混合动力模块的与转子集成
的离合器,由此改进离合器的总功能,例如抑制磨损或者至少减少磨损。
借助于运输装置能够强制流体运动,其中例如通过流体与离合器的钟罩
式壳体或摩擦衬片直接接触的方式,流体吸收优选出自离合器60的直
接的环境中的热量。流体优选借助于冷却设备和对此构建的通道系统能
够在混合动力模块之内循环。以该方式,热量被有效地运输出并且流体
不承受污染的风险。尤其优选的是,在混合动力模块中循环的流体在混
合动力模块的一个部位处冷却,例如通过定子冷却装置冷却。能够实现
在整个混合动力模块中的钟罩空气的冷却或混合动力模块的马达侧的
分离式离合器的冷却。钟罩空气的冷却或尤其分离式离合器的摩擦部件
的冷却优选通过如下方式实现:通过不同的旋转的元件进行混合动力模
块中的有针对性的空气流动。空气流动优选明确地经由电机的冷却通道
引导,所述冷却通道借助冷却介质穿流。由此,尤其冷却环流的空气,
由此实现在钟罩式壳体中的全部空气的冷却和尤其离合器的摩擦元件
的冷却。尤其也通过(附加有针对性地)将流体在转子和/或定子旁引
导经过来实现进一步改进混合动力模块中的热学状态。
附图标记列表
1冷却设备
10流体运输装置
11流动元件
12凸起
20通道
20.1轴向通道
20.2径向通道
40混合动力模块
41混合动力模块壳体
42混合动力模块中的转子和定子之间的间隙
50转子
60离合器
61摩擦衬片
62离合器壳体
70定子
71第二通道
72壁