用于微电子、微型光电子或微型机械器件的支撑件.pdf

上传人:1*** 文档编号:562272 上传时间:2018-02-22 格式:PDF 页数:15 大小:626.08KB
返回 下载 相关 举报
摘要
申请专利号:

CN02814710.3

申请日:

2002.07.16

公开号:

CN1599806A

公开日:

2005.03.23

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效|||公开

IPC分类号:

C23C14/04; C23C16/04; H01L23/26; C23C14/08; C23C16/40

主分类号:

C23C14/04; C23C16/04; H01L23/26; C23C14/08; C23C16/40

申请人:

工程吸气公司;

发明人:

马克·阿米奥提

地址:

意大利莱内特

优先权:

2001.07.20 IT MI2001A001558; 2002.04.03 IT MI2002A000688

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

张祖昌

PDF下载: PDF下载
内容摘要

本发明是关于用于制造微电子、微型光电子或者微型机械器件的支撑件(10;60)。所述支撑件(10;60)包括具有支撑元件功能的基体(11,61),在所述基体上,沉积有离散沉积物(13、13′...;63、63′...)形式的气体吸收材料,该离散沉积物至少部分暴露于所述支撑件(10;60)附近的大气中。

权利要求书

1: 一种用于制造微电子、微型光电子或者微型机械器件的支撑件 (10;60),该支撑件包括具有机械支撑功能的基体(11,61),其特 征在于,在所述基体上,气体吸收材料以离散沉积物(13、13′...;63、 63′,...)形式沉积,该离散沉积物至少部分暴露于所述支撑件(10; 60)附近的大气中。
2: 如权利要求1所述的支撑件(10;60),其特征在于,所述离 散沉积物(13、13′...;63、63′...)完全暴露于所述支撑件(10;60) 附近的大气中。
3: 如权利要求1或2所述的支撑件(10),其特征在于,所述基 体(11)覆盖有适合于微电子或微型机械器件或其零件生产的材料层 (14),所述层(14)具有通道(15、15′...),该通道把所述沉积物(13、 13′...)与所述支撑件附近的大气连接起来。
4: 如权利要求1或2所述的支撑件(60),其特征在于,所述基 体(61)设有空腔(65、65′...),该空腔适于容纳所述气体吸收材料 离散沉积物(63、63′...)。
5: 如权利要求1或2所述的支撑件(10),其特征在于,完成所 述基体(11;61)的材料在金属、陶瓷、玻璃或半导体中选择。
6: 如权利要求5所述的支撑件,其特征在于,所述材料为硅。
7: 如权利要求1或2所述的支撑件,其特征在于,所述气体吸收 材料是吸气剂材料。
8: 如权利要求7所述的支撑件,其中,所述吸气剂材料从Zr、 Ti、Nb、Ta、V等金属中、这些金属的合金或者这些金属和一种或一 种以上元素的合金中选择,所述元素从Cr、Mn、Fe、Co、Ni、Al、 Y、La和稀土族中选择。
9: 如权利要求8所述的支撑件,其特征在于,所述吸气剂材料是 钛。
10: 如权利要求8所述的支撑件,其特征在于,所述吸气剂材料 是锆。
11: 如权利要求8所述的支撑件,其特征在于,所述吸气剂材料 是重量百分比组分为Zr84%-Al16%的合金。
12: 如权利要求8所述的支撑件,其特征在于,所述吸气剂材料 是重量百分比组分为Zr70%-V24.6%-Fe5.4%的合金。
13: 如权利要求8所述的支撑件,其特征在于,所述吸气剂材料 是重量百分比组分为Zr80.8%-Co
14: 2%-TR5%的合金,其中,TR 意指稀土,钇,镧或其混合物。 14.如权利要求1或2其中一项所述的支撑件,其特征在于,所 述气体吸收材料是干燥剂材料。
15: 如权利要求14所述的支撑件,其特征在于,所述干燥剂材料 从碱氧化物或碱土金属中选择。
16: 如权利要求15所述的支撑件,其特征在于,所述干燥剂材料 是氧化钙。
17: 如权利要求3或4其中一项所述的支撑件,其特征在于,所 述气体吸收材料的离散沉积物(13、13′...;63、63′...)的厚度在0.1-5 微米范围内。
18: 如权利要求3所述的支撑件,其中,所述适合于生产微电子、 微型光电子或者微型机械器件或其零件的材料是半导体材料。
19: 如权利要求14所述的支撑件,其中,所述材料为硅。
20: 如权利要求3所述的支撑件,其中,所述适合于生产微电子、 微型光电子或者微型机械器件或其零件的材料层厚度在1-20微米范围 内。
21: 权利要求1的支撑件在微型机械器件生产中,作为覆盖元件 使用。

说明书


用于微电子、微型光电子或 微型机械器件的支撑件

    本发明涉及一种用于制造具有气体吸收材料结合沉积物的微电子、微型光电子或者微型机械器件的支持件。

    微电子器件(也称作集成电路,在本领域中用缩写ICs表示)是整个集成电子工业的基础。微型光电子器件包括,例如新一代红外线辐射(IR)传感器,该传感器与传统的不同,不需要低温的操作温度。这些IR传感器由排列在真空容器内的一排半导体材料沉积物,例如硅构成。微型机械器件(作为“微型机械”或其缩写MMs,在本领域广为人知)正处于发展阶段,用作微型化传感器或者致动器:微型机械的典型示例是微加速度计,它被用作传感器,以触发汽车气囊;微型电动机,它的齿轮和链轮只有几个微米大小;或者光学开关,其中大约几十微米(μm)大小的镜面能够在两个不同位置之间移动,从而向两个不同的方向引导光束,一个对应于光学电路的“开”状态,另一个对应于光学电路的“关”状态。下面,所有这些器件都将用一般定义的固态器件来表示。

    采用包括在不同电(磁)功能材料层的平面支撑件上的沉积工序,交替选择去除的工艺、来制造ICs。所述沉积和选择去除的工艺也应用于微型光电子或者微型机械器件制造中。这些器件一般装在外壳内,该外壳也是用这种工艺制成。在这些产品中最常用的支撑件是大约1mm厚和直径达30cm的硅“片”(本领域中叫做“晶片”)。在每一个这样地晶片上,构造有大量的器件;然后,在制造过程结束时,采用机械或激光切割,将这些硅片与微型机械外壳内的单个器件或在1R传感器外壳内包括一排几十个器件的零件分开。

    进行沉积工序采用气态化学沉积工艺,来自英语“化学气相沉积”通常定义为“CVD”,或者气态物理沉积工艺,即“PVD”,来自英语“物理气相沉积”,后者一般也用英语名称“溅射”表示。通常正如本领域所熟知的,选择去除通过化学浸蚀或者物理冲击和适当掩蔽来完成。

    而且,主要基于机械保护原因,在被插入最终指定装置(计算机,汽车等)之前,集成电路和微型机械要封装在聚合物、金属或者陶瓷材料内。相反,IR辐射传感器一般包含在容器内,面向其被定义为“窗口”的一个壁,IR辐射可穿透。

    在某些类型的集成电路中,能够在固态器件中控制气体扩散非常重要:例如铁电存储器的情况,其中氢通过器件的层扩散能够到达铁电材料(一般为陶瓷氧化物,例如钛酸-锆酸铅(leadtitanate-zirconate),锶-铋钽酸盐或钛酸盐,或者铋-镧钛酸盐),而改变其正确性能。

    在IR传感器和微型机械中,气体控制和消除更重要。在IR传感器的外壳内,容器中可能存在的气体能够吸收部分辐射或是通过从窗口到一排硅沉积物之间的对流输送热量,以改善量度。在微型机械中,气体分子和可动部分之间的机械摩擦力,由于后者尺寸很小,可导致器件明显偏离其理想操作;而且,极性分子(如、水)会引起可动部分和其他部分,例如支撑件之间的粘附现象,因而导致器件出现故障。因此,在具有成排硅沉积物的IR传感器或者微型机械中,确保外壳在真空状态对在整个器件使用期间非常重要。

    为了使这些器件内的气体量达到最小程度,其生产通常在真空室内进行,并且在包装之前,通常采取抽气工序。不管怎样,这种方式不能完全解决问题,因为构成器件的同一材料会释放气体,或者在整个器件使用期间,这些气体能够从外部渗入。

    为了在整个使用期间,同样去除进入固态器件的气体,已建议使用能够吸收它们的材料。这些材料包括那些通常称作“吸气剂”的材料,一般是金属如锆、钛、钒、铌或钽,或者其与其他过渡金属、稀土元素或铝的合金,它们对于气体,如氢、氧、水、碳氧化物和有些情况为氮具有非常强的化学亲和力;和专门用于吸收湿气的干燥剂材料,这种材料中主要是碱氧化物或碱土金属。例如在专利US-A-5,760,433和已出版的日本专利申请JP-11-040761和JP-2000-40799中已描述了在ICs中用于吸收气体、特别是氢的材料的使用;它们在IR传感器中的使用在专利US5,921,461中有示例叙述;最后,在H.Henmi等人发表在技术期刊传感器和致动器A43册(1994),243-248页“微型传感器用玻璃硅阴极焊接进行真空包装”的文章中示例描述了在微型机械中气体吸收材料的使用。

    在固态器件的生产步骤过程中,可以通过CVD或者溅射获得气体吸收材料的固定沉积物。然而,由于在器件生产过程中,吸收材料的沉积包含需要在整个过程中附加有这种材料的固定沉积步骤,完成这一步骤一般要通过树脂沉积作业,通过辐射(一般是UV)使树脂局部敏化,光敏树脂的选择去除,气体吸收材料的沉积和随后树脂的去除及沉积上面的气体吸收材料的去除,将气体吸收材料沉积物保留在光敏树脂已去除的区域上,所以这一步骤并未受到这些器件制造商的很大赏识。而且,气体吸收材料在生产线上的沉积具有这样的缺点,即要增加不同过程步骤的数量和其中所用材料数量,而且还会增加在所述不同步骤进行中不同真空容器之间的“交叉污染”危险,随着污染又带来可能增加的废品量。

    本发明的目的是克服现有技术的上述问题,特别是简化固态器件的制造。

    根据本发明,采用用于制造微电子、微型光电子或者微型机械器件的支撑件来达到这一目的,其主要特征在权利要求1中有所规定,其他特征在从属权利要求中予以规定。

    本发明的支撑件与工业上常用的硅片几乎类似,但是,其气体吸收材料(以离散沉积形式)沉积在所构造的微电子或微型机械器件的表面上。

    下面将参考附图对本发明进行描述,其中:

    图1示出本发明的第一可能支撑件局部剖面透视图;

    图2示出图1支撑件的剖面图;

    图3-5表示从图1支撑件开始构造固态器件的操作阶段;

    图6示出本发明的第二可能支撑件局部剖面透视图;

    图7示出图6支撑件的剖面图;

    图8表示从图6支撑件可获得的固态器件;和

    图9示出从图6支撑件开始构造的另一个固态器件的剖面图。

    为清楚描述起见,在附图中,本发明支撑件的高-径比和沉积在基体上气体吸收材料的侧面尺寸都相对真实尺寸放大。而且,在附图中,支撑件总是被表示为晶片几何形状,即材料的薄圆盘形状,这是因为这种几何形状是固态器件生产者通常采用的形状,但是这种几何形状也可以不同,例如正方形或者矩形。

    图1示出本发明第一实施例支撑件10的部分剖面图。所述支撑件10包括基体11,并构成支撑件10的几乎整个厚度(在毫米范围内),该基体仅仅具有支持支撑件和从中导出器件的功能。基体材料可以是金属、陶瓷、玻璃或半导体,优选硅。

    在基体11表面的区域12、12′…上,获得气体吸收材料的离散沉积物13、13′…。然后这些沉积物被适合于ICs或MMs生产过程的材料层14覆盖,该层14起到固定的作用,使各层连续沉积在上面,构成ICs,微型光电子器件或MMs或者甚至可以是其中构造这些器件的层本身(例如,通过除去其中的部分,可以在该层获得微型机械的可动部分)。而且,最终器件的软焊可以直接在层14的边缘进行。

    然后,如图2所示,在层14,与沉积物13、13′…对应之处完成通道15、15′…,其功能是把气体吸收材料暴露于支撑件10四周大气中。通过现有技术已知的去除方法,有选择地去除沉积物13、13′…上的层14可以制成通道15,15′…。

    用于沉积物13、13′…的气体吸收材料可以是材料中选择的不含磨损颗粒现象的任何材料,通常称作吸气剂、能够吸收各种气体分子和干燥剂材料、特别用于吸收水蒸气。

    采用吸气剂材料时,可以是Zr、Ti、Nb、Ta、V等金属;这些金属中的合金或这些元素和一种或一种以上元素的合金,象两元合金Ti-V、Zr-V、Zr-Fe和Zr-Ni,三元合金Zr-Mn-Fe或Zr-V-Fe,或者更多种成分的合金,所述元素从Cr、Mn、Fe、Co、Ni、Al、Y、La和稀土族中选择。对本申请来说,优选吸气剂材料为钛、锆,重量百分比组分为Zr 84%-Al16%的合金,申请人生产和销售的命名为St101,重量百分比组分为Zr 70%-V24.6%-Fe5.4%的合金,申请人生产和销售的命名为St707,和重量百分比组分为Zr80.8%-Co14.2%-TR5%的合金(其中,TR是稀土元素,钇、镧或其混合物)申请人生产和销售的命名为St787;当吸气剂材料完全含有磨损颗粒现象时,则要适当地处理,以便减少或者消除所述现象,例如通过局部烧结或者退火处理。

    采用干燥剂材料时,优选从碱氧化物或碱土金属中选择;特别优选使用氧化钙CaO,因为它在生产过程中不会造成安全或环境问题,使用或者配置含有这种成分的器件。例如可以通过所谓的“反应溅射”法,将有影响的碱或碱土金属在稀有气体(一般为氩气)环境下沉积来获得氧化层,该稀有气体含有低百分数的氧气,因此,金属在沉积过程中被转化为其氧化物。这些层一般密实,且不产生磨损颗粒问题。

    可以通过常用的选择性沉积法来获得沉积物13、13′…,且具有大约0.1到5微米之间的厚度;随着厚度值低于指示值,气体吸收能力极大降低,而随着较高的厚度值沉积时间的延长,在吸收性能上没有任何真正的优势。所述沉积物的侧面尺寸根据最终预定器件在宽度范围内可以改变;例如,如果要求用于ICs,侧面尺寸将在几微米或者更少的范围内,而在用于MMs时,尺寸可在几十和几百微米之间。

    组成层14的材料是通常在固态器件生产中用作基片的材料之一;它可以是所谓的III-V材料(例如GaAs(砷化镓) o InP(磷化铟)或者优选硅。可以通过溅射、晶体取向接长、CVD或者任何其他本领域熟知的技术获得层14。其厚度可变,该厚度在没有沉积物13、13′…的区域内一般低于60微米,且优选在1-20微米的范围内。

    为有助于粘附,层14优选用与基体11相同的材料实现;优选组合是基体11用硅(单晶或多晶),而层14则用晶体取向接长硅。

    鉴于器件生产的下述工序,层14的上表面也可以这样改进其化学组分,例如形成氧化物或者氮化物进行处理。

    因此,本发明的支撑件可以在生产各种类型的固态器件中使用。正如前面说明中所表示的,在支撑件完成和准备使用或商品化时,气体吸收材料的沉积是“无覆盖的”,即暴露于外部大气中。为了避免过度钝化的危险和损害吸收材料,于是最好把支撑件保持在充有惰性气氛的盒内,例如现有技术常见的氩气或干氮气。

    图3-5示出在固态器件生产,特别是有关微型机械生产中可能使用的支撑件10。然而,同一支撑件可以用于制造其他固态器件。

    没有通道15、15′…的层14的表面区域上制造有包括微型机械活动部分的结构,图3中示为元件30、30′…。当结构30、30′…的生产(包括每一单个微型机械外部电气连接的接点,未在图中示出)完成后,覆盖元件40被置于支撑件10上,如图4剖面所示。所述覆盖元件一般用基体11相同的材料实现,并且必须容易地固定到层14(优选用硅)上。覆盖元件40可有与支撑件10上其中区域相对应的孔41、41′…,获得结构30、30′…,并暴露出气体吸收材料的沉积物13、13′…。特别是所述每个孔都很宽,以至于当支撑件10和覆盖元件40一起固定时,可获得空间42、42′…,其中包含如30、30′…的结构和提供通向气体吸收材料的通道15、15′…,从而使后者直接与空间42、42′…接触,能够吸收在所述空间工作期间内可能存在或者释放的气体。最后,通过沿着粘结区切割由支撑件10和覆盖元件40形成的整体来获得如图5中所示的单个微型机械。

    图6和7示出本发明支撑件第二个实施例的局部剖面图。而且,在这种情况下,支撑件60包括与前述基体11相同类型和尺寸的基体61,但是其中获得空腔65,65′…,该空腔位于区域62、62′…,并适于容纳气体吸收材料沉积物63、63′…。由于其特有的空腔形状,基体61能够代替有由基体11和层14形成的组件。

    图8表示固态器件80,特别是微型机械,可以用图6和7中的支撑件60,通过参照图3-5所述相同的过程来获得,而利用覆盖元件70所设与支撑件60上其中区域相对应的孔71,71′…布置结构72,72′…并暴露出气体吸收材料沉积物63,63′…。

    在上述限定的变化过程中,其结果是图9所示的微型机械90,本发明的支撑件60被用作固态器件的覆盖元件而不是它的基体。在这种情况下,上面构造微型机械的基体是传统式的,没有气体吸收材料沉积物。这样在基体61内获得的空腔65,形成一个容纳活动结构91的空间,同时还有提供通向气体吸收材料的通道63。

    也可以用同样的方式使用图1所示的器件10。

用于微电子、微型光电子或微型机械器件的支撑件.pdf_第1页
第1页 / 共15页
用于微电子、微型光电子或微型机械器件的支撑件.pdf_第2页
第2页 / 共15页
用于微电子、微型光电子或微型机械器件的支撑件.pdf_第3页
第3页 / 共15页
点击查看更多>>
资源描述

《用于微电子、微型光电子或微型机械器件的支撑件.pdf》由会员分享,可在线阅读,更多相关《用于微电子、微型光电子或微型机械器件的支撑件.pdf(15页珍藏版)》请在专利查询网上搜索。

本发明是关于用于制造微电子、微型光电子或者微型机械器件的支撑件(10;60)。所述支撑件(10;60)包括具有支撑元件功能的基体(11,61),在所述基体上,沉积有离散沉积物(13、13.;63、63.)形式的气体吸收材料,该离散沉积物至少部分暴露于所述支撑件(10;60)附近的大气中。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 对金属材料的镀覆;用金属材料对材料的镀覆;表面化学处理;金属材料的扩散处理;真空蒸发法、溅射法、离子注入法或化学气相沉积法的一般镀覆;金属材料腐蚀或积垢的一般抑制〔2〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1